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CONTROLLED PROCESS WITH RANDOM BREAKDOWNS
AND REPEAT ACTIONS

BOYAN N. DIMITROV, PETER G. PETROV

Some models minimizing the duration of the unreliable process by the help of state-
ment copies are considered. .

1. Introduction. Let during the operating time of a process (for example
by computing, by constructing) in a random way some undesirable events
(breakdowns, catastrophes) arise, which leads to process interruption. If one
wants to have a successful finish, the process must be repeated from the
origin (Fig. 1). It is profitable to introduce a strategy for making copies and
remember the process states in some chosen moments. If a catastrophe appear
the process continues from the last copied state. In the present paper a stra-
tegy for process control is proposed. This strategy minimizes a functional of
the pure process operating time.

2. The basic model. Let X be the pure duration of the process without
breakdowns, {§,} a random flow of discrete events (catastrophes) and (X))
the full duration of the process up to finish. The process starts at ¢=0. If the
process restarts after every catastrophe and % is the first number £ for which
E,=X, then ©(X)=X/5'¢,+ X. Evidently, ©(X)=X.

3. The copies control. Let us consider a sequence {a,} of time inter-
vals between copies and the sequences {6,} of copiring time durations. After
every time interval a; one makes a copy of the process state in a time 0,.
The breakdowns are possible and during the copies. The process restarts from
the last copiring state (Fig.2).In that case the full process duration is denoted
by (X, {a.}, {6,}) (controlled time duration). Sometimes the short notation t(X)
will be used (e. g. in the expectations).

1 $2 Sp—t e

K —— — t
start restart restart X finish
Fig. 1
a ap X—ay—az 5
P T S o~ finish 2
Jj —
N . >
start 5 restart &2
Fig. 2

PLISKA Studia mathematica bulgarica. Vol. 7, 1984, p. 102—108.



Controlled process with random breakdowns 103

4. Some simplifying suppositions. Under general assumptions no one
can define any problem. We suppose, that X is a random variable (r.v.) with
a given distribution function (d.f.) A(x)=P{X<x}; {§,} is a Poisson process
with an intensity y>0; {a,} is a deterministic process, {6} forms a renewable
one, and P {0,<x}=F(x). Then t(X, {akb {0,)=1(X, {ax}, A, 0) is a r.v.

5. The optimal control problem. Under the above assumptions the ques-
tion is: how to choose {a;} so that

infa,y ET(X, {a,}, 0)=E (X, a3}, 0).

The sequence {a;} will be called optimal copy schedule.
6. Some exact results. Further we suppose the assumptions 5 are ful-
filled. We introduce the functions

H(s)=Ee—®), t¥(s)=Eexp[—st(X, {a,}, O],

which are the Lapace-Stilties (L.S.) transformations of the probable distribu-
‘tions of r.v. ©(X) and (X, {a,}, 0) accordingly.

6.1. The case X= const.

Lemma 1. If P{X=x}=1, then

_ s+ .
™(s)= Y+s exp[(s+v)x]

The proof is a simple consequence of the next recurrent relation:
1) v () =e—G+nr 4 ;:_Y [1 — e—(s+nx]r¥(s).

One c[asn] derive (1), using the probabilistic interpretation of L.S. transforma-
tions .
Lemma 2. If P{X=x}=1, then

(2) T**(S) — S+y My (s+v)o(s+7)

Hl Y9(s+7)+s - exp [au(s+7)] ’

T+sexp[(s+7) (x— E a)*=
k=1
where ¢(s)=E{exp(—s6,)}, n,=max[n; a,+ag+---+a,<x].
Proof. First of all, we mention, that a copy interval a, and the next
copy time 0, form an interval of length 7, in the full process duration

(X, {a,}, 6). There are n, such of intervals and the last one doesn’t need a
copy time; its duration is equal to t(x—X}* a,). The “lack of memory” pro-
pe:ty of the exponential distribution shows, that the r.v. {r,} are independ-
ent, and

3) . (x, {a,}, 0)= :‘él T+ T(x — él a)

Further, we introduce tj(s)=Ee " . Using the “lack of memory” property, we
get again

) T;(S) — e—(s+v)ak (P(S + Y) + &i [1 — g_(-"+'r)ak (p(S + 7)]1";(5)':
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It gives the relation
(s+7)o(s+7) .
Y0(s+7)+se” %

Now (2) follows from Lemma 1, (3) and (4).
Lemma 3. The expected full time duration of the copy controlled pro-

cess in the case P{X=x}=1 is

(4) T(8)=

"x
Y(x— X a
4le *=1°

n ya

Edx,{a), 0=+ £ [

k=1 (P('Y)— - 1]'

The proof follows from Lemma 2 and the well-known relation
d
E §= —a (E e—si) |s=0-

Theorem 1. If P{X=x}=1 then the optimal copy schedule satisfies
the condition a,=a*=const.

