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ON THE RATES OF CONVERGENCE OF TWO MODULI
OF FUNCTIONS

KAMEN G. IVANOV

Relations between the moduli of continuity (smoothness) in Lp[0, 2r)(1<p<lco)ap(f; 8)p
and the averaged moduli 1,(f; 8), are investigated. For this purpose fractional order moduli
of continuity and fractional order derivatives are used.

1. Preliminaries. Let C=C|[0, 2n] be the space of all continuous 2 pe-
riodic functions with supremum-norm L,=L,[0,2r] (1=<p<co) the space of
all measurable 2rn periodic functions, for which the norm | 1, =[ [2*| f(x)|?dx]"?

is finite. Let X stand for C or L,.
For fe X, [#f(x)dx=0, the following definition of a integral (a>0) was

introduced by H. Weyl [7]:

2r

(1.1 fulx)= 55 [ wdx—Df(tat,

where yo(£)=22 _ e*(ik)~. We shall use only the following properties of

R=—o0

k0
the kernel y, (see Zygmund (8, ch. XII]):

1.2) Vo is 2r periodic, yq(x) is differentiable ,
7 for x=£2km, wO(t)=O(t—'—) for 0<|f|<m, i=0,1, and [*_yd(£)dt=0.
The difference of f of fractional order a (a>0) is given by

83/ ()= £ (—1Y(§) fCx—sty

The function f¢X is said to be the a derivative (a>0) of F¢ X (F@=f)
if limpso 127 A F—flx=0.

In the recent paper of Butzer, Dyckoff, Gorlich & Stens [I]
the following important relation between the above definitions of integral and
derivative was given:

Fo=f iff Ax)= fux) (a. e.) in case X=L, and
F@ = fiff F(x)= fux) in case X=C.

(

(1.3)

The X modulus of continuity of fractional order a (a>0) of f is given by
1.4 a N =Wl = A¢ .
(1.4) 0u(f; 8)=wd f; 8)x= sup 1143 fllx
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Let us list some properties of the fractional moduli of continuity (see
[1, Lemma 6, Theorem 3]). '
Lemma 1. For f, g¢ X, 0<a, B, we have

(1.5) oq(f; 8) is a non-negative, increasing function
of 8¢€(0, =), limso+ 0o(f; 8)=0;

(1.6) ouf; S)=c(a,B)og(f; 8) (B=a);

(1.7) 0u(f+g; 8) =wa(f; 8)+wa(g; 8);

(1.8) Wa (f5 8)x=c(a)d® || f Iy if f®eX;

(1.9) 0u(f5 8)x=c(a—PB)3*Pap(f=P; 8)x if fePeX.

(1.10) For each 0<B<0<a and each y>0—B we have

wq(f; 8)x=0(8% if fPe¢X and o fP; 8),=0(8"F).

In this paper ¢(A4, B,...) denotes a positive constant depending only on
the marked parameters. It may differ at each occurrence.
The X averaged modulus of integer order % of a measurable bounded

function f is given by
(L.1T) W[5 O)=1(f; x=llwxf, 5 8)lx,
where w,(f, x; 8)=sup {|Akf(¢)|:¢, t+khe[x—kS/2, x+k5/2]} is the loca

modulus of continuity of f. For the history of t, see [5]. Here some proper

ties of t, are collected.
Lemma 2. For f, g-bounded measurable functions we have

(1.12)  t,(f; 8) is a non-negative, increasing function of 8¢(0, );

(1.13) W[ d)=c(R)yt—i(f; 8);

(1.14) % (f+8&; O)=1lf; 3)+1(g; 3);
(1.15) 1 (f3 S)x=<8* I f® |y for f® ¢ X;
(1.16) u(f; dW=<8.V2f for f¢B.V.;
(1.17) ([ d)x=c(k) dwpi(f"; 8)x for f €X;
(1.18) O(f; 8)cp2m=T,(f; 8)cro2m;
(1.19) ([ 8)=Tf; 8), (I=p< o).

Properties (1.12)—(1.15) and (1.18),/(1.19) are a simple consequence of de-
finitions (1.4) and (1.11) and properties of finite difference. (1.16) is proved-
in [9] and (1.17) — in [3].

Remark. The derivatives in Lemma 2 should be considered in the usua
sense. So the functions in (1.15) and (1.17) are continuous (cf. (1.3)).

