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EFFICIENT SEQUENTIAL ESTIMATION IN STOCHASTIC PROCESSES

VALERI T. STEFANOV

In the present paper for a large class of processes the problem of efficient (in the sense
of a quadratic function of loss under Cramer-Rao regular conditions) sequential estimation is
considered. A necessary condition for Markov stopping time to be efficient is given. It is
important to underline that this condition appears as a sufficient for all the processes for
which the problem of efficient sequential estimation is completely solved (binominal, multino-
minal, Poisson processes, etc.). Some helpful results for determining the efficient plans are
given, too.

The main results of this paper are announced without proofs in [5].

Let (Q, B, Po) be a probability space, where ¢ ©—R* and let X, (€, B, Po)
—(X, &) be a random vector for each ¢¢ 7T, where XcR", & is the c-algebra
of the Borel subsets and T=[0, +) or T={0,1,2,...}. Let {S;};¢r, S;:
(Q, B, Po)—>(X, o) be a sufficient statistics for the process {X,},;¢r (see [9]).
We shall suppose that the -process {S,},¢r is continuous from the right,
T=[0, + o). Let © be a Markov stopping time with respect to {&F}r>0, B
=0o(X,, s<f). We shall consider only such t for which Pe{t>>0}=1 for each

k

0¢€¢0O and such that for each 0 from some interval /=X [a,, B,] = ©, Pe(r <
i=1

“+ vO} =1.
Definition 1. By a sequential plan we shall mean the triplet (1, f, k),
where A'f(S,, 7)dPe = 2(0), yO€ /.

We shall consider only such % that A==const on /. We shall suppose that
for each 0¢/

¢)) Po{Sw T) € C}= [g(x, 0)dVi(x), x€R™ Y C€Bypntr, where v, is a o-finite
C
measure on (R"*!, Byn41), wWhich does not depend on 6 [7, 11].

Under the so-called Cramer-Rao regular conditions [8], we obtain the
Rao-Cramer inequality for the estimator f and the estimable function %, where

k
equality for 8 =0, ¢/ holds iff there exist a(08,), i=1,2,..., &, X [a/(6,)]*+0 such
=1
that

s al )
&) f-hO) = X af8) LN 0=(8,,0,,...,0,).

0=0,

Definition 2. The Markov stopping time t is closed for ©,, (©,=O)
if Po{t<+ o}=1 for each 0¢0O,.
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Definition 3. The sequential plan (t, f, k) is said to be efficient for
0,, (0,=0) if t is closed for ©, and for each 0¢©O; we have: Est< + oo, (1)
holds, Rao-Cramer regular conditions hold and (2) holds. The function h is
called efficiently estimable for ©, and f is its efficient estimator for ©,.

Definition 4. The sequential plan (v, f, k) is said to be efficient it
there exists some interval I, I=©, such that (v, f, k) is efficient for I. The
function h is called efficiently estimable and f is its efficient estimator.

Definition 5. The Markov stopping time t is said to be efficient for
0©,, ©,CO, if there exist f and h such that (v, f, h) is efficient for ©,.

Definition 6. The Markov stopping time t is said to be efficient if ©
is efficient for some interval I, (I c ©).

Let (v, f, %) be an efficient sequential plan. According to (2) we usually
obtain for some natural m and some vector B (B={b}r4? Im4'62=0,

bm+2>0) that

3) ‘Elbivz(sn D+ bpi1T=0pmia

almost surely with respect to Py for each 8¢/, where V;:(R"*+, B r+1)—(R, Br)
We shall suppose that m and {V;}7 are fixed (i.e. they do not depend

on sequentsal plans and intervals /). For each B described above, we define
the set

— _ m+1
K(B)={x€¢R™"': x={xX}izm+1» ‘E'l b,x; = bpya}-

Moreover, for each B we suppose that the following assumptions are satisfied

(i) VLS, 0)=0, i=1, 2,..., m,

(i) {Y(®)}¢¢r is a continuous from the right stochastic process (when
T-_—'[O, + OO)), where Y(t)=2;"=lbiv,(sp t).

Let {t;:5=0,1,2,...} be a set of Markov stopping times with respect to
{&:}i>0, such that 1,==0, t,4,=1, §=0,1,2,... and {ty, —T}20 is a sequence
of independent identically distributed random variables (i.i.d.r.v.) and
0<Eo(t,+;—T)< + oo for each 6¢© and:

(iif) {Z41— Z}sz0 and {Zs41—Z}s=0 are sequences of iidrv., with a
finite second moment, where Z,= Y(t,)+ 0py1Ts—1 T—1=0, Z;=VY(7,)+ 0ps1Ts41

(iv) For each s, the oc-algebras
o{(Zs41—Z,):5=5, So+1,...} and ofF., ,Uc(Z;)} are independent and
respectively the o-algebras of(Zs1 — Z):s=5,, So+1,...} and cx{%,,o
Uo(Z,)} are independent too;

(v) There exists d=0 such that for each s=0 and for each {<t,;—1,:
| Y(r,+£)—Y(1,)| =<d almost surely (Po, for each 0¢©), where the set {t,:
s§=0,1,2,...} may be such that d<g for previously given £€>0.

(vi) For each efficient Markov stopping time t and for each s=1, 2,..
and i=1,2,...,m '

Eo V(S T) = ¢(0)Eet, 0¢l,
Eo ‘/i(sfy 7,) = ¢(0)Eot,, 0¢0,
where ¢(-) is a continuous function for each i
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If b1+ 27 ,0,0(0,)>0 for some 0,, then from (vi) we have Eo(Z. 4 —Z;)
>0 and respectively Eq(Z,;, — Z,)>0. So that, for each s,=0, and for each
v,>0, there exists a natural /, such that:

™ Po{Zsy+1—Zs,>Vy, Z3—2Z5,>0, S=8o+1,..., So+1—1}>0,
and respectively
(**) PofZs,t1—Zs, >y Zy— Z5,>0, s=5o+1,..., so+1—1}>0.

