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AN EXTENTION TO SERIATION BASED ON INCIDENCE MATRICES
LILIANA I. BONEVA

This paper extends Kendall’s mathematical model of seriation from incidence, or (0, 1)
matrices. Given an nXk matrix A, it was established up to now that A’A gives a partial in-
formation about the possibility of rearranging A into a P-matrix (i.e. in each column the 1's
are bunched together in a single run). However, according to Kendall, it is AA’ which con-
tains sufficient information to decide if A is P-convertible and to construct the row-permuta-
tion, which converts A into a P-matrix.

The extention considered here is based on both A’A and AA’. A special 33 matrix,
with pattern called B*, turned out to be very relevant for seriation as well. If there is no
submatrix B* in A then both A’A and AA’ give sufficient information about the row- and
column-permutations, if any, which convert A into an L-matrix, i. e. all 1’s are bunched toge-
ther in a single block.

The main reason to attach a great importance to the seriation problem is
that one is able to obtain quantitative information from a qualitative one.
That is why seriation proved recently to be a great success when applied not
only in archaeology, where it was actually born, but also in sociology, philo-
logy, control theory, genetics, history, geology, geography, etc.

What seriation aims at? Suppose we have numerous statistical observa-
tions on n objects characterized by % features. We are looking for some
reasonably “true” chronological (temporal, spatial or any other) order of these n
objects, or & features or both, using only the information about the degree of
similarity between the pairs of objects, or features, or both. For instance, if
we are looking for a reconstruction of the chronological order, if any, of a
set of n objects, it will be one of their n! possible rearrangements. But to
try all of them, especially when »n and & are comparatively large, is an ex-
tremely difficult task. That is why there have been developed various, more
or less effective methods for solving the ordering problem. For £=1, the or-
dering could be obtained quite trivially, but the situation is more complicated
when k>1. There are methods in which the task is to find some summarized
function of &, depending on what aim one is after. This function, called some-
times ordering function, is perceived as a generalized feature. The
trouble in this case is that the ordering purposes might be different, so as to
be difficult to decide which one of the possible functions will be the optimal
one. For similar purposes Hotelling’s component analysis [1] could be used,
though connected with laborious calculations, or the discriminant analysis of
Fisher [2] or Mahalanobis [3]. There exists also the ordering method of
the Polish anthropologist Chekanowski [4], used for arranging (with the
help of diagrams) various groups of people according to their anthropometric-
al features, and also the more reliable graph-theoretic method, called “taxo-
nomy of Wroclaw” [5], giving as a result a linear dendrite or a dendrite of a
higher degree. But may be most similar to seriation is the travelling salesman
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problem for finding the shortest route (the hamiltonian line) between the ob-
jects taken into cosideration.

~ With that end of view the seriation theory and its application were creat-
ed recently by Shepard [6], Kruskal [7], Kendall [8]etc. In fact, the
seriation theory consists not only of algorithms for solving practical “unde-
termined” problems but also of mathematical models, describing ideal “deter-
mined” situations excluding, of course, the cases of missing data, nonsymmetry,
ties, etc. An extended approach to the mathematical model is given bellow.

Mathematical approach. Suppose we have n objects characterized by %
features disposed in a matrix A=(a;)nwm ((=1,..., n; j=1,..., k), with as
many rows as there are objects and as many columns as there are features.

Let us give first several basic definitions:

D.1. A is called an incidence matrix when a;;=1 if the i-th object owns
the j-th feature, and a,;=0 if the /-th object does not own the j-th feature.

D.2. A is called a P matrix (is in P form) if it has the “consecutive 1’s
property” for columns, i.e. in every column the 1’s are bunched together in
a single run.

D.3. A is called a P convertible if there is a row-permutation matrix =
which converts A into P form.

D.4. A is called an L matrix (is in L form) if it has the “consecutive 1’s
property” for both rows and columns, i. e. all I’s in A are buched together in
a single block.

D.5. A is called L convertible if there are such row and column permuta-
tion matrices m; and my, for which n;An, is in L form.

D.6. A square symmetric matrix is called an R matrix (is in R form) if,
when going away from the main diagonal, whether along a row or a column,
the elements never increase.

D.7. The square symmetric matrices A’A and AA’ are called R conver-
tible if there are such row and column permutation matrices =n;, and =,
exactly the same which convert A into L, for which (mAn,) (n;Any) and
(myAng)(nAng)’ are in R form. :

The mathematical background of the seriation theory developed by Ken-
dall is a theorem due to Fulkerson and Gross [9]. A natural question
underlying it is: do one needs to know A itself so as to be able to decide
whether it is P convertible or not, prcvided A is P convertible in pri-
nciple ?

pTheorem (F and Q). If the incidence matrices A and B satisfy AA’
=B'B then they both are either P conwvertible or not. Moreover, if they have
equal number of rows then there is a permutation m such that B=mnA.