Our purpose is to investigate the relation between the rates of conver-
gence of ®, and t,. In the case X'=C the situation is trivial because of (1.18) —
then @, and 1, coincide. In the following we shall consider only the case
X=L,(1=p<co). Here (1.19) gives that (0<a=k)

(1.20) W(f 8 =0(3%)
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implies
(1.21) ol(f3 8),=0(8).

So our aim will be to find out when (1.21) implies (1.20).
2. Main results. For f¢L,(1<p<) and 1/p<a<l we have

1) (fas B)p=e(, )81 -

Remark. We can consider (2.1) as an extension of (1.15) for 2=1. An
inequality with t,(k>1) instead of 1, in (2.1) follows from (2.1) and (1.13),
Let us note that f, is continuous and even satisfies some Lipschitz conditions
(see e. g. [8, ch. XII)). This is of great importance for the validity of Theo -
rem 1.

Proof. Let #,f¢[x—8/2, x+8/2]. We set h,=t,—x, i=1,2. Then |#4,|
=38/2. From (1.1) and (1.2) we have

20 1ut)= [ it h0)f@Odt= [ wlt+h)f (—tyat
and therefore
(22 2n[ fo(t))—fu(ty)] = _f: J(x—8) [wat+h1)—wolt + hy)ldt.

We divide the integral in (2.2) into two parts A(x)= [i1<s and B(x)= [s5:i<r-
For A(x) (1.2) and Holder’s inequality (1/p’+1/p=1) give

23) | AGIST L 1f Gty 12at 1 ([ valt+ho) Pt 1
L It +h)Patie } 2 [ 1f (=) Paee] [ Lwalo) e
sc@[ [ 1fGe—p17a) [ tevwatp

<c(@s P [ 1fCe—1)edtpie oo,
because (a—1)p'>(1/p—1)p'=—1. For B(x) (1.2) gives
(2.4) Bx)l= S _Nf=D] 1 h—hl |, (£+6,8/2)| dt
=d@)d [ 1f(x—8)| (1¢]—8/2)* L.
< |tl=n

From (2.2), (2.3) and (2.4) we obtain the following estimate for the local mo-
dulus of continuity :

(2.5) o,(f, x; 8)éC(ﬂl,.ﬂ)a“‘"”"[_j::If(«\f—t)l"’a’t]""

Fe@p [ 1f (b))l (121=82pat
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Now (1.11), (2.5) and Minkowski’s inequality give
3 2n
©(fas 8),<c(a, p) 8o | ! Of | f(x—28)Pdx dt)'P

+e@8, [ 1f (-~ (121822t

=<c(a, p) 812 || f11,8V7 +c(a) S 1l £, s ,{ te=2dt =c(a, p)d° i f,.
This proves the theorem.
Corollary 1. For feL,(1<p<), 1/p<a<l, F=f, we have

(26) W(F: 8),=0(a, Pwy_o(f; 8), -

Proof. Let G be the k-th modified Steklov function of F with a step
S, i. e.

G)=(—1pi5—* 3 (—1p (#) [0 | ¢ trlk)dt, . . . dt
B r=1 r J”.'Jf(x'*'(l'f""'l" r/kR)dt, .. .d¢,.

Then

o

3

(27)  (G—F)(x)=(—1pf187*( [ -~ -!; At cttgnF () .. dt)

)
3 3
=(—1)1 8-—~kof aie of A(ktl+...+tk)/kf(x)dt1 .o dty

- and
28) G® (x)= ’él (—1y— (f ) (é)" 3*A%, F(x) (a.e)

(see [4]). Then (1.14), (1.15), (1.13), ‘(2.8), (1.4),
Theorem 1, (1.9), (2.7) and (1.6) give

W(F; 8),=T(G; 8),+T(F—G; 3),

<c(k)8* 1| GP |, + c(R)ty(F—Gyy 8), < c(R)oy(F; 8),+c(k, a)d | (F—G) I,
(k) p—al £ 8),+ (k. @)8°0y( [ 8),=0(k, @) 8°0,_o(f; 8),
Theorem 2. For feL,(1=p<), k=1, l/p<a<k for p>1 and 1=a
<k for p=1, F=f,, we have
(29 W(F; 8)p=c(a, p) 80p—ol £ 8),

Proof. For p>1 we prove (2.9) by Corollary 1 and (1.9). For p=1 we
obtain (2.9) from (1.17) and (1.9).

