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INFINITESIMAL DEFORMATIONS
OF THE SCALAR CURVATURE
OF A HYPERSURFACE

STEFANA T. HINEVA

‘ . D
The purpose of the present paper is to study the infinitesimal normal parallel deformations (INP )
which preserve the scalar curvature of a hypersurface M"in a space M™L of constant curvature ¢

; D
obtain a necessary and sufficient condition in which a totally umbilical hypersurface M" admits lelon
preserving the scalar curvature and find some inequalities which the square of the length of thes

. its
fundamental tensor and the mean curvature of an arbitrary hypersurface M satisfy when "I" adee
INPD preserving the scalar curvature as well as some conditions in which M" s quasiumbxllca];1 (for
prove Theorem 4.4 using one result of S. Chern, M. do Carmo and S. Kobayashi and H. B. Lawso

. mit
hypersurface). We also find a sufficient condition in which a minimal hypersurface M" does not ad
INPD preserving the scalar curvature.

1. Infinitesimal deformations of the scalar curvature. Let M"+! be an ﬂ+1“gs
mensional Riemannian manifold, covered by a system of coordinate neighbourhoom_
{U, x} and denote by g I'}, v, Rj, and R;; the metric tensor, the Christoffel S)’the
bols formed with g, the operator of covariant differentiation with respect to Fi;,
curvature tensor and the Ricci tensor of M™1 respectively, where, here and il o
sequel, the indices i, j, k,.... run over the range {1, 2,..., n+1}. Let M" be an ds
dimensional Riemannian manifold, covered by a system of coordinate neighbourhoore_
{V,u%}, a=1, 2,,..., n and immersed as a hypersurface in M"+. The analyt_iC fepsor
sentation of M" is: x'=xi(u). We denote by gus, IS, Vi, R+ Rap the metric teﬂ_t
the Christoffel symbols formed with gup, the operator of covariant differentiation W!
respect to I'j, the curvature tensor and the Ricci tensor of M™ el

An infinitesimal deformation of a hypersurface M” of M"+! is said to be pafathe
when the tangent space at a point of M" and that at the corresponding point of fi-
deformed hypersurface are parallel with respect to the connection F‘.’j. [10], and an n
nitesimal deformation is said to be normal when the deformation vector is normal
the hypersurface [10]. o”

If we denote by dx//ou*—n linearly independent vectors of M"*! tangent t0 s
and by N the unit normal to M" then the vector field z¢ of an infinitesimal defof
tion of M" can be represented as:

i — a@,’,‘f Ji
(L.1) z E..du,,ﬂm,

where & and M(u®) are respectively tangential and normal components of 2z%. of
When £°==0 the deformation vector 27 is normal to M" and the deformation

M" is normal. A normal deformation of a hypersurface is given by

(1.2) X' = xi+ ANV,
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Infinitesimal deformations of the scalar curvature 25

We have .
Proposition 1.1 [10]. /n order for a normal deformation of a hypersurface
0 be parailel, it is necessary and sufficient that

(l 3) Vux =0

ztih'att is, the normal deformation displaces each point of the hypersurface by the same
Stance. ;

. When we have an infinitesimal normal parallel deformation (INPD) of M" the varia-
tion 84 of the scalar curvature K=Rupg*® is as follows [4]:

) 8K = (— 219 Rag — 27°V 418 + 27av“h)he,

Where hu5 is the second fundamental tensor of M" and e = hyg®, B = hogg,

hkhaag“ﬁ; ¢ is an infinitesimal.
If the ambient manifold M+ is a space of constant curvature ¢, then:

(L5) K= —2[c(n— 1)k + hhapht®— hushishoe.

Proposition 1.2. An INPD: xi=xi+ANie, >0, of a hypersurface {,W of a
21’?08 M"™1 of constant curvature ¢ preserves the scalar curvature K of M" if and
’ly if

(L6) haph®h™®=c(n—1)h+h . hagh®®.

We will consider only non-totally geodesic hypersurfaces.

2. Totally umbilical hypersurfaces _—

Proposition 2.1. A fotally umbilical hypersurface M* of a space M™*! of
Constant curvature ¢ admits INPD preserving the scalar curvature if and only if

ke mean curvature of Mn is equal to +y—c. . e
Proof. As M" is totally umbilical hypersurface, then the eigenvalues A, Aq,
“*+s» X, of the second fundamental tensor /. are equal, i. e.