In fact, this theorem gives a partial answer to the question mentioned
above, i. e. it tells that, when A is P convertible, it is enough to know only
A’A for deciding whether seriation is possible or not. But is does not answer
how to do the seriation. Here comes in help the effective Kendall’s theorem
for incidence matrices [10].

Theorem (K). /f A is a P convertible incidence matrix and n is any
permutation matrix, then nA will be in P form if and only if n(AA’) n' is
in R form.

The most important conclusion which follows from Kendall’s theorem is
that AA’ contains enough information about A, i.e. retains enough of the
structure of A, so as to enable us to find a row-permutation matrix, provided
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A is P convertible, which converts A into a P matrix. Hence, A’A tells us
whether there is a seriation solution, while ' AA’ tells us how to find it.

Let us now consider the problem from the dual point of view, i.e. whe-
ther there is a solution with respect to the features. In such a case one could
use the following

Corollary. If the transpose of an incidence matrix A is P conver-
tible and w is any column-permutation matrix, then n'A’ will be in P form
if and only if n'(A’A)r is in R form. “

The proof is the same as in Kendall’s theorem. .

Meanwhile, a simple theorem concerning both AA’ and A’A can be stated.

Theorem 1. If A is an incidence matrix then, for every row and co-
lumn permnutation matrices n, and m, respectively,

1) A/A=(mA)(mA)
and

2) AA’ =(Ang)(Amy)
are fulfilled.

The proof is evident taking into account that mym =mym,=1/,i. e. that the
square matrices m; and =, are orthogonal.

Let us turn our attention now to the simultaneous seriation of objects
and features. By this we are coming to the case of L convertible incidence
matrices. First of all let us introduce for 3X3 incidence matrices the fol-
lowing :
Pattern B*: there is exactly one 0 in each row and in each column.
Let us recall also that

1. Each element of G=AA'=(g;)n» gives the number (or the sum) of
the 1's common to the i-th and jth rows of A, that is

k
gy= I @y, b j=1,..., n

2. Each element of V=A'"A=(v;)r gives the number (or the sum) of
the 1's common to the i-th and j-th columns of A, that is

V= I Gppn b j=l,..., k

3. The elements of the main diagonal of G=AA’ are equal to the sums
of the I's in the corresponding rows of A, i.e.

k
&= 3 a, i=1,...,n
s=1

4. The elements of the main diagonal of V=A'A are equal to the sums
of the I’s in the corresponding columns of A4, i.e.

V= mEl Qs j= 1, eoey k.

5. The sum of the elements of the main diagonal of each one of G=AA4’
and V=A’A gives the total number of 1's jn A, i.e.
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n k <
g,-"= 2 '0//= 2 a‘jy t=1,-.-,”, j=1,..., k.
1 J=1 ij .

i=

6. For each incidence matrix A the main diagonals of G=AA" and

V=A'A are weakly dominant, i. e. each element of the main diagonals of both

G and V is greater or equal than each of the remining elements respectivelly.
We shall prove now several lemmas.

Lemma 1. If an incidence matrix A is in L form, then both G and V

are in R form, i.e. for each triplet i<s<p and j>q>r the elements of the
upper triangles of both G and V satisfy

1) 8i=8is=8ip»
(1') 8i=8q=8ri
and

) V=V =Vips
2" V)= Vg =Yy

Proof. If A=(a;)ar is an L matrix, then for each triplet i<s<p (i, s,
p=1,..., n) the sum of the I's in the i-th row of A will be greater or equal
than the sum of those 1’s in the s-th row common to the i-th row, and than
the sum of those 1’s in the p-th row common to the i-th row.

At the same time, for each triplet j>g>r (j, ¢, r=1,..., k), the sum
of the I’s in the j-th column of A will be greater or equal than the sum of
those 1’s in the g-th column common to the j-th column, and than the sum
of those I's of the r-th column common to the j-th column.

Should it be otherwise A would have a “window” either in a row
(...101...)orin a column

1 ...
0o ...|
1 .

or both, i. e. at least one submatrix will be of the type, say, B*.
These arguments lead to the inequalities

k
3 T a;= 2 ag,= X a
©)) e I S
and

n
3" T oay= I Q= X 4,

i=1 i a”=l i a‘i=l
If we multiply A elementwise by a;; then
k
4 T aua= X agag= X a
4 = ot 1/0s) = Jimm 11%p)
and
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R

(4) ;/axj> 2 apay= X a;;.
a‘., =1 t:a”—-

Thus, bearing in mind the six points recalled above, we have

i

() 8i=&is=8p
and
5" &i1=8aj=8rp

and similarly for A’ (because of the row-column duality)

(6) Vi =Vis=Vip
and
6" VjjZ Vg =,y

Evidently, the inequalities (5), (5) and (6), (6") are equivalent to (1), (17
and (2), (2') respectively. With this the lemma is proved.

Lemma 2. A will be L if and only if every submatrix of A is L.

Proof. Suppose A is L. Then the suppressions of rows and columns of
A does not distroy the L pattern of the obtained submatrices.

