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ASYMPTOTIC ESTIMATES FOR THE INVERSE EPIDEMIC PROCESS
ON A RANDOM GRAPH

LJUBEN R. MUTAFCIEV

An epidemic model on a random graph with n vertices, suggested by Gertsbakh, is con-
sidered. The infection is delivered from the initially infected m elements inversely to the direc-
tions of the arcs of the random graph. An asymptotic formula when n—oco and m—oco in
terms of regular threshold function for the probability that the infected area arising from these
m vertices exceeds a fixed a-ratio (1/2<a=1) of all n elements conditioned upon the event
Ap,={the greatest component of the random graph exceeds an} is derived. The formula shows
the relation between the epidemic model and the number of cyclic vertices contained in the
great components of the random graph.

Consider the set M, of all mappings of the finite set X={1, 2, ..., n} into
itself, which satisfy tne condition: 7x=x, for each T¢M, and x¢X. There
are (n—1)" different mappings in M,. Each mapping T¢M, is a digraph G,
whose points belong to the set X; the points x and y are joined by an arrow
iff y=Tx. Gy may consist of disjoined components and each component includ-
es only one cycle. We classify the components of G corresponding to their
size, i. e. to the number of points they consist of. Let the uniform probability
distribution on M, be given (each mapping 7 ¢M, has probability (n—1)~").
The random mappings just described are the second type mappings studied by
Harris [I].

We s[h!all consider a scheme of an epidemic process on the random graphs
Gy, which is introduced in the paper of Gertsbakh [2].

Define T#*x to be the k-th iteration of 7¢M, on x¢X, where & is inte-
ger, i.e. Thx=(T*"'x) and T°x=x. If for some £<0, T*x=y, y is said to be
a k-th inverse of x in 7. The set of all &-th inverses of x in T is denoted by
TH(x) and Pp(x)= U9__,T®(x) is the set of all inverses (or predecessors) of x.

Let m bacteria be placed at the elements x,... x,, where x;¢X,
i=1,...,m. All (%) different occupations are equally probable. An inverse epi-

demic process (IEP) [2] is defined by the infection being delivered from the
infected points to all their predecessors. The area which will be infected is
the set of all inverses Prm)= U™ ,Pr(x;) of xi,.. ., Xp

Denote the number of distinct elements in the set Pp(m) by | Pr(m)l.
Consider the function v,,:M,—R' which maps each T¢M, into the integer
| Pr(m)|.

Many asymptotic properties of IEP are described in [3]. The aim of this
note is to fill out some conclusions of the papers [4] and [5] in which the
relation between the IEP and the number of the cyclic vertices contained in
the great components of G is shown.” We need the notion of the “regular
threshold function” which comes from Erdés and Renyi [6]. Let us remark

PLISKA Studia mathematica bulga~ica. Vol. 7, 1984, p. 123—126.



124 L. R. Mutafciev

that the threshold function for the IEP (the definition see in [2]) is obtained
by Burtin in [3] and by the author in [5].

Let A,=M, be arbitrary event and 0<a<1.

Definition. The function ¢(n) is called regular threshold for the IEP
conditioned upon A, if (i) ¢(n)—oo(n— x); (ii) there exists a probability
distribution function Fa(t) so that if 0<t< <o is a point of continuity of
Fu(t) then P{v,=0,| A,}—FA(t) for m~itn (m, n— o). F,(t) is called threshold
conditional probability distribution function.

Let v,=v(T), T€¢M,, be the size of the greatest component of G, The
following theorem gives the asymptotic of the probability that the infected
area arising from m bacteria exceeds a fixed a-ratio (1/2<a=1) of all elements
in the population X conditioned upon the event that the size of the greatest
component exceeds also ar.

Theorem. The regular threshold function for the IEP conditioned upon
the event A,={v,=an}, 1/2<a<l, is o(n)=v\n. The threshold conditional
vrobability distribution function is

FA®=lin B — oy

Vi—a 1—Ji—a ’
where
5 1l e—’"JF—u=/2
(1) In(t)=JT‘{J—;;/—l:‘;——dudX.

