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ALGEBRAIC EXTENSIONS OF PRIME ALGEBRAS
AND ALGEBRAS OF QUOTIENTS

LYUBOMIR I. DAVIDOV

Let F be a field, RDB be F-algebras such that for every element x ( R there is a poly-
nomial f(f) with f(x)€ B. The following results are proved: If R is prime and has no nonzero
algebraic one-sided ideals, then B is prime with no nonzero algebraic one-sided ideals; if
moreover R is noncommutative, then the algebras of quotients of R and B coincide. In that
case R is a right Goldie algebra iff B is such an algebra.

Introduction. In what follows R will denote an associative algebra with
1 over a field F and B will denote a subalgebra of R with the same unit 1.
An algebra R is said to be radical (coradical) over B if for every x¢R there
is an integer n(x)>1 (resp. polynomial f,(£)€F[¢]) such that x"*)¢ B (resp.
x+x2f,(x)€ B). There have been several theorems proved in the last few
years, which describe the relationship between the properties of R
and B in the case when R is radical (coradical) over B. For example Herstein,
Rowen and Zelmanov proved that if R has no nil ideals and R is radical over
a Pl-subalgebra B, then R satisfies all polynomial identities, satisfied by B.
Chacron proved the same theorem in the case when R is coradical over B.
Babkov (1] proved that if R is a prime noncommutative algebra with no
nonzero nil one-sided ideals and R is radical over B, or R is prime, noncom-
mutative and R is coradical over B, then the algebras of quotients of R and
B coincide.

More generally following [3] we shall consider the relationship between R
and B in the case when for every x¢ R there is a polynomial f, ()¢ F[f] such
that f,(x)¢B.

We shall make some specifications. Whenever we shall use the term “poly-
nomial” it will be understood to be a polynomial with coefficients in F. If
X €¢R when we write f,(¢) we shall mean such a polynomial whose coefficients
depend on x. When we say that an element x¢R is algebraic, we shall mean
that it is algebraic over F, i.e. there is a polynomial f,(¢), such that f,(x)
=0. A subset of R is said to be algebraic if all its elements are algebraic.
An element which is not algebraic will be called transcendental. We shall say
that R is F-algebraic over B, if for every x¢R there exists a polynomial f, (#),
such that f,(x)€¢ B. It is clear that we may assume that all polynomials are
with zero constant term, i. e. that they are inZF[¢{]. Bergen and Herstein
([3]) proved that if R has no nonzero algebraic ideals and R is F-algebraic
over the subalgebra B, which satisfies a polynomial identity, then R satisfies
all polynomial identities, satisfied by B.

Our aim in this paper is to prove, that if R has no nonzero algebraic one-
sided ideals and R is F-algebraic over B, then the algebras of quotients of R
and B coincide.
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Algebraic extensions of prime algebras 137

1. F-Algebraicity and Prime Algebras.

Lemma 1.1. Every algebraic one-sided ideal of R is either nil, or has
an idempotent e?=e==0.

Proof. Let p is a right algebraic ideal of R. If p is not nil, then there
is a x¢€p, such that x*Z=0 for each integer 2=1. But x is an algebraic and
hence there are a, @, ..., a,€ F and an integer s=1 for which:

=0, P+ ... 4a, x 0.
In that case:
X=o; x(o; x4+ .0, X)L Fa, xHP
=By X 24 ...+ B, xTHPH
=Yy XF Yy X¥F 4 Ly, A2 = Xy (x),

where 04 (£)€ F[t]. From here: e=x"h(x)3F0 and e¢p. By that 2= x? 42 (x)
=x*h(x)=e. Therefore e is an idempotent.

Corollary 1. 2. If R is an algebraic domain, them R has no non-
zero algebraic one-sided ideals.

Lemma 1.3 ([3], Theorem 4.1). Let R be prime with no nonzero algeb-
raic one-sided ideals and N\ be a left ideal of R. If b€R is such that for
every x¢€\ there exists a polynomial f.(t)€¢tF[t] for which bf,(x)=0, then

Lemma 1.4. Let R be prime with no nonzero algebraic one-sided ideals.
If aeR and for every x¢R there exists a polynomial f,(t)¢tF [t] such that
af.(x) a=0, then a=0.