@1 T Y
For a totally umbilical hypersurface we have:

3
n? '

h h? thaB —
(22) 7»“:—;2— hoph®B= o hcr}zph P=

| Let M" admits INPD preserving the scalar curvature K. Then kep and & satisfy
(18), Substituting (2.2) into (1.6), we obtain

2, m_»
(23) c(n—h+ 2~ 2
Or

24) h=+n]—c.

the Conversely, if (2.4) is fulfilled, we have (1.6) because of (2.2) and consequently
deformation preserves the scalar curvature. ,

o Corollary. A totally umbilical hypersurface M* of a space M™*' of positive
“vature ¢ does not admit INPD preserving the scalar curvature. the
3. Non-totally umbilical and non-minimal hypersurfaces. First we prove

°"°Wing lemma:
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Lemma 3.1. Let xo a=1,..., n, be real numbers satisfying
(3.1 Z‘xu=h. L x2=a® (a=0, na®>h?).
a= a=1
Then we have
(3.2) I Bnar—2m)— L (na2— 2yt < 5
e n Vn=17" g1 "¢
n 3/_’1_ 1 n—2
(3.3) HEI Xo =73 (3na2_2hn)+7ﬁ(na2 h2)3/2J7:1"'

The equality in (3.2) or in (3.3) is fulfilled only then when n—1 of xa. are eq”al‘i'
Proof. We will find the biggest and the smallest values of the function y=2X;_ Ko
when x, satisfy (3.1). The set of real numbers x, satisfying (3.1) is compact. We can
?se ;:he 'I[,.agrange-multiplier method to determine the local extreme values of - For
e function

B4 flxy, Xpeoes X)=X3H cos FIFMAIE X2 F X F +x,—h)
the variational equatious
0,
(3.5) 5%1 =3x242hxe+p=0
yield the result that
(3'6) Xay,o=( —AE \/7\2 - 3}1)/3.

From (3.6) we see that at an extreme point (x,, X,,..., x,) everyone of X iS eCll-lal

to one of the two numbers
@3.7) X=(—A4+-y R =3p)/3, Y=(—r—y A2 —3p)/3.

Let us denote by k, 1<k < n—1, the number of x, from an extreme point (X1 Xg
.., x,) which are equal to X. From this and (3.1) we obtain

h € |n—p.,
X=a+ T\/"Tk (na®—h?),
(3.8)

h e [ &
PTRTNE s
where e=*£ 1.

For the extreme values of the function y=%2_, x? we have

(3.9) yexzniz(Snaz—Qhﬂ)-;--fz.(na?_ h2)ye _{1—2’3__
" Vk(n = k)

We will compare all extreme values of y. The function

3.10) 0=o(k)=—"=2k

( o) =

is a monotonically decreasing function, because

do —n2

3.11 —_ =
(311 dk— 9[(n—k)k}** =0



Infinitesimal deformations of the scalar curvature 27

Hence the function Vex =Vex(R) is also monotonically decreasing one.
1. Let A>0. As 3na®—2h2>0(na®>h?) then

3.1 _h 1 . n—2

(3.12) Vmax =y (3002 —2h%) +— (na? h2)3/2\/71___1_,

When E= 1 s k = 1,

(3.1 _h 2 1 __pepe 2
) Ymin= - (3102 —20%)— g (na®—I2P® e,

When e~ 1, p=1.
2. Let h<0. We have the same situation as £>0.
3. Let #=0. Then
3

(3.14 3 n2 _—aZ(n-2)
T ) Iman = 2=y I =G
he lemma is proved.