Definition 7. We say that K(B) can be passed when b,.,=0, or
respectively when b,.,<0 if there exists s, such that the event “Z; >b,,.+d
and for each f<1ts the equality b, ,t+Y(t)=0b,.s is not true’, or respect-
ively “Z;,>b,49+d and for each t<x,, the equality b, t+Y(t)=b,.q isnot
true’, has a positive Po— probability for each 6 ¢ ©.

Denote by o the family of all K(B), which cannot be passed.

‘Definition 8. Every Markov stopping time t for which (3) holds
will be called similar to the moment of the first attaining of K(B) (denote
it by typ_) by the process ({VASy O}y t)er.

Theorem. Under the assumptions (i) — (vi) made above, the Markov
stopping time t to be efficient, it is necessary that there exists K(B)¢X,
such that t is similar to v, The following set ©,={0¢O:X" b,p(0)
+bm+1>0} is the widest set for which t, ., or similar to it stopping times
may be efficient. If Tk IS efficient, then it is the only similar to < K®)
which is efficient. t, 5 is closed for ©,, K(B)¢X.

Proof. Lett beefficient. From (3) and (vi) we have that Eet =b,,.,/(Z7_,6,0,(0)
+b,41), 0€/1 Thus the set ©; is the widest for which = or similar to it
stopping times may be efficient.

Let 1, and a similar to it stopping time t be efficient. Then we have
Eot=Eoty(p for 0€/ and of course 1, <t. Thus t=1,, almost surely for
each 0¢ /.

Suppose now that the set K(B), connected with the efficient stopping
time t (the connection between K(B) and t is expressed by (3)) does not
belong to #". Of course the interval /, for which t is efficient must belong
to ©,. Let 6,¢/. Consider the case when b,,,=0. According to Definition 7
there exists s, such that: : © -

P(So)=Pe{Zs,>bpia+d, bppt+Y()Fbpye t<t5,,1}>0.

K(B)

Taking into account (i) — (v) and (*) one can easily see that for each 7,>0
there exists /, such that for each s, s>s,+(:
Poo{t>t:} gp(sO)Peo{Zso-'.l —Zsu >'02, Z_gl '—Z:, >0, S.l = S0+ 1, . .0y SO+l— 1}

XPo{Zs, 4 141= Zso1> = Vas « + 00 Zg—Zs,4.> — T3}
From (vi) we have

EofZy+1— Z3) = (Z1,0,040) + by DEalTes 1 = 7)), 5=0.
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Thus ¢=Ee,(Zs41— Z;)>0 for each s=0. But
PodZsiritr—Zowt 1> —Var oo v Zg— 251> — Va}
=Po{[Zsi+ 141 Zsor1 = Ea(Zsor 141 = Zsot )P<L[c + D)2, . .
[Z,— Zout 1= EalZy = Zons JP<Le(s — So— D)+ 23]},

Obviously cv;+ 'vg;a(—g— cv3)3 4 (4v)'4,  ©32>0. It allows us to write
“4) PodZsor 11— Zsgt1> = Vgs « o v Zy—Zsoyy> — Vg}
= POO{[ZSU+[+1 - Zso‘i-l - EG',(ZS“+[+] - Zso+l)]2< (4‘02)”2( _;_6)3/2’

o (Zo= Zogt1— B Zo = Zans DP< (40) R - c(s — 5o — D).

Let A=Dy, (Z,~Z;) E,(4vs) (5~ cn)2. From Hajek-Renyi-Chow ine-

quality (see [10]), we obtain that the right side in (4) is not smaller than [- A
But we can take v, such that A< 1. So that for sufficiently large s we have
Po{t>1}=v,>0, where v, does not depend on s. From the obvious fact
(which follows from the law of large numbers)

Pen{ts>s[E°o(12 - T])—Sl}—>1, 8>0
S—yo0

we get that there exists £, such that for each £>¢,
Po{t>1}=75>0,

where z; does not depend on ¢, which yields Po,{t = + c0}>0.

In a similar way using {Z},>, the case when b, ,<0 can be considered
So that a Markov stopping time t, which is connected with K(B)¢X', cannot
be efficient.

Consider now t,, where KB)ex and b,,.,=0. Let 0,¢0©, From the

law of iterated logarithm we have

.. ZS—SE%(ZQ"'ZI)_= 1=
) Po,{lim inf VDoZ:—ZW 2sInln s t=

Let €>0. From (5) we obtain that
Po{3s,¥S =50 : Z,>5Ee,(Za — Z)) — (1 +€)YDe,(Z,— Z)2s InIn s} = 1.
From the facts that \2sinlns/s —s O and Ee,(Z,—Z,)>0 it follows
§—y00

\ \
(6) Po{351vS=5:Z;>bpya+d}=1.

But it is easy to see, taking into account Definition 7, that (6) suffices to get
that Tk(B) is closed for 6,¢®,. The case b,,;=0, can be considered in the

same way, using {Z}=o
This completes the proof of the Theorem.
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Examples. It is easy to see that the assumptions (i) — (vi) are fulfilled
for the following processes, if we take the corresponding set {t,:5s=0,1,2...}
of Markov stopping times, as follows:

1) for the multinomial process [1, 2] 1,=s;

2) for the Poisson process [3, 4, 6] t,=the moment of the s-th jump of
the process;

3) for the jumping processes belonging to the exponential class of pro-
cesses [7] 1,=the moment of the s-th jump of the process.
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