Proof. First we show that a2=0. Let x¢ R. There exists a polynomial
f(®)€tF[¢] such that af (ax) a=0.For g(£)=1tf(¢f) we have 0=af(ax)ax=ag(ax)
=a? (xa) x, and a?g(xa)=a2f(xa) xa=0. Thus for every xa¢ Ra there is a
polynomial g (¢)€tF[¢t] with a2 g(xa)=0. By lemma 3: a2=0.

Let r¢ R with r2=0. For every x¢R and each integer k is held:

(axar+ r)t=(axar)* +r. (axar)*1.

By our hypothesis there is a polynomial f(£)=th(£)¢€ ¢F [¢t], for which af(axar
+7r)a=0. By the above f(axar+r)=f(axar)+r.h(axar). Since a?=0, we get
a.f(axar)=0. Thus ar.k(axar) a=0. On the other hand:

ar.(axar)™ a=arax.(arax)"! ara.
Hence
f(arax)=h (arax)arax=ar.h(axar) ax=0.

So we recieve that araR is an algebraic right ideal of R and therefore
ara=0.

Let r, s¢ R with rs=0. Then (sxr)?=0 for every x¢R. Thus asxra=0,
i.e. asRra=0. Since R is prime, as=0 or ra=0. So in any case we have
ras=0.

At the end let x¢ R. By our hypothesis there exists a;, ag,..., 0x€F,
such that . ,

a.(a; x+ ... +a, x*)a=0,

i.e.

ax. (0 + ... +a; x*1) a=0.
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By the above we recieve. that
axa(a;+ ... +o, x*¥1)a=0.

And since a?=0:

axa-(ag x+ ... +a, x* 1) a=0.

Continuing in this way we obtain a, a(xa)*—! (xa)=0 and so (ax)**+1=0.
In other words aR is a nil and therefore an algebraic right ideal. Hence a=0.

Lemma 1.5. Let R be prime with no nonzero algebraic one-sided ideals.
If a, b¢R and for every x¢ R there exists a polynomial f,(t)€tF [t] such
that a.f,.(x) b=0, then a=0 or b=0.

Proof. Let y¢R. For every x¢ R there is a polynomial f, (f) ¢ tF[¢] with
a. f,(x).6=0 and so bya.f,(x). bya=0. By lemma 1.4. we obtain bya=0, i.e.
bRa=0. Since R is prime, a=0 or b=0.

Lemma 1.6 (Levitzky, [7, Lemma 1.1]). Let p be a nonzero nil right
ideal of R. Suppose that given a¢p, a"=0 for a fixed integer n; then R
has a nonzero nilpotent ideal.

Remark 1.7. It is clear, that if R is F-algebraic over B and r,,..., r,¢R,
there is a polynomial f(£)=f,...,r, (¢) such that f(r), f(r),....f(rs)€ B.

Theorem 1.7. If R is prime with no nonzero algebraic one-sided ideals
and R is F-algebraic over B, then B is prime with no nonzero algebraic one-
sided ideals.

Proof. Let @, b¢B and aBb=0. Since R is F-algebraic over B, then for
every x¢€ R there is a polynomial f, (f) for which f,(x)¢ B and so af,(x)b=0.
By lemma 1.5. we recieve: a=0 or b=0. Therefore B is Srime.

Obviously B contains transcendental elements. Let O==p3$B be a right
ideal of B. Suppose that p is an algebraic one. By lemma 1.1. there are two
possibilities:

(i) There is an idempotent 1==e¢p, O%e. By our hypothesis eR is not an
algebraic right ideal of R and therefore there is an element x¢R such that ex
is a transcendental one. But R is F-algebraic over B and hence there is a po-
lynomial f,(f) with f,(ex)€B. It is clear that f,(ex) is a transcendental ele-
ment. On the other hand, it follows from e2=e¢p that f,(ex)=e f, (ex)€p.
Thus p is not algebraic — a contradiction.

