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PARTIALLY MONOTONE APROXIMATION
OF DIFFERENTIABLE FUNCTIONS

GEORGI L. ILIEV, MARIANA -T. TRIFONOVA

Let A=[—1, 1], C{® be the class of k-times differentiable in A functions
with a continuous k-th derivative, let /1, be the set of algebraic polynomials
of degree not greater than n, H!={P: PEH,,, P(x)=0 for x¢cA}, H:={P:
P¢H,, P'(x)<0 for x¢[—1, 0], P'(x)>0 for x€[0, 1]}. The following result [1]
is due to G. Lorentz and K. Zel :

Theorem A. If feCO=Ca arzd f(x) is monotonely increasing for

X €A, then for any positive integer n there exists P¢ H) such that
m(a:t | f(x)=PX) =1 f—Pli<c,o(f; n),

where o(f; 3), (6>0), is the modulus of continuity of the function f
o(f,8)= s, S fxa)ls Xy X2 €A

|Xr—xal=

Remark. Everywhere further c(x), i=1,..., will denote the positive
constants depending only on the parameters pointed between brackets. The
denotation c; defines an absolute constant.

In [2] the following generalization of Theorem A has been obtained:

Theorem B. If feCa and f(x) monotonely decreasing for x¢[—1, 0]
and monotonely increasing for x¢[0, 1), then for any positive integer n
there exists P¢H? such that | f—Pl<cyo(f; n?).

In [3] DeVore proves:

Theorem C. If feC{P and f(x) is monotonely increasing for x¢A,

then for any positive integer n there exists P¢H) such that

I f—PlI=cy(R)o(f®; nV)n*, k=1, 2,...

The aim of the present paper is the proof of:

Theorem 1. Let feCQ, f"¢Lipul, f'(0)==0, f(x) be monotonely de.
creasing for x¢[—1, O] and monotonely increasing for x¢[0, 1]. Then for
every positive integer n there exists P¢H? such that || f—Pl<c,M/n3.

In [4] the following theorem has been proved:

Theorem D. If feCP, f(0)=fD0)=---=f®(0), f(x) is monotonely
decreasing for x¢[—1, 0] and f(x) is monotonely increasing for x¢[0,1],
then for any positive integer n there exists P¢H? such that
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Partially monotone approximation of differentiable functions 145

I f—Pl=cs(R)o( fX; n—Y)/n*, k=1, 2,...

Theorem D is an analogue of Theorem C for the partially monotone app-
roximation under the additional conditions f(0)=fM(0)=---=f®(0)=0. In [4]
an idea for the proof of Theorem D has been suggested without the condi-
tions f(0)=fM(0)=--. =f#(0)=0. Actually, the condition f(0)=0 is removed
in a trivial way, the condition f()(0)=0 is imposed by the nature of the prob-
lem. That is why in the present paper a proof of Theorem 1 has been accom-
plished, Theorem 1 being Theorem D for 2=2 and without the additional
condition f@(0)=0. The Theorems A, B, C, D and 1 for the monotone and
partially monotone approximation are analogues of the well-known theorems
of Jackson for approximation of continuous and differentiable functions by
algebraic polynomials. _

Analogous problems concerning the monotone and partially monotone
approximation of functions by splines have been considered by De Vore,
D. Leviatan, H Mhaskar, R. Beatson and others.

As a result of discussion with D. Leviatan, it was found out that the
result of Theorem D has been obtained by him independently of the paper [4].

Further we will need the following theorem of V.N. Malozemov [5]:

Theorem E. For every function &(x)¢C{ and every positive integer n
there exists Q¢ H, such that

890 — QU = e 2+ 1) aew; T2 L)

s n2
X€A, i=0,1,..., &

As a corollary fromthe result in [6] the following lemma is easily obtain-
ed: )

Lemma A. If the spline function ¢ of order [c,(k)] and degree [c;(k)]
is such that ¢¢CY’ and ¢’ €¢Lipul, then for any natural number n a poly-
nomial R¢H, exists, for which

1 M
_fl lo(x)—R(x) ldx=c4(k) 5

and R(x)=o¢(x), x¢€A, are fulfilled.