Proof. Let p,,=un,,(7T) be the number of the cyclic points of G, con-
tained in components of sizes exceeding s(=2), and 7, be the number of
bacteria placed in cyclic elements satisfying the above condition. According to
the formula of the total probability, for the distribution of 1, we obtain

n Ly(n—1
(2) P{nm.s=k}= > _k_)’:;kp{ps‘n=l}, 0<k<m.
=2 (m)

(By the definition of the mappings T ¢ M, it follows that P{u, ,=1}=0).

In [4] was found the limit distribution of p,,/Jn for s~an, 0<a<]1, in
terms of Laplace-Stieltjes transforms. For a given a¢(1/2, 1] the result which
we shall use is

3) lim E{exp(— i, i)} =1 — - Fa(in1HVI=2 .

n—oco,s~an 1 —\/l —a

In order to be able to apply the distril-)ution of n,. from (2) for s=an
and the limit relation (3) we shall note that

P{o,=an, v,=an}=P{Nmaew =1, v,=an}=[1—P{nmae =0|v,=an]P(v,=an}
=[1 =P{Niman =0 Hun=2}IP{Ha,n =2} =P{ita,n =2} — P(man =0, pa,n=2}
=P{v,=an}—[PMman =0} —P{Nman =0, Ha,n=0}].
Here - Man=Hann Since {fa,n=0}{Nman =0} and {}o,,=0}= A, then
(©)) P{og=an, v,=an}=P(A,)—P{Mmaen=0}+P(4,)=1—P{nmau =0}
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So it suffies to find the limit of the P{ymas =0} when m~+t|n, n—co. By (2)
it follows that

(5) P{Mm,an = O} = é 2(;_1)(;1)~1 P{;‘a'n =i}

Since ()G = (1= 2y1 -0 ... (1 —n——lrﬂ)

then

(6) -5 <EHE<- T

Now, combining (5) and (6), we obtain

(7) E{(1 - ——) """ }<P{nman =0} <E{(1 = )",

— Ma,n+1
We shall use also the asymptotic of Epa,» [5], which has the form

®)  Ejga= \/ 21X _ arcsiny/@)+O(1),
Let >0 be an arbitrary number. Using the representation

(9) (1 -— __m_ ;"ﬂnn = (1 — __t:':oﬁl‘——: 47‘ ;ﬂ"‘N"—
n—pan+t1 v —(a,n—1)¥n

=exp{— ¥ (1 — Far=L )1+ OBy

by (8) and the Markov inequality, we have

_ t+o(1) Vg,nlVn ﬁu.n _ Ea,,,-—l —1 >e
UGl ety ===} >l

< S glexp [—len (1 —Ban) " G <O Eog0, oo,

These relations yield the following convergence in probability

(o trolt) VAR wn () B
Vr —(han—1)n J %
On the other hand from (9) it follows with probability 1, that

}—‘—’0, n—oo,

t-ijo(l) Jiiu,nN"
v —(pa,n—1)/yn ‘/—
Now by the dominated convergence theorem [7, Theorem 5.4] we obtain

~ - ~
Ha,n Ha,n
1===2 }H =,

IQa-

. a t+0(1) o fan 4
Jim B{(1 ——— =~ g "}= lim Efexp { —£ = (1 ) }}
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Using (8), it is easy to see, that

Jj<E{exp{— (1 ”“") }}<E{exp{ t”j;}}

E{exp{— t

S)J_ Vn
for an arbitrary small 8>0. Therefore we have
. t+o(1) £
10 limE{(l - ——= ~ = llm E{ex a,]
(10) tim E((1 = Ay ™) tim Efexp(— £4127}).

Similarly can be proved, that

(11) lim E{(1 — %)T'“’ } = lim E{exp{~ t‘v‘_"’}}
m~t‘/”—

Combining (3), (4), (7), (9)—(11), and using the relation [5]
IHVIZC  fim P{ i =2}

1 -—Jl —a n—oo

we obtain the assertion of the theorem.
Finally let us remark that the value of lim P{z,=an}, 0<t< o0, 0<a<l,

n—oo
m~t|y

can be found by other methods described by Burtin [3].

lim P{v,=an} = - In
n—oo
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