Proof. Let us denote b,=0, b,=a,+ay+---+a, and n,=max (&, b,< x).
Then b,+ k6 is the moment of k-th copy from the origin, if there is no cata-
strophes. The result of Lemma 3 can be rewritten in the form
n, ey(bk—b‘.__l)
L g

The optimal copy schedule {a;} gives the sequence {b;}, which is a solution
of the system of equations

) Et(x, {b,}, 0)= % ) _ Il_{_% [ev(x—bnx) —1].

(6) ﬂ%{ﬂl’_"_’ﬂ, E=1,2,....
It is easy to see, that in the case (5) the system (6) becomes the form
o%e"""—b*—”——l— e’ +17%) =0, k=1,2,..., which proves the theorem. For

oy
an abbreviation we introduce the notations k,=k(a, x)=[x/a] the integer part
of x/a;

/ 1 if aelx/(k+1), x/k],
{9=10 otherwise ;

LI il ok )
Ty(x, a)= 5 [%‘5—1]"":7 [ _1].

The result of Lemma 3 in the case a,=a for £=1,2,... can be written as
follows.

Lemma 4. For every fixed a>0 we have
Et(x, {a,), 0)=T(x)= f::; 1(@)Ty(x, a).
k

The graphs of T,(x, a) and T(x, a) are given on Fig. 3.
The next properties one can derive, using the arguments of [2].
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Lemma 5. The absolute minimum of Tyx, a) is

k k+1
= n oMtk 1)_ 5 Rkt
t evlx+In e(M/(k+ P Y
and it gets in the point ao=x/(k+1)+ln o(M)/v(k+ 1)< x/(kR+1).
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Lemma 6. If tr_i=limg; uT(x), 7,,=lim”m T(x), then

k—1 ¥k

T G ~ D+ @ - 4

bt = 5 G-
and always tk_1<f,,.
Lemma 7. For any fixed x and vy

To(x)=inf T(x)=inft, =i,
a k

where ky is finite. The optimal copy interval is a*=x/(k,+1).

Theorem 2. Under the assumptions of Theorem 1 for all X in the
interval [x,, xri1] is fulfilled a*= X/(k+ 1), where x,=1 and the sequence
{x,} is determined for all k by the equation

R 10 vxp e+ _ v l(e+1) _
(7) [l+ ]e [l+¢(y) le 1.

Proof. Obviously, Lemma 7 gives one and the same number of copies
ko, for different x, because k,=£k\(x) is a stepwise function of x. It follows
that for any & there is a x,, for which ky=k or ky,=k+1 and

(8) To(xp)=ty=tr+1.

Here ¢, and To(x) are as in Lemma 6 and Lemma 7. The equation (7) follows
from (8) in view of the expressions for #,, given in Lemma 6.

Corollary. In the case P{0= const}—l the tresholds x, are solutions
of the equations

e‘ka/(k+2) [1 +(k+ 1)879] __eyxk/(k+l) [1 -I-keﬂ’] =1.
Denoting z=v0, x,=0y,, the last equation get over
(9) ez.yk/(k+2) [l +(k+ l)eg] _ezykl(k-H) [1 +ke’]= 1.



106 B. N. Dimitrov, P. G. Petrov
Table 1
Tresholds yg, 0=1
k
2—1=30 2771=60 271=90 2—1=120 21=120
0 11.03 15.54 19.02 21.95 24.53
1 28.37 26.21 32.23 37.31 41.79
2 25.56 36.66 45.18 52.37 58.70
3 32.71 47.05 58.04 67.33 75.49
4 39.84 57.39 70.87 82.24 92.25
5 46.96 67.72 83.68 97.14 108.92
6 54.08 78.06 96.47 112.01 125.69
7 61.18 88.37 109.24 126.89 142.37
8 68.29 -98.69 122.04 141.76 159.09
9 75.39 109.00 134.83 156.52 175.71
10 82.49 119.31 147.54 171.47 192.33
11 89.57 129.60 160.35 186.30 209.05
12 96.70 139.92 173.01 201.08 225.75
13 103.78 150.27 185.92 215.00 242.41
14 110.85 160.46 198.60 230.86 258.57
15 117.98 170.88 211.37 245.56 275.69
16 125.07 181.03 224.15 260.41 292.49
17 132.17 191.47 236.91 274.91 308.68
18 139.25 201.74 249.71 290.40 325.52
19 146.36 212.06 262.44 304.53 342.65