In [4] the following lemma is proved:

Lemma B. For arbitrary non-negative integers n and k, k=n, n=1,
there exists a polynomial T ¢H, monotonely increasing and odd in A, such
that —1=T(x)=<1 for x¢A and

[ETES SEPRB
-1 \/1 —x?

where
_(—1 for xe[—1, 0);
°(x)“{ 1 for x¢[0, 1].

Proof of theorem 1. Without loss of generality it might be assum-
ed that f(0)=0. In view of the conditions

10 Mancka, 1. 5
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FeC,
(1 f(x)=<0 for x¢[—1, 0],
f(x)=0 for x¢[0, 1],
it follows that f/(0)=0, i.e. f(0)=f"(0)=0.
Expand f(x) into a MacLoren series:

f)=1O)+ 35 70+ 57 1/ Ex)=F (x)+ 57 £(0),

where

F)= 57 /"G~ Ol =fe0) — 57 £0)

Obviously, F¢CD, F''¢Lip,,n 1 and RO):F’(O):F”(O).=O.
Let
= _ | —Flx) for x¢[—1, 0,
Ax) { F(x) for x¢[0, 1].
Then

2 FeC®, F'¢Lipem 1, F0) =F'(0)=F"(0)=0
and
®3) F(x)=—f"(O)lxl, x€A,

which follows immediately from (1).
Moreover,

(4) f"0)>0,
as is easily seen from (1) and from the assumption that f’/(0)==0.
First, we will prove the existence of a polynomial P, ¢H, such that
I F—PyI<cuM/n®, Pix)=—f"(0)|xl, x¢A.

It can be proved that for every function satisfying conditions (2), (3)

and (4), for F(x), respectively, there exists a spline function ¢ of order and
degree bounded by an absolute constant such that

®) @ECY, ¢’ €Lipon 1
and
(©) —f"(0) Ix|<o(x)<F'(x), x€A.

For example the partially polynomial function
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f"(0)x for x¢(—co, —gf'}'wﬂ],
TMx“‘—!—?f"(O)x +U"%)]2 for x¢] 2f’;,0) S f’;lo)],
o(x)= ——3——Mx2 o xg[_%, LA(;))],
%x?—Qf”(O)x +U"%2 for x¢ [%», %@],
—f"(0)x for x([z%(g) , ©)

satisfies the above conditions.

Applying the cited above Lemma A for the function ¢, we obtain a poly-
nomial R¢H,, for which

) R(x)=0(x), x¢€A,
and

1 M
®) _{ lo(x)—R(x)ldx=c3 75
hold. '

Form the function y(x)= f‘(‘;cp( y)dy.

(5) implies that y¢CQ, " ¢Lip.,u 1, whence (having in mind (6)) we
obtain that the function p(x)=F(x)—w(x) satisfies the following conditions
peC®, p"e¢Lipeum 1 and

P'(x)=F(x) —v' (x)=F(x)—o(x)=0, x¢A.

Then the theorem of DeVore, applied to the function p(x), assures the
existence of a polynomial S¢ /), such that

)] S'(x)=0, x¢A
and
(10) , | p—Sli<c, M/nd.

Form the polynomial Py(x)=S(x)+ [%R(y)dy, which obviously belongs to
the class H,.
(8) and (9) yield

| Fe)— Pi(I 5 1) —w(0)-+ SCol-+ o) — RO/

<1p—SI+ [lo(»)—R(yIdy=cis 55 -
i. e.
(11) | F—Pyll<cys M/n®.
In view of (6), (7) and (9) it follows that
(12) Pi(x)=8"(x)+R(x)=0+¢(x)=—f"(0)lx], x¢A.
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Form the polynomial ﬁ(x) [5 Py(y)T(y)dy, where T is the polynomial
from Lemma B. Obviously, P¢ Hy, ;.