(ii) p is a nil right ideal. Let a¢p and r¢R with r2=0. There exists a
polynomial f(£)=th(¢)€tF [¢], such that f(ar)€ B and f(ar+r)€B. But for every
integer & is held: (ar+rY:=(ary*+r.(ar)*~1. Then we have f(ar+r)=f(ar)
+r.k(ar) and from here: r.z(ar)¢ B. Hence f(ar)=a.rh(ar)ép. Thus f(ar) is
nil and therefore ar is an algebraic element. Let p(#)¢ F[{] and p(ar)=0.
Then for ¢(f) = ¢p(¢) we have ¢(ra) = ra.p(ra)=r.p(ar).a=0. Thus ra is an
algebraic element, too.

Let x¢R. Then (rxr)?=0. So rxra is an algebraic element. Let u(¢)¢ F[¢]
with u (rxra)=0. For v(£)=tu(¢t) is held: v(rarx)=ra.u(rxra)rx=0. Thus rarx
is algebraic, i. e. rarR is an algebraic right ideal of R. It follows by our hypo-
thesis that rar=0, i.e. rpr=0.

On the other hand, B is a prime algebra and so by lemma 1.6. there exists
agp, such that a*=0, a*'30 and £=4. But (a*?)2=0 and consequently
a*—2p a*—2=0. Hence a*~?p is a nilpotent right ideal of B. Since B is prime
we must have a*2p=0, and so a*—1=0 — a contradiction.

The theorem is proved.
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2. Algebras of Quotients. Let S—R be a subset of R. We shall use the
following designations: a™! S={x¢R: ax¢S}; r(S)={x€¢R: xS=0} — the
left annihilator of S in R; 7p(S)={x€¢R: Sx=0} — the right annihilator of S
in R.

Following [2] and [8], we shall say that the right ideal p of R is a dense
one if for every x¢R is held: [5(x~!p)=O0. In other words pis dense iff for
every Or¢R and every s¢R there exists an element y¢p such that sy¢p
and bry:#:O. We shall denote with D, the set of all right dense ideals of R. The
algebra

Q (R)=lim Hom (pgr, Rg)
p€Dp

is the algebra of quotients of R.

Theorem 2.1 ([2, 8)). If R is a subalgebra of Q, then Q=Q (R) is the
algebra of quotients of R iff.

(i) For every 0+q¢Q: g ' R={a€¢R: qa€ R} is a right dense ideal of R.

(ii) For every 0=+q¢Q: q (¢! R)=0.

(iii) If p is a right dense ideal of R and fe¢Hom (pp, Ry) then there
exists an element q¢€ Q, such that f(x)=gqx for every x¢p.

If B is a subalgebra of R, we shall say that B is an essential subalgebra
of R, if for every one-sided ideal / of R is held: BN /9=(0).

Lemma. 22. If R has no nonzero algebraic one-sided ideals, B is a
subalgebra of R and R is F-algebraic over B, then B is an essential subal-

gebra of R.
Proof. Let (0)%=/ be a one-sided ideal of R. There exists a transcen-

dental element s¢/. But there is a polynomial f(£) such that f(s)€B. It is

clear that 0Ff(s)¢B N1
Lemma 2.3 ([1, Lemma 1]). Let B be an essential subalgebra of R and

for every O==r¢ R there exists a right dense ideal p, of B such that r.p,

< B. Then Q(R)=Q(B).
The center C(R) of R and the algebraic hypercenter A(R) of R are de-
fined by

C(R)y={x¢R: xr=rx, all r¢R},
AR)={x€R: xf(N=f () x, f=[rx(O)€LF[t], all r¢R}.

Theorem 2.4 ([3, Theorem 1.6]). /f R has no nonzero algebraic ideals
then C(R)=A(R).

Lemma 2.5. Let R be a noncommutative domain, which is not algebraic
over F, R be F-algebraic over B, Q=Q(R), C=C(Q) and b¢C(Q) be an
invertible element for which bBR—R and bB=B. If 0=x¢R and xBN B=(0),
then x2+bx¢C(R).

