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THE LOEWNER EQUATION
FOR CONFORMAL MAPPINGS OF STRIPS

VICTOR V. GORJAINOV

The well-known Loewner method for studying univalence is based on a special differential
equation generating univalent functions. In this paper similarly a differential equation generating
conformal mappings of a strip into itself is constructed.

1. Introduction. An approach to the Bieberbach conjecture due to Loewner
[1], is based on characterization of the class £ of functions ¢ holomorphic and
univalent in the unit disk which satisfy the conditions ¢(0)=0, ¢'(0)>0 and
lo(z)]<1 for |z]< 1. The class € is a semigroup under composition of functions.
Just as in the theory of Lie transformation groups one can define “infinitesimal
transformations” and one-parameter semigroups, or a little more generally, paths
emanating from the identity whose tangent at any point is an infinitesimal
transformation. Loewner showed that the totality of functions lying on such paths
is a dense subset in £. The paths are described in terms of differential equation.

Let T be the class of functions f holomorphic and univalent in the strip
[1={z :|Im z| <=} that satisfy the conditions f(IT)<II, f(R)=R and f'(x)>0 for
xeR. The class T is also a semigroup under composition of functions. Just as in
Loewner’s paper [1] we derive a differential equation that generates a conformal
mappings of the strip IT into itself. The existence and uniqueness theorem for this
equation is established as well.

2. Infinitesimal transformations. Let {f,}., be one-parameter family of
functions f, of T such that fy(z)=z and w=f(2) is differentiable on t locally
uniformly in I1. Then the derivative

0
= Ji@li-0=0()

is called an infinitesimal transformation of the semigroup <.

Lemma 1. Any infinitesimal transformation v(z) of T is a holomorphic function
in the strip Il and satisfies the condition (Imz)(Imv(z))<0 for zell.

Proof. Let v(z) be the infinitesimal transformation that corresponds to the
one-parameter family (f,},,, Since

f@e)—z |
t

v(z)
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locally uniformly in IT as t—0, v(z) is holomorphic in II. The equality f(R)=R
implies Imov(x)=0 for xeR.

Furthermore, it follows from Schwarz lemma that the mapping z—f,(z) does
not increase the hyperbolic metric in IT with length element

s— ldz|
" cos(Imz/2)’

The shortest (under hyperbolic metric) are from z to the real axis belongs to the
line which is orthogonal to the real axis. Hence |Im f,(z)|<|Imz| and
(Im z) (Im v(z)) £0. This completes the proof.

3. Neighborhoods of the identity. Suppose that fe¥. By Schwarz lemma

we have
Lf'(2)| > 1
cos(Im f(z)/2) = cos (Im z/2)’

where the equality is attained only for the translation along the real axis. As
a consequence, the inequalities f'(x)<1 is satisfied for xeR.

Lemma 2. For any ae(0, 1) there exist a constant M,, depending only on a,
such that the inequality

| f@)—z—fO)I=(1-SO)M,
holds for zeIl, and fe X, where
M,={z:|Imz|<an, |Rez|<1/(1—a)}.

Proof. Let fe X and f(0)=0. Then the function ¢({)=go fog~ '({) satisfies
the hypotheses of Schwarz lemma, where

21

90= gy

is conformal mapping of the strip IT onto the unit disk. Since ¢'(0)=f"(0), the

function
@)/ — f'(0)
1= 1" (0)e(0)/C

also satisfies the hypotheses of Schwarz lemma. The inequality |¥({)|=<|{|, which
may be rewritten as

Y=

goS(@) _ 710y

g(2) <
N =<lg(2I,
1—-£(0)——

9(2)
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implies :

g0 f(2)
Tg(z)

Using the inequality |g(z)| <1, we obtain

lg(@)I(1 —(f"(0))*)
1-1g(@| f'(©)

f()‘

190 f@—9@ISA—- OV ;- |am

The value |g(z’)—g(z")|/|z'—2"| is separated from zero locally uniformly in IT.
Therefore there exists a constant M,, depending only on «, such that the
inequality

/@) —zI=(1 - (O)M,

holds for zeIl,, ae(0, 1). If f(0)#0 then we apply the inequality from above to
f(z2)— f(0). This completes the proof of the lemma.

4. One-parameter semigroups. The semlgroup T endowed with topology
induced by locally uniform convergence in IT is a topological semigroup.
A one-parameter semlgroup in T is a continuous homomorphlsm ¢ :R*"-3,
where R* ={teR :t>0}. It is convenient to denote the image of ¢ under ¢ by ¢,.
Thus {¢,} is a family of functions in T. The fact that t—¢, is a homomorphism
follows from the identities

() po2)=2,

(1) @+5=¢,0 @,

The group of translations along the real axis is the maximal subgroup in T.
Denote by T, the subsemigroup in T of functions f, normalized by the condition
f(0)=0.