Theorem 3.1. Let M" be a non-minimal, non-totally umbilical hypersurface of
@ space Mr+t of constant curvature c. If an INPD preserves the scalar curvature K
of M", then the square of the length of the second fundamental tensor hap and the
Mean curvature hin satisfy
! (nhaph® — h2)32 J”_‘_%g c(n—1)h+ hhaph®®,

-

n=

@.15) 'r'z}“i" (3nhaphe® —2h2) —

n2

B16) " (3nhuphe — 282)+ L (nypht — h‘~’)3/9\/.";_2120(n—1)}z+h}za3/l““.
==

Th_e equality in (3.15) or in (3.16) exists in these points in which M" has n—1equal
"incipal curvatures.

sats Proof. Let M” admits INPD preserving the scalar curvature. Then /qp and h
atisfy (1.6). On the other hand, using the eigenvalues A, of the second fundamental
®sor which are the principal curvatures of M", we can rewrite (1.6) in the form

@17) 5 A= c(n—1)h+h . hagh®.

a=1
;fhe“ in view of (3.17) and the fact that n/aph®® —h2 = Zacp (ha—Ap)*>0 (When M" is
ot totally umbilical), our theorem follows immediately from the above lemma.
MnHTheOfe‘" 3.2. Let M" be a non-minimal, non-totally u{nbiliml hypersurface of
any Of constant curvature c. If M" admits INPD preserving the scalar curvature
cnd if the square of the length of the second fundamental tensor. hap and the mean
“rvature at every point p of M" satisfy

(3 h 1 n—2 ap
18) HT'('?)ﬂhuﬁ heB—2h2) 4 o (nhopheP —h2)32 7__,1——_; =c(n—Dh+h.haph
then there exist exactly n—1 equal principal curvatures at every point of M" equal
O kin—(\ (na2—h2)/(n—1)/n) a?= haph*®.
The proof follows from (3.17) and the lemma. )
Analogous theorem to theorem 3.2 we obtain if we take the equality
1

n?

3 / 1 -2 af
( 19) ”;, (3nhaphed—2h2) — (nhaﬁbaﬂ_h2)3,2\/%:___l__:[(n—])h—f—h.huﬁ}l

Mstead of (3.18).
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In case when n=2 for y=3%2_A3 we have

(3.20) y= % B . haph®®—

L
2

Then from (3.17), (1.6) and (3.20) we obtain
(3.21) hoph®® =2c+ h2.

Proposition 3.1. A non-totally umbilical surface M2 in M® of constant cur-
vature ¢ admits INPD preserving the scalar curvature if and only if the squaré o
the length ot the second fundamental tensor h.s and the mean curvature O
satisfy (3.21). 4

Corollary. A surface M? in E? admits INPD preserving the Gaussian curvl
ture K if and only if K=0. g

4. Minimal hypersurface. Let us denote by Ay, A, ..., A,, the principal curva
tures at a point p of a minimal hypersurface M" and let A, <hgp= ... =Anpe tal

Theorem 4.1. For the square hoph®® of the length of the second fundamen Y
tensor hap at @ point p of a minimal hypersurface M" in a Riemannian manifo
MY we have: :

4.1 hogh*®<nk?, n— even,
(4.2) hagh® <(n—1)A2, n — odd.

Inequality (4.1) is evident. Inequality (4.2) follows from the following simple alges
braic lemma.

Lemma 4.1. Let xy, Xo,..., X, be n(n=2) real numbers satisfying
(4'3) x1+X2+ . e +xn=0,
(4.9 max |Xq|=1, a=1,..., n,
then
n
21 xi<n, n — even
(4.5) -
21 x2=n—1, n— odd.
Proof. We will prove that the function y=x"_, xz of the variables X Xy

..., X, satisfying (4.3) and (4.4) has maximum value only then when x;, Xp«:*’ x{,‘
are whole numbers. Let us suppose that the maximizing point (x,..., Xa) 18 S“Cn
that there is at least one of numbers x,,..., x, which is a fractional number. Thet
from (4.3) and (4.4), i. e. from x;+x+ ..., +x, ;=—1 and | x.| <1 it follows 'th:
there is another number of x;, X,,..., X, which also is a fractional number. L€
denote these numbers by x; and x,. We have

0<lx| <, |x|=a; x,=¢ga,,
0<|x2|<1, IXQl =@y, Xg= E9l,y,
81a1+8902+x3+ “c e +X,,_1=——-l,

where g, =+1, g,==*1.
We shall consider two cases.
1. gigg=—1 g =—¢,
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0 We choose a positive number & such that 0<d< min(l—a; 1—ap). Then
<8+a,<1, 0<8+a,<1 and

g(a; +8)+ex(ag+08)+ X3+ .. . Xpg=—1,
(@ + 8P+ (ay+ 82+ 42+ ... +x2_ +1>a>+aj+ ... +x2_+1.