Let now every submatrix of 4 be L. Then A will be also L because any
matrix is a submatrix of itself.

Corollary. A is L convertible if and only if every submatrix of A
is L conwvertible.

Notice that further we shall denote by B* all 33 incidence matrices
which are combinatorically equivalent [11] to pattern B*.

Lemma 3. Let B be any 3X3 incidence matrix. I[f G=BB’ and V=B'B
are simultaneously R convertible, then every B, with exception of the B*'s,
is L convertible.

Proof. 1. Let

01 1
B*={l1 0 1
1 10

Denote G*=B*B* and V*=B* B* We shall show that B* is not L convertible
though its G* and V* are R.

As B* is only a 33 matrix it is easy to check that it is not L conver-
tible, i. e. that there are neither row nor column permutation matrices which
could remove the row and the column windows in B*. From the other hand,
it could be seen (by direct multiplication) that G* and V* are R, and even
that G*=V* because B*=B".

2. Suppose now that for any B its G=BB’' and V=B'B are simultane-
ously R convertible. We shall prove that all possible B, except B*, are L
convertible.

Consider all possible triplets of 0’s and 1’s, i, e. 23=8 triplets, taken for
instance in columns, namely
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4
0
1
1

o= O]
—_0 O

8
0
0
0

[
O = == | N
—O = | QO
QO =W

From all 3)X3 matrices formed from these triplets, we have to consider only
those without repetitions and not containing the 1-st and the 8-th triplets. In
fact, repetitions and columns 1 and 8 are not to be taken into account be-
cause they lead to 32 matrices which are always L convertible. Therefore,
only six from the eight triplets are essential. Denote their 3)X6 matrix with

[t 10100
101010/
01100 1]

According to Lemma 2, C is not L convertible because it contains a sub-
matrix B* which, as shown above, is not L convertible. Analogously, each
submatrix of C which contains B* is not L convertible. Let us see then what
happens with the 35 submatrices not containing B*. It turns out that they
are enough for our purposes. There are three such submatrices, and they are
actually combinatorically equivalent. Hence, we have to check only one 3X5
submatrix of C, which could be easily done directly. For instance, let us take
columns 1, 3, 4, 5, 6. This matrix is L convertible and its G and V are R
convertible. The same is true for its submatrices. Thus, all possible 33 sub-
matrices of C, whose G and V are R convertible, are L convertible, except B*.
That proves the lemma.

Lemma 4. If A is an incidence matrix, whose G and V are R conver-
tible, then A will be L convertible if and only if it does not contain a 3X3
submatrix with pattern B*.

Proof. Following out the proof of Lemma 3, it could be seen that
every 3X k& matrix (k=3), whose G and V are R convertible, is L convertible
if it does not contain a submatrix with pattern B*. The same is true for each
nX3 matrix (n=3), because of the duality. Hence, each nX#% matrix A, whose
G and V are R convertible, will be L convertible if it does not contain a
3% 3 submatrix with pattern B*. From the other side, in accordance with the
corollary of Lemma 2, if A does not contain a submatrix with pattern B* it
is L convertible. This finishes the proof.

We are ready now to state the following

Theorem 2. Let A be an incidence matrix, which does not contain a
submatrix with pattern B*, and let =y and my be a row and a column per-
mutation matrices. Then wmAmny is L if and only if both mAA'n and
n,A’Ang are R.

Proof. Suppose that A does not contain a 3)X3 submatrix with pattern
B* and that a row and a column permutation matrices n; and m; exist. In
such a case we prove easily the following:

1. If mAn, is L, then, according to Lemmas 2 and 4, its G=n,4AA'n; and
n,A' Ay will be R.

2. In accordance with Lemma 4, if G=nAA'n; and V = 1:2A Am, are R,
then m,Any, will be L, and that finishes the proof.

C=
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Some final notes.

1. The square symmetric matrices G and V are very useful because:
(i) whatever column permutations to apply to A, its G does not change (see
Theorem 1). Moreover, if A does not contain a submatrix with pattern B*,
then if G is R we conclude that A is P;(ii) whatever row permutation to
apply to A, its V does not change (see T. 1). Moreover, when A does not
contain any B* and when its V is R, then we may conclude that A’ is P.

2. If A does not contain any B* and if both G and V are R (or R con-
vertible), then, even if A is lost, we may assert that A is L (or L conver-
tible, i. e. permits L sorting).

3. It seems quite senseful to work out a computer algorithm which will
tell us whether A contains B* or not. In that case we may apply some of the
known sorting algorithms without any fear that we may seriate things which
should not be seriated. An algorithm for recognizing the B*s in A will ap-
pear elsewhere soon. '

4, At last, it seems very useful to be able to find a significant “approxi-
mate seriation solution” when working with real data, given in a rather big A
matrix. In other words, it will be useful to find a criterion which gives us the
critical value above which we shall have to reject the hypothesis that A is
arrangeable. Such criterion is in preparation.
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