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ON SPECIAL CLASSES OF A LOCALLY
DECOMPOSABLE RIEMANNIAN SPACE

GEORGI D. DJELEPOV

In the present paper we define subclasses of locally decomposable Riemannian space, i. €. the Clﬂ:;
of the almost recurrent and the class of the almost Ricci recurrent locally decomposable Riemann ]
spaces. In these cases we find that the almost recurrence covectors are decomposable. Theorem 2 (¢ .
Theorem 3) characterizes the class of the almost recurrent (resp. of the almost Ricci recurrent) SP3

1. Introduction. Let M be an n-dimensional Riemannian space with a metric gaf}g
a locally product structure f and y be the Riemannian connection on M. Let the ‘w
dices i, j, k, I, s,€{1, 2,..., n}. If the local coordinates of gand f satysfy the follo
ing conditions

(1) Fifi—8, f 5
(1.2) fiftgn=gu |
(1.3) Vif}: =0, \

then M is called locally decomposable Riemannian space [1]. It is known [l1] that M5
a locally direct product M, XM, of Riemannian spaces. We suppose that dimM,= }
0<m<n. Let the indices @, b, ¢, d,e€{l, 2,... ,m}and o, B, 7, 5, e€{m+1, m+2,. et
In a special coordinate system we have f;=8/, ff=—&f in addition g, and g8 3‘4
the metric tensors of M; and M,, respectively. If Rf,-k is the curvature tensor of "
then R¢, and Ry are the curvature tensors of M,, and M,, respectively. Similarly %

Rjx=Rj, is the Ricci tensor of M, then R,, and R, are the Ricci tensors of M, a0

. . 1ines 85
M,, respectively. If any coordinate of the above geometric objects of M has mdlcesﬂi_
a, b, ¢, d, e and @, B, v, 5, & simultaneously, then this coordinate is zero. The fun®

tions R=R;g"’ and R=R;f.g” are called scalar curvatures of M. Let R,=Ra
and Ry=Rapg®® be the scalar curvatures of M, and M,, respectively. It is clear

(1.4) R=Ri+Ry; R=R,—R,. .

Let (x, x2,...,x")and (™!, x™+2, . ., x") be the local coordinates of the POI’:i
in M, and M,, respectively. A smooth covector field A, on M in called decompOSab

}\'ﬂ:xa(xlv x2, ceey xm); ;\«u:}\-u(xm+l, xm+2, 5o ny xn),

2. Almost recurrent and almost Ricci recurrent locally decomposable Rlem‘zge
nian spaces. Let M be locally decomposable Riemannian space and R; and Ry b€
curvature tensor and the Ricci tensor of the metric gy, respectively. Wwe
Rij=R:,8 and Ryy=Rip f7. Because of (1.1)—(1.3) we see that Ry, has the
Chivita’s properties as R, We denote also IE,:INQ,“.,Sgk’, and have R,= Ry,

denott
L
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We call M almost recurrent space if the following condition is valid

1) VsRiin = sRijpr + 1R jus
O almost Ricci recurrent space, if
(2'2) Vstlc = )"stk + usﬁ/k

for some covector fields e By On M.

Evidently if M is almost recurrent, then M is almost Ricci recurrent Space.
Lemmal. Let M= M, <X M, be an almost recurrent locally decomposable Riemannian
Space. [f the scalar curvatures R, and Ry of My and M, respectively do not vanish,
n .= fik;, where L, and p, are the almost recurrence covectors.

" Proof. Since M is an almost recurrent space we have (2.1) and (2.2). From (2.2)
¢ get

23) 0R=1R+ 1R,
(24) dkﬁ = MTQ + ka,

Vhere R and R are the scalar curvatures of M. We denote Xe=fi; and p,=fip, Multi-
Plying (2.3) with f* and using the formula f,’?d,,R-—:d:R [1], we find

(25) 0, R =T, R+ 14R.
Comparing (2.4) and (2.5), we obtain

(2'6) R(L*Pk)'*‘ﬁ(ﬁ’k‘—)‘k)zo-
Similarly we can get

7) R(u—1w3) + R (y—2,) =0,

Dew to p,-0, R,=-0 and (1.4) we have |R|=| Rl Then (26)and (27) imply 1,7,
Us the lemma is proved.
According to Lemma 1, conditions (2.1)—(2.4) become as follows

28) VeRumr=ARojur+ X Rojus
29) ViR =R+ AR
10 0,R=AR+R,
11y OR=AR+XR.

Theorem 1. Let M=M, XM, be an almost recurrent locally, decomposable Rie-
"annjgn space. If the scalar curvatures of M, and M, don’t vanish, then the almost
“Carrence covectors are decomposable.

Proof. Let M be an almost recurrent locally decomposable Riemannian space. Then
E’g f_lave (2.8) —(2.11). Multiplying (2.10) with R and (2.11) with R and subtracting the

tained results, we get

Q19 =0y ln \|R2 — R .



60 : G. D. Djelepov

From (2.12) using (1.4), we find

(2.13) hp=0,1n \/T/a—]*‘dkln\/lel’
Similarly we get

(2.14) 7\/4 =0, In \/_3751—1‘01@ ny Ry
Now from (2.13) and (2.14) we find respectively

(2.15) ho=Ao= 0, In\{ Ry],
(2.16) Aa=—ha=0q InV]Ry]|.

So the theorem is proved. p
Theorem 2. Let M=M, XM, be alocally decomposable Riemannian space "
R#0, Ry==0, where Ry, R, are the scalar curvatures of M, M, respective‘;y. Thet
M is an almost recurrent space if and only if, when M, and M, are recurrent spaces:
Proof. If Mis an almost recurrent, then we have (2.8), (2.15) and (2.16). Becatst
of (2.15) and (2.16) the condition (2.8) gives us

(2.17) Valbede = 2MaRycqes
(2 1 8) VaRﬁyrSc = Q}LuRB-{Sa‘

In the same way we see that the other relations from (2.8), where there are indice’
as a, b, ¢, d, e and indices as a, B, v, 3, ¢ simultaneously are satisfied identically.
condition (2.17) (resp. 2.18) means that M, (resp. M,) is a recurrent space. Conversek
let M, and M, be recurrent spaces. Supposing that M, is subjected to condition @1
and M, is subjected to condition (2.18), putting A,=(A, Aa), we can state that fof
M= M, XM, condition (2.8) is satisfied. So the theorem is proved.

}n the same way we can prove the following theorem.

Theorem 3. Let M=M, XM, be a locally decomposable Riemannian space and
Ri7:0, Ry==0 where Ry, Ry are the scalar curvatures of M,, M,, respectively. ThenM
is an almost Rcci recurrent space if and only if when M, and M, are Rit*
recurrent spaces. ' :
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