But t2his contradicts that (x;, Xg ..., X,_3, 1) is the maximizing point.
- E18g=1 g =g,
0 Let a,=a,. We choose a positive number § such that 0<8<min(a,, 1—a,). Then
+<8¢;1~8<1, 0<ay+8<1, and &(a,—8)+&y(@y+8)+ X3+ « . - +Xp1=—1, (@1—0)2+(ag
Pradt . +x2, + 1 = a3+al+20% + 28(ay —@) + - .- + X2y + 1>a] + a3+
;r +x_+ 1
hig Contradicts our assumption. ;
Therefore the function y=%7_, x? has maximum value only then when the maxi-

Mm  number  of the numbers x, have modulus 1. When z is odd we have

P’;O\vlzj/Q numbers of x, equal to 1, (z—3)/2 equal to —1, one —0. The lemma is
€d,

sty For the scalar curvature K of a minimal hypersurface M" in a space Mn+L of con-
0t curvature ¢ we have

4

( 6) K=cn(n—1)—haph®®.

M,,ﬂpl‘Oposition 4.1. Every deformation of a minimal hypersurface M" in a space
s of constant curvature c, which preserve the scalar curvature preserves and the
Uare of the length of the second fundamental tensor.
Reaily from (4.6) we obtain

(47) 8K = — 8(hagh®).
M Rroposition 42. An INPD : xi=xi+ANis, 2>0, of a minimal hypersurface

if a:l'é a space M"+\ of constant curvature c preserves the scalar curvature K of M"
only if

(4.8) kaah:htﬁ____ 0
Proof. In case when M” is a minimal hypersurface (2=0) from (1.6) we obtain
(49) 8K = — haphh™,
f ,
om where if 3K=0 we obtain (4.8).

Mn Proposition 4.3. An INPD : xi=xi+ANig, % > 0, of a minimal hypersurface
in a space M of constant curvature ¢ preserves the scalar curvature K of

e if and only i

(3 :
10y 2 NAN, BB =0,

S( Proof. Let us have an INPD of M". If we calculate 3(hoph?®) taking in view d/ep
RkjiNstB!{Bé—harh‘;)}\g from [10], /%P = /., gg™® and 3goB = hoPA [10] we obtain

4 .
i 8(uph®) = 2Ry, NN* BBy + haghthiP)he.

From (4.7), (4.8), (4.9) and (4.11) we obtain (4.10).
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Theorem 42. If a minimal hypersurface M" in a space M™+' of constant cur
vature ¢ admits INPD preserving the scalar curvature, then at every point pk
we have

(4.12) QKflpghagh““gnkﬁp, n — even,

(4.13) 202 <haphP<(n—1)A2, n — odd.

np’

As hophth™®=2"_ A, hoph®®=2T7_| A2, /z=25;='1 A, then the proof of this theorem

follows from the following two lemmas.
Lemma 4.2. Let xy, %o ..., X, be n,n=2, real numbers satisfying (4.3), (4-4) and

(4.14) X34 X34 ... +x3=0.

Then we have (4.5).
The proof of the lemma is the same as that of lemma 4.1 because the whole
numbers satisfying (4.3) and (4.4) also satisfy (4.14).

Lemma 4.3. Let Xy, Xay ..., X,—1, 1 be n, n=2, real isfyin (4-3)
and (4.14). Then we have " =2, real mumbers  satisfying
. n—1
(4.15) 2<% AM2+1,
a=1

Proof. Whenn=2,3 we determine x, a=1,..., n—1 directly from (4.3) and (4-14)
and obtain (4.15). When n>>3 we will minimize the function y:xf.;}_, . {£x2)1 +1 ovef

all real numbers 1, x,,. .., x,, satisfying conditions (4.3) and (4.14). Since the min”
mum of y is not assumed at a boundary point, we can utilize the Lagrange-mul‘tiplier
method to determine the local minimum.