Proof. Let R,=R+bF=Q and p=xR,N(x+0b)R. Since bBR=R, then p
is a right ideal of Rand z=x(x+0b)¢p. If a¢p then a=xa,=(x+0b)a,, where
a,€R, and ay€R. ltisclear that @, x¢R and a,(x+b)¢€R. Therefore there is a
]t):lyn?tl;nialh f (fj)( tF[t) with f(a)€B, y,=f(a, x)€B and y,=f(a,(x+b))¢B. On

e other hand:

xyr=x.f(ay x)=x.(00(a; X)*+ ... +a,(a x)*+)
= (ao(xa)*+ ... +a, (xa,)**?) x=f (xa;) x=f(a) x
(x+0) ya=(x+0b) f(a, (x +))=f ((x+b) a3) (x+b)=f(a) (x+b).
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It follows from here that

X (Ya=)=f(@) b—by,=b(f(a)—y,).

But 6(f(a)—y,)€bB=B and x(y,—y,) € xB. Therefore x(y,—y,) ¢ xBN B=(0)
and since R is a domain and x==0, then y,=y,=f(a).
So we recieve that xf(a)—f(a)x=xy,—f(a) x=0, i.e.

f(a)z—zf(a)=f(a) x(x+b)—x(x+b)f(a)=0.

Therefore z¢ A (p). But by Corollary 1.2. p contains a transcendental element
and thus it has no nonzero algebraic ideals. By theorem 2.4: A (p) = C(p). It
follows from here that z¢C (p).

At the end let s¢ R and 0==r¢p. We have:

r.28=rz2.S=2r.S=2.r$=rs.z=r.sz,

i e.( r.(zs—s2)=0 and since R is a domain, then 2s=sz. Therefore z=x%+bx
€C(R).

Lemma 26. Let R and Q be as in Lemma 1.5. Then C(R)=RNC(Q)
and every element of C (R) is an invertible one in Q.

Proof. It is clear that RNC(Q)=C(R). Let r¢C(R) and ¢¢Q, ¢=0.
Then by Theorem 2.1: ¢~ 1 R is a dense right ideal of R and for every 0=3=¢£€ ¢ 'R
we have gZ¢R. It follows from here:

(gr—rq)t=q.rt—r.qt=q .tr—qt .r=qgtr—qtr=0.

But 0==# and therefore gr=rg, i.e. reC(Q)NR and C(Q)NR=C(R).

Recall that if x¢R, then in Q(R), x is equal to cl (Rp—Ry, ¢t — xt). Since
R is a domain, then x'=cl(xRp—Rp, xr—r) and x1¢C(Q).

From now on, we shall use the following designation:

H={0%x¢R: xBN B=(0)}.

Lemma 2.7. Let R and B be as Lemma 2.5, If H+=@, then HE C(R)
and BN C(R)={0, 1}. .

Proof. Suppose that H=C(R). Let O0Fx¢ H=C(R). For every a¢B we
have xaBN B=(0). (If y¢ xaBN B, then y¢xBN B=(0), since xaB=xB, and
y=0). In other words, for every a¢B: xa¢C(R). Then for every a¢ B is held:
a=x1ax¢eC(QAINR=C(R), i.e. BcC(R). So we recieve that B is a com-
mutative algebra. It follows by [3, Theorem 2.6] that R is commutative algebra,
too — a contradiction. Therefore H ¢ C(R).

Let now b¢BNC(R) and suppose that 50, 1. It follows by Lemma 2.5
that for every x¢H is held: x?+bx¢C(R) and x2+x¢ C(R) Then (x2+4bx)
—(x?+x)=(b—1)x€¢C(R). By Lemma 2.6: 0Fb—1¢C(R) is an invertible
element and thus x¢C (QQNR=C(R), i.e. H=C(R) — a contradiction. There-
fore C(R)N B={0, 1}.

Corollary 28. If R and B are as in Lemma 2.5, then C(R) is a field
and char C(R)=2. ‘

Proof. Since FcC(R)NB={0, 1}, then F=GF(2) and it is clear that
if every element in C(R) is an invertible one, then C(R) will be a field and
char C(R)=2.

Let b¢C(R). There is a polynomial f(¢£)=¢h(¢)¢ F[¢] such that f(b)¢ C(R)
N B=GF(2). Thus either f(b)=1, or f(b)=0. If f(b)=1, then b.A(b)=1 and
h(b) €C(R)i.e. b is an invertible element. If f(6)=0, then 0=0"—0b"+! g(b)
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=b".(1—bg(b)) and since R is a domain, then 1—b.g(g)=0, i.e. in this
case b is an invertiable element, too.