Theorem 3. If k is natural, 1[p<0<k for 1<p<co, 0=1 for p=1
and k=1, 1<0<k for p=1 and k>1, then (1.21) implies

(2.10) f(x)=F(x) (a.e.) and t(F; 8),=0(s").
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Remark. Under the conditions of Theorem 3 we cannot simply state that
(1.21) implies (1.20), because w, does not depend on the values of f for all
x €[0, 2r], but for x belongs to a full-measured set. In (2.10) F is this func-
tion in the equivalent class of f which is continuous (see the remark after
Theorem 1) with the exception of the case p=1, k=1, where F has a bound-
ed variation.

Proof. a) The saturation case 0==%.

From Theorem 2.2.26 in [2, p. 110] follows that (1.21) implies -

f(x)=F(x) (a. e.) and
(2.11) FF,..., F&==2¢A C, F*VY¢B. V. if p=1 and
FF,..., Fe=V¢A.C, FP¢L, if p>1

(the case p=1, k=1 is the famous Hardy-Littlewood’s result). Now (2.11)
(1.15) and (1.16) give (2.10) if p>1 or p=1, k=1. If p=1, £>1 using (2.11)
(1.17), (1.9), (1.19) and (1.16) we have

TW(F; 8),=c(R)dwr_y(F' ; 8),=c(k)d*,(F*V; §),
2n
=c(R)* 1t ( F*=1; §),<c(k)dk. V FE—D,
0
b) The non-saturation case 1/p<0<k.
If 1/p<6<1(k>1 if 6=1!) then (1.10) witha=£k,B=(1/p+0)/2, y=k—B,
states that (1.21) implies

(2.12) 0r—p (f P 8),=0(3°F).

We set F=(f®)s. Then (1.3) gives F(x)=f(x) (a.e.) and Corollary 1 and
(2.12) give

TW(F; 8),=¢(8, p)8Par—p( fP; 8),=0(8).

If 1<0<k then (1.10) with a=4k, B=1, y=k—1 states that (1.21) implies
oz—1(f' 5 8),=0(8%") and we prove (2.10) as in the above case 1/p<6<I1.
This completes the proof.

Let us note that the only place where we really need fractional order
derivatives and fractional order moduli of continuity in the above proof is
the case 1/p<<6=1 in the non-saturation case. But this is the delicate place in
our investigation which needs a special treatment.

As an immediate consequence of Theorem 3 and the two facts:

1) t,(f; n~'), can be used to characterize the best one-sided trigonomet-
rical approximation E,(f), of feL, (see [5; 6]);

2) wy(f; n7'), can be used to characterize the best trigonometrical approx-
imation E,(f), of feL, (see [10]), we get the following eguivalence (6>1/p):

E(})=0(n"" < f(x)=F(x) (a e) and E,(F),=0(n").

Let us note that the left side of the above equivalence implies that F is

continuous. )
For another application of the proved connection between the two mo-

duli see [11].
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The results of this paper can be also applied in numerical analysis wher-
ever coefficients and solutions are fractional integrals and estimates are given
by the modulus t,.

3. An important example. The following example shows that the theorems
in point 2 cannot be extended to a=1/p or 6=1/p for p>1, k=1 andjor p=1,
k>1 and to a<1 or 6<1 for p=1, k=1. The constructed function f is con-
tinuous and therefore each equivalent to f function f; will have the same mo-
dulus ®, but a worse modulus 7,.

Example. Given p and 0, 1=p<oo, 0<0<1/p. We set xp=Fk™° y:
=k™P, ap=e* where a=0p/(2—20p), B=0/2 and k=K=K (0, p), where K is
chosen such that xp—ap>Xp+1+ar+, for each k>K. We define a continuous
function f as follows:

f(xe)=Yr f(xrta)= f(xe—ar)=0, f is linear in [xp Xp+ar], [Xe—ax,
x‘k]&'[xk+1+ak+l. xe—ar), f(0)=f(n)=0, f(x)=0 for x¢[xx+ax, n], f is n-pe-
riodic.