By A(2) denote the difference o(2)— T(z) where, as was already men-
tioned,

—1 for z¢[—1, 0)

c(z):{ 1 for z¢€[O, 1].

)

Let x<0. Then
P(x) = [ PUNT()dy = | P{(9I—1—A(y)ldy

——P(x)+PO)— [ P{(1A) dy,

whence
| Fo)—Peo)l =1 Fo+ P(x)— PO)+ [ P()A(y)dy |
<| R+ PO+ IPOI+ [IP(9IAIY; x€[-1, 0]

(11), (2) and Ax)=—F(x) for x¢[—1, 0] imply
| F(x)+ Py(x)|=|—F(x)+ Py(x)| < IIF— Py| < c;eM/n?,
|Py(0)|=|F(0)— Py(0)| < c,6M/n?,

whence for x¢[—1, 0] we obtain

= M | S
- (13) | F)—Px)l=cin 5+ [IP(INIA(Y)ldy.
Let x>0. Then

P(x)—= [ P9Ay)dy =  P{(3)[1—A(5)ldy

= Py(x)— Py(0)— J P(y)A(y)dy,

whence

| Fx)— POl =1 F(x)— Py(x)+ Pi(0)+ [ Pi()A( 9y
SIR)— PG+ PO+ [IP(9)] 1A dy

= 1Fx)= PO+ IFO)— PO+ _[IP{(yI(A()dy.
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Therefore, for x¢[0, 1]
= 1
(14) | FCo)— Pl =eis 35+ [IP{(9)11A(3)dy.

It remains to estimate from above [, |Py( y)| |A( p)Idy. )
In view of Malozemov theorem it follows that a polynomial Q¢ H, exists,

for which

(15) | F— Qli<cioM/n?
and
(16) IF(3)—Q'(¥)|=cwM/n?, yecA.

(11) and (15) imply that |P,(y)—Q(¥)|=cyM/n3, y€A, whence, having
applied the second inequality of Bernstein, we get

VI3 | P(9)—Q'(9)|=caM/n?, yEA.
From (16) and from the inequality | F'(¥)|=c,sMy? y¢€A, which follows
easily from (2), we get
M 1

, M
| Pl () |=caMy?+ ¢ -2 T 13- N YeA.

Applying Lemma A and using the inequality 1=1/y1—32, y¢€A, we obtain
1 M
(17) JIPDNA) | dy=cas 7

(13), (14) and (17) imply || F— P || < cosM/n?. ~

Now we will check that P'(x)<—f"(0)x for x¢[—1, 0], P(x)=—f"(0)x
for x¢[0, 1].

Let x, be an arbitrary point from [—1, 0]. Then T(x,)=—1—A(x,), and
A(x)=<0. If P|(x0)=0, then P](x,)A(xy)=0.

From (12) and from the last inequality it follows

(18) P'(x0)=Pi(x)T(x0) = Pi(x0) — 1 — A(xo)]
= —Pi(xo) — Pi(x0)A(x0)< — Pi(x0)= —f"(0)Xo-
If Pi(x0)=0, then P;(x,) T(x0)<0. However, (4) implies that f’(0)x,=0,
therefore —f’’(0)=0, whence we get
(19) P'(x0)=Pi(x0)T(x0) <0< — f""(0)Xo-

From (18) and (19) we obtain P'(x)=< —f"(0)x for x¢[—1, 0]

It is analogously verified that A'(x)=—f"(0)x for x¢[0, 1].

Therefore, for any natural number n a polynomial P¢H, can be found
such that

~

| F—PlI<cnM/nd,
P(x)=—f"(O)x for x¢[—1,0], P'(x)=—f"(O)x for x¢€[0, 1].
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Then the polynomial P(x)=ﬁ(x)+—;?f”(0) will satisfy the conditions of
the Theorem. Thus the proof of the theorem is accomplished.
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