Lemma 29. If R and B are as in Lemma 2.5 and H==Q@, then R and
B are division algebras.

Proof. First let 034-x¢€ H. Then x2+4 x==0 (since x30, —1) and by Lemma
25: x2+x€¢C(R). By Corollary 2.8 there is a y¢C(R) such that y.(x2+x)
=(x2+x)y=1,ie x.y(x+1)=y(x+1)x=1. Therefore x is an invertible
element and x—1¢H, because if u¢ x~* BN B, then xu¢BN xB=(0) and thus
u=0 (R is a domain).

Let now 03Fa¢B and O==x¢ H. In that case xaBN B=(0) and consequently
there exists (xa)~'¢R. Let b=(xa)™! x. Then ba=1. Moreover, x.(ab—1)=xa.
(xa) ! x—x=x-—x=0 and since R is a domain, ab=1=ba, i. e. every element
in B is an invertible one in R.

We shall show that if 03a¢B, then a—'¢B. Really there is a polynomial
J(®)€LF [¢] such that

Multiplying by a"t*—1¢ B we recieve:

ak14+aq, a2+ ... +o,_ 40, a1¢B.

Hence a,_,+a, a~1¢B and since a,_,¢FcB, then a, a='¢B. Therefore B is
a division algebra,

At the end let O3=r¢R. If r¢ H, then r—! exists. If r¢ H, then rBN B==(0)
and consequenily there are elements a, b¢B, such that rb=a¢ B. It follows
from here that r=rb.b1=ab—1¢B and thus r is an invertible element.

Lemma 2.10 ([5, Corollary from Thevrem 1]). Let R be a division alge-
bra over a finite field F, and let B be a subalgebra +R, such that R is
F-algebraic over B. Then R is a field.

Theorem 2.11. Let R be a noncommutative, nonalgebraic domain, B be
a F-subalgebra of R and R be F-algebraic over B. Then Q(R)=Q(B).

Proof. By Corollary 1.2 R has no nonzero algebraic one-sided ideals.
By Lemma 2.2 B is an essential subalgebra of R.

Suppose that H=(). Since R and B are as in Lemma 2.9, then they are
division algebras and by Lemma 2.10 R is a field — a contradiction. There-
fore H= ? .
Let OFr¢R and p,={a€B: ra¢B}. It is clear that p,is a right ideal of
B, p,#+(0) (since H=(), then rBN B=(0)) and r.p,=B. Let Ofa¢B. Then
ra#+0 (R is a domain) and thus raB (1 B3-(0). Hence there exists an element
04y¢B, such that ray¢ B, i.e. ay¢ép, and Oy ¢ a1 p,. Therefore a1, p,3-(0)
is a right ideal of B and Iz (a—' p,)=(0), since B is a domain. It follows from
here that p, is a dense right ideal of B and by Lemma 2.3: Q (R)=Q(B).

The theorem is proved.

In the following lemmas let R be a prime noncommutative F-algebra (with
unit 1), which has no nonzero algebraic one-sided ideals, B be a subalgebra
of R (with the same unit 1) and R be F-algebraic over B. Let B, be the set
of all 7¢ R for which there is a right dense ideal p, of B, such that r.p,=B.

Lemma 212 ([1, Lemma 4]) B, is a subalgebra of R and B<B,.

Lemma 2.13. All zero divisors oy R are in B,.

Proof. By Theorem 1.7 B is a prime algebra with no nonzero algebraic
one-sided ideals.
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Let 0r¢R is a right zero divisor, i. e. I5(r)==(0). We replace p={b¢B:
rb¢ B}. 1t is clear that p is a right ideal of B and r.pcB. Suppose that p is
not a dense right ideal of B. There are elements a, b¢B, b0, such that if
ye€B and ay¢p, then by=0. In other words, it follows from y ¢B and ray¢B
that by=0.