Theorem 1. Let t— ¢, be a one-parameter semigroup in T,. Then w= f(z) is
absolutely continuous for t=0 and satisfies the differential equation

dw
i —h(w),

where h(w) is a holomorphic function satisfying the conditions h(0)=0 and (Im w)
(Im h(w))=0 for well.
Proof. Let t—¢, be a one-parameter semigroup in ¥,. Then the function

pt)= o lP.(Z)Iz 0

is continuous and satisfies the conditions B(0)= 1, B(t +s)=B(t)B(s) for all t, se R*.
Therefore pB(t)=e~*, where a=0. If a=0, then p(t)=1 and ¢/(2)=z by
Schwarz lemma.
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Now assume that a>0. Since the functions go¢,og~!, t20, satisfy the
hypotheses of Schwarz lemma, where g is the same as in the proof of Lemma 2,
then for each a (0, 1) there exists a number y€(0, 1), depending only on a, such
that ¢,(I1,)<II, for every ¢, t=0. Therefore from Lemma 2 we get

|0(2)— @4(2)| = | Pr-s0 (2) — ()| S(1—e™ "M,

for all s, t, 0<s<t, and zeIl,. Hence w=¢,(z) is absolutely continuous for t=0.
Furthermore,

lim 2@=0.3) _ 1. ¢i-s00,()—0,(2) _ 0.2),
t—s t—s t—s t—s
where 1(z) is an infinitesimal transformation of ¥,. Now the theorem follows from
the Lemma 1.
5. Loewner equation. We replace the equation from Theorem 1 by a little
more general one which leads to the equation

dw
(1) It H(w, 1),
similar to Loewner equation. -

Our main result is the following theorem.

Theorem 2. Let H(z, t) be a function which is:

(i) holomorphic in the strip II for any fixed t in [0, T];

(ii) measurable with respect to t;

(iii) (Imz)(Im H(z, t))=0 for all zeIl, te[0, T];

(iv) H(0, t), H'(0, t) are summable.

Then if ze Il and s€[0, T) the differential equation (1) has a unique absolutely
continuous solution w=w(t, z, s, H) with initial condition w|,-,=z. Furthermore,
wh :z-wl(t, z, s, H) is a conformal mapping of 11 into itself. If the Sfunction H(z, t)
satisfies the additional condition

sup < o0.

xeR

T
[ H(x, t)dt
o

then the real axis is invariant under all mappings wi,, 0<s<t<T, that is
H —
wii(R)=R.
Note. We write H' =0H/0z.
Proof. Since (Imz)(ImH (z, t))=0 for zeIl, te[0, T], the function

(H((2 In ;—t——g— , t> —H(0, t))/H’(O. t)

is typically real [2] for each te[0, T]. By [2] there exist constants M,, N,,
depending only on a, such that
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|H(z, )| M H'(0, t)+|H(O, t)|, |H'(z, )| =N,H(0, 1)
for all zeIl,, x€(0, 1). Since the rectangle I, is a convex domain, we have also
|H(Z, )—H(z", )| SN, H'(0, t)|z'—2z"|

for all z/, z"€eIl,.

Using these mequalmes and the general theory of differential equations, we
obtain the local existence of a unique absolutely continuous solution of (1). We
need the following lemma for to prove the global existence.

Lemma 3. The mapping wh :z—w(t, z, s, H) defined as a transition along
solutions of differential equaIzty (1) does not increase the hyperbolic metric in II.

Proof. Evidently it is enough to prove the inequality

d |dw|
¥ i (timom)=°

where the dependence of w from H is determined by (1). Since

w
%|dw|=—ReH’(w. t)ldw|, dI:lnt =—ImH(W, t),

the inequality (2) can be rewritten in the form

Re H'(w, 1)+ %sin Imw o Hw, 1)

cos Imw
2

2 |dw|=0.

cos (Im w/2)?

Having in mind the integral representation of typically real functions it is enough
for proving (2) to establish that the expression

O(h, z)=Reh'(z)+ % tg ImTzIm h(z)

is nonnegative for all zeIl and all functions

h(z)=(e*—1)/(e*+B), B>0.

It is easy to see that

q(B. €)Q(h, z)20

for zeIl, where
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a(B. =(1EP +B)ReE+2BIE1+ 21 + B 1g 2B

and B is the same as in the definition of h(z). Now we need to show that g(8, £)=0
for all £ and £>0.

. It is evident that q(8, £)=q(B, &) and q(B, £)>0 when Re &> 0. Therefore it
will be enough to show that g(&, f)=0 when £{=x+iy and y>0. The restriction
for ¢ implies the following equality

argf x? x
2 vy

2
4B, O=x(eP+p)+201E7+ Lie+pr( 145 =%
2 y y

=x(1&1*+B*)+ 2811 + %(Ifl—x)(|€|2+ZBX+ﬁz)

tg
Hence

1
i(lél+x)(|é|+ﬁ)2+B(Iél’—x’)go.

This completes the proof of the lemma.

We turn now to the question of global existence of the solution. It is clear
that w=w(t, x, s, H) is real for x € R. Furthermore, it is not difficult to verify that
the following inequality

3 W, x. 5. H)IS|x|+[HQ, Dlds

is holds. We can see from (3) that there exists a solution w=w(t, x, s, H) for
s<t=<T and for every xe R. By Lemma 3 we conclude that w=w(t, z, s, H) exists
for s<t<T and for all zeIl.

Now to complete the proof we need to show that the additional condition on
H(z, t) implies the relation w/ (R)=R for every te[s, T]. We can see from the
hypothesis (iii) of the theorem that H(x, t) increases when x € R. Therefore there
exist finite or infinite limits

nt(@)= lim H(x, t).

x—++ o0

Furthermore, x(H(x, t) —H(0,t))=0 for all xeR and te[0, T]. Now we obtain
from P. Fatou’s and B. Levi’s theorems about sequences of positive measurable
functions that
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lim j'H(x, r)dt=j'r]*(1:)dt

x—++o0 S

for all s, te[0, T]. Using (3), we see also that
t t
x—w(t, x, s, H)= [H(w(z, x, s, H), ©)dt< [n* (v)dt
Similarly
t
x—w(t, x, s, H)Z [n~ (v)dz.

These inequalities show that the distortion of mapping wi is bounded on R.
Therefore the equality w?, (R)=R is true. The proof is complete.
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