If 2z=y0=const, then the tresholds satisfy the equality x,=60y,, where y, are
the solutions of (9). Hence, to have the tresholds x, for any y and 0 it is
enough to have the tables of the tresholds y,, for 6=1 and for different va-

lues of z. The Table 1 gives us an example for the solutions of (9).

6.2. The case when X is rv. and P{X<x}=A(x). Let y and the copy
interval a be given, and Ee—*®=¢(s). Denote t(a)=E (X, {a}, 0).

Theorem 3. We have

1 = (k+1a
(a)= 7 kio e—vka kf evdA(x)+

a

Proof. It follows from

statement holds.
Theorem 4. If
(i) A==y

(i) A=y

then (a)= % [ay+6(—lﬁ— 1)/[1 —e-a].

% [0(7
Lemma 4 and the equation
1(a) = [ E1(x, {a} 0)dA(x).

6.3. The case P{X>x}=e, A>0. In this particular case the following

eYa

(y—\)a

then t1(a)= -.l{— {T}T, [etr—Pa—1] +€7W —1}/(1 —e>2) and if

—1) Eok [A(Ck+ 1)a)— Aka)) — =+
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Proof. The proof follows from Theorem 3. One must calculate the in-
tegrals and the obtained sums.

Theorem 5. The optimal copy interval a* is the unique solution of
the equation .

(10) [e=r—e22]/(y = M)+ (1 —e=2)/[Ao(¥))] = [o(¥) — 1)/ [ve(V)]
in the case AFvy, and of the equation
(1) (ya—De~"*=o(y)

in the case L=y.
If A==y, a* exists if and only if

(12) ' A<y/[1 = o(y)]

Proof. The optimal copy interval a* satisfies t(a*)=inf,t(a), and it is
a solution of the equation

(13) 2 wa)=0.

The exact  analysis of (13) for the functions t(e¢) from Theorem 4 goes to
(10)*or (11). When the inequality (12) is not valid, the optimal copy interval
is a*=oo.

7. Applications. For given y and 0 it is not difficult to calculate a*=a*(1)
for the suitable values of A; a* depends on y and 0, which also can be taken
into account. In the practice usually y, 0 are given for the process realization,
but the pure time duration X can change (depending on A). To make optimal
copies one needs the tables of a*().

8. Generalizations

a. To introduce a cost function a(x), instead of time duration t(x).

If the process duration is x and there are not breakdowns, it costs c(x);
if the copy duration is 6, it costs 5(0); if the repeated time is y, it costs &(y).

Under the assumptions: the breakdowns form a Poisson process with a
parameter y>O0, the copy duration 0 is constant, the breakdowns may occur
during a copy and the restart begins from the last successive copy, we con-
clude, that the copies must be made at equidistant moments of length a.

Theorem 6. For a fixed time duration x of the process X (without
breakdowns) and given a, the expected value of the cost function is

Au(x, a)=E a(x, a, 0, 7)

= eV(a+°)c( x)e—v(x+k9) + (eva+0) _ 1) kE' c(x—va)e—vx—vat(k—va)
v=1
x—ka '
+c(x—ka)+ Of (c(w)+ h(w))ye—"*du
+ kev(a+9) ( f h(w)yye—redii+ e=12(1 — e—1°)h(a)+ e—7°b(0)
0 k
+ 0{ b(u)yye—r*du)+ Z ((R—v+ 1)er@+0 — (kg —y))e—r(v—10

v=1

X( I, ctuyreridue=re(1 —e=o(va))
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The general form of the expected cost function is
A(x, a)= s I (a). Ayx, a),
k=0

where I(a) was introduced abowve.

Further one can use the same techniques to find the optimal value a,.

b. To use some more general forms of d.f. A(x) and d.f. of {§,}.

If B(x)=P{§,<x} is not the exponential distribution, then the copies will
be not equidistant. We have an optimal scheduling problem, which can be
solved if B(x) has a monotone failure rate.

c. To introduce a process {X,} instead of one fixed random duration X.

d. To consider the repair time durations caused from catastrophes, which
must be made before restarts.
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