At that if ra=0, then bB=0—a contradiction. Hence ra=0. Let 054=x €/ (7).
There is a polynomial f(£)¢¢F[¢] with f(x)¢B and f(rax+x)¢B. But xr=0
and for each integer £ we have:

(rax+x)f=ra.x*+ x*.

Thus f(rax+ x)=raf(x)+f(x) and consequently raf(x)¢ B. It follows from
here that 6f(x)=0. So we recieve that for every x¢lp(r) there is a polyno-
mial f(£)€¢F [¢] such that bf (x)=0. By lemma 1.3: 6=0—a contradiction. There-
fore p is a dense right ideal of B and thus r¢ B,.

Let now O==s¢ R be a left zero divisor, i.e. rp(s)3F(0). As we have just
proved, we see that there exists a left dense ideal A of B such that A.scB.
Let p={b¢B: sb¢B}. Obviously p is a right ideal of B and s.p=B. Suppose
that p is not a dense right ideal of B. There exists a, b¢ B, b3=0 such that it
follows from y¢B, say¢B, that by=0. It is clear that sa==0, rg(A)=(0) (B is
prime). But B is an essential subalgebra of R and rz(A)=B rp(A). Consequent-
ly rg(A)=(0) and A.sa3(0) is a left ideal of B. For every [l¢A there is a
polynomial f(¢)=¢th (£)€tF [t], with f(sal)=sa.h(lsa)le¢B and since A.scB,
aeB, l¢B, then h(lsa).l¢ B. Hence b.4(Isa)l=0 and b. f(Isa)=0. By Lemma
1.3: b=0—a contradiction. Therefore p is a dense right ideal of B and s¢ B,.

Theorem 2.14. Let R be a prime, noncommutative F-algebra with no
nonzero algebraic one-sided ideals, B be a subalgebra of R and R be F-al-
gebraic over B. Then Q(R)=Q (B).

Proof. By Lemma 2.2 B is an essential subalgebra of R and by Lemma
2.3 it is enough to prove that B,=R. By that we may assume that there are
zero divisors in R. Let 0%u¢R, Ov¢R and uv=0. By Lemma 2.13: Ruc B,
and vRc=B, Then /=RuBvR=B, (since B B,) and [ is an ideal of R. How-
ever B is prime. Hence uBv=0 and /==(0).

Let now Ofr¢R and p={y¢B: ry¢B}. Obviously p is a right ideal of
B and r.pcB. We shall show that p is a dense right ideal of B. Let a, b¢B
and b=0. Since R is prime and B is an essential subalgebra of R, then b6/4(0)
and b/ B3 (0). Consequently there is y¢ /=B, such that by¢ B and by=-0.
On the other hand, ray¢ /=B, Then there exists a dense right ideal o of B
such that ray.cc B and y.oc—B. It follows from here that there is an ele-
ment s¢€o such that bys=0 (since O==by¢ B). We have ys¢B, ra.ys¢B and
b.ys+0. Hence ys¢B,a.ys¢p and b.ys+0, i.e. p is a dense right ideal of
B. Therefore B,=R.

The theorem is proved.

3. Some Corollaries. Recall that a right singular ideal of R is

Z(R)={yeR: rp(y) is essential}.

If B is a subalgebra of R we shall say ([1]) that R is a rational extension
of B if Q(R)=Q(B).

Lemma 3.1 ([1, Lemma 8)). /f R Is a rational extension of B, then Z(B)
=BNZ(R).
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Corollary 3.2. Let R be a prime, noncommutative F-algebra with no
nonzero algebraic one-sided ideals, B be a subalgebra of R and R be F-alge-
braic over B. Then Z(B)=BN Z(R).

If Mg is a right R-module, we shall denote with dimg(My) — the Goldie
dimension of M.

Lemma 33 (1, Lemma 9]). If R is rational extension of B, then

dimg (Bg)=dimg (Rp) =dimg (Rg).

Theorem 34. Let R be a prime, noncommutative F-algebra with no
nonzero algebraic one-sided ideals, B be a subalgebra of R and R be F-alge-
braic over B. R is a right Goldie algebra iff B is a right Goldie algebra.
In that case R and B are orders in one and the same simple Artinian al-
gebra.

Proof. Analogous to the proof of [1, Corollary 2].
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