Then for t¢(0,1] we have

Yy w(f; 8), < 88 for p=1, k=1;

2) ol f; £), < VP In—02 ¢!
for p>1, k=1 andfor p=1, k>1;

3) oy(f; £), X ¢ =02 ¢,

Remark. We use the following denotations:

a) f(x)<< g(x) means that there is a positive constant ¢ such that f(x)
=cg(x);

b) f(x) < g(x) means that f(x)<g(x) and g(x)<<f(x);

¢) [x] will denote the biggest integer less than or equal to x.

Proof. We shall prove the above only for £=1. Calculation are similar

! k{c]-t 0<t<l1. We set M=[—Int] and N—max { k:xp—apr— (X 1+ Q1) >t}
Then N =< ¢+ for ¢t=c(0, p)(c(B, p) properly chosen). We set
tyr/ap if | x—xp|=3ar/2 and R<M;
(o(x)r-g Ve if |x—xp|<3t/2 and M<k=<N,;
0  otherwise;
tye/(2ar) if | x—xkl<ar and A<M
Q(X)“; Ve/2 if |x—xp|<t aud M<k<N;
0 otherwise.

Then we have
o(x)=o,(f, x; )=o(x) if xy=x=n and
0 =of,x; H=syy if O0=x=x,.

Therefore

M—

N N 1
(kj" VeOr<u(f ), <<(yoxn+ kEM yot+ ki..‘K (t ye/ar)Pay)'e,
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Using given values of parameters we get

N N —1/(a+1)
a) t XY yﬁ =t Y kB¢ ¥y k—Br X ¢ . {—(—Bp/(a+1) — Ha+Bp)/(a+1) — f6p ;
k=M k=M i k=1 =

b) yfvazN—‘B”“) << flat+Bp)(a+l) —fop
M M
c) X tpypal~p:tp 3 kP2 p(p—N)k
k=K Kok k=K
= tP(—In £)=012 =) (—InH) —f(—In¢f)—OP2 < ¢t if p>1,
t(—Inf)—-or2 < o if p=1.
Therefore t,(f; £), < £°.
To calculate o,(f; £), we. proceed as follows:
oy(f; t)Lp[O.nléwl( fs t)Lp[O.xM]+ml(f ; t)Lp[,M,,,]
=2|f lle[o,xM]+t ILf HLp[xM.n]

=] M
=( I v22ap)'?+t( I (ye/ar)? 2ax)'? .
k=M k=1

=(2 Sy e—R)Ip 1 f(2 12" k5P gp—Dk)lp
k=M k=1
Now for p>1 we have
O(f3 O fom) < M—Pe=Mp -t M—B e —1PIM < 1P In—0/2 4=,
If p=1 we have
Oy(f5 Oryjom <M Pe My tM'—P < ¢t In' 0241,

To get an estimate for w,(f; #), from below we observe that for 2¢t=<a,
the equality | fx—t/2)—f(x+¢/2)|=yut/ar holds true for £/2<| x —xx|<ar—2/2.
We set M,=[—In(2¢)] and then am+1 < 2t<am,. For p>1 we get

M,
(l)l(f; t)p >‘( b (ykt/ak)p ak)l/p = i In—o72 41
k=1
and fOl’ p:l we get
My
o (fit)> X ypt>tIn'—02¢1,
k=1

This completes the proof for £=1.

Last we shall consider the following problem:

Let ¢,y be continuous increasing functions in [0, 1] ¢ (0)=wy(0) =0. To
find a function ¢ ()=¢ (%, p; £) such that; .

A) If y(@#)=0(e(2) (or y(t)=o(e(t)) then w(f; t),=O(y(t)) implies that
there exists F(x)=f(x) (a.e.) and tw(F; £),==O(y(?)).

B) If w(¢)==0(9(%)) (or y(t)==0(e(%)) then there exists f, such that ou(fy;?),
=O(y(?) but for each equivalent to f, function F we have t(F; £),==0(w(?)).
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Point 2 states that ¢(¢)>¢ for p=k=1 and @(¢)> #'/—¢ for each £>0 in
the opposite case.
The example in 3 states (if we set a.=exp{—£k'Y} for y>0) that ()
<<tIn®t for each €¢>0 if p=k=1 and @(f)<<(£.In~'4{~1)"7 in the opposite case.
We make the conjecture that ¢(f)=¢ if p=~k=1 and @(¢)=(f, In—1¢=1)V7 in
the opposite case.

/. A.
. A.
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