For the function

(4.16) fxp s o) =23+ o X2 LHMx F . X 1)

FrOG+ L+ X2+ 1)
the variational equations

"
(4.17) 5 =32+ 2y + =0

yield the result that

(4.18) P L LY

where A= —1/3, B=y1 — 3\p/3p.

From this, (4.3) and (4.14) we see that in a minimizing point (x|, Xg ..., Xu—1 1)

there are k, 1=k<n—2, numbers of x, equal to A+B and n—1—Fk numbers equal 1
A—B. Consequently there are at most n-—2 minimizing points at which the extremé
vztx)ltugs of the function y are different one from the other. For these values of ¥ weé
obtain

1 4k

n—1 +_n~l

(419) ymin:1+

(n—1—k) B2, 19:_\;{%2] ,

where B satisfies the equation

(4.20) 8k(n—1—Fk) (n—1--2k)B3—12k(n—1—k)B*+(n—1)2—1=0.
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For l<k<(n—2)/2 (4.20) has one real root, for k=(n—2)/2 (4.20) has three real roots,
1=—1/2, By=By=1 and

(4.1 ~ n42n
) Yo=Y T) = >

The function V,,(k) from (4.19) is a monotonically increasing function. Really,
dy 4
(422) ) _ 4 Bo{(n— 15+ 815]/3(n— D) Bin—1—2k)—1]>0 when B<0.

To prove that the root B of the equation (4.20) is negative we investigate the function
(4.23) 2= 8k(n—1 —k)(n—1—2k) B —12k(n—1—R)B?+(n—17—1

;fhthe independent variable B, when 1=k< (n—2)/2. We have Zpax = (n—12—1>0
en B0, 2., — (n— 1R {[(n—1)* -2 —1}/(n—1—2k)>0when B=1/(n —1-2k)>0,

min —

;“~m_when B— — co. Then 2=0, when B<0. Hence for k=1 from (4.19) and (4.20)
¢ obtain B=—1/2, n>4, and

(424) ymln:2; xlr‘“l' Xog= =+ :xn—-IZO'

When n=4, k=1 we directly obtain from (4.20) that Ypn=2. The lemma is proved
i Theorem 4.3. If hu,,haﬁ<2}»3p at some point p cf a minimal hypersurface mr
" a space M+ of constant curvature c, then M" does not admit INPD which pre-

Serve the scalar curvature.
it ¢ Proof. If we suppose that M" admits INPD preserving K then from theorem 4.2.
ollows that at every point p of M" 242 <haph®? which contradicts our assumption

S Pf0P°§ition 4.4. If an INPD : xi=xi+MNig, A>0, carries a minimal hyper-
rface M™ into a minimal one and preserves the scalar curvature then

(4.25) N2 < R: N,NBJB)gh=m, n—even
(4.26) N2 < —R: NN'BIBigH=(n— 1A, n — odd.

Proof. A deformation carries a minimal hypersurface into a minimal one when

%h=0. We will calculate 5% in case of INPD: xi=x/+ANi, 1>0
(4.27) 8h = 8(hupp™®) = (RSN N¥BIBIE™ + hughPAe.

gesnjv;rlz\“‘)D preserves the scalar curvature K of a minimal hypersurface M" and cr)ar
nd (4 261)11‘(0 a minimal one, then from 82=0 (4.27), (4.12) and (4.13) we obtain (4.25
ni ‘Theorem 4.4. An INPD preserving t/ze__scalar curﬂ(g does not carry a
wiimal compact orientable hypersurface S (VRn) X S"H(\(n—k)[n) of a unit sphere
into the hypersurface of the same type. _

" Pro of. Let us denote by Mk,,lzS"(\/_—lgr/n)xS"—”(@ﬁn). An INPD: xf = ¥/
‘rog’a, A= const, >0, transformes M,,, into Mynr=SHN k/n + 1) X Sh—k(\(n—R)[n+N)
NP the main theorem of [3] it is known that hash®® of M,,, is equal to 7. If ar;
A of M,,, preserves the scalar curvature, this INPD preserves and the length 0
¢ second fundamental tensor two. Thus M, has heph®®=n and again from [3] it

i i il Y
Ollows that M, .. has to be Sk(\/ k/;z)xS"*”(\/(n——k)/n), which is impossible.

We would like to thank Pethio Petkov for calling our attention to Lemma 4.1.
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