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ESSENTIAL ARITY GAP OF BOOLEAN FUNCTIONS

Slavcho Shtrakov

Abstract. In this paper we investigate the Boolean functions with max-
imum essential arity gap. Additionally we propose a simpler proof of an
important theorem proved by M. Couceiro and E. Lehtonen in [3]. They use
Zhegalkin’s polynomials as normal forms for Boolean functions and describe
the functions with essential arity gap equals 2. We use to instead Full Con-
junctive Normal Forms of these polynomials which allows us to simplify the
proofs and to obtain several combinatorial results concerning the Boolean
functions with a given arity gap. The Full Conjunctive Normal Forms are
also sum of conjunctions , in which all variables occur.

1. Introduction. Essential variables of functions have been studied by
several authors [1, 2, 4]. In this paper we consider the problem of simplification
of functions by identification of variables. This problem is discussed in the work
of O. Lupanov, Yu. Breitbart, A. Salomaa, M. Couceiro, E. Lehtonen, etc., for
Boolean functions and by K. Chimev for arbitrary discrete functions. Similar
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problems for terms and universal algebra are studied by the author and K. De-
necke [7]. Essential input variables for tree automata are discussed in [6]. The
problems concerning essential arity gap of functions are discussed in [3]. Here
we study and count the Boolean functions which have maximum arity gap. Note
that if a function f has greater essential arity gap than the essential arity gap
of another function g, then f has a simpler automaton realization than g. This
fact is of a great importance in theoretical and applied computer science and
modeling.

2. Essential variables in Boolean functions. Let B = {0, 1} be
the set (ring) of the residua modulo 2. An n-ary Boolean function (operation) is
a mapping f : Bn → B for some natural number n, called arity of f . The set of
all such functions is denoted by P n

2 .

A variable xi is called essential in f , or f essentially depends on xi, if
there exist values a1, . . . , an, b ∈ B, such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b, ai+1, . . . , an).

The set of essential variables in a function f is denoted by Ess(f) and the
number of essential variables in f is denoted by ess(f) = |Ess(f)|. The variables
from X = {x1, . . . , xn} which are not essential in f ∈ P n

2 are called fictive and
the set of fictive variables in f is denoted by Fic(f).

Let xi and xj be essential variables in f . We say that the function g is
obtained from f ∈ P n

2 by identification of a variable xi with xj , if

g(x1, . . . , xn) = f(x1, . . . , xi−1, xj , xi+1, . . . , xn) = f(xi = xj).

Briefly, when g is obtained from f, by identification of the variable xi with xj ,
we will write g = fi←j and g is called the identification minor of f . The set of
all identification minors of f will be denoted by Min(f).

For completeness of our consideration we allow to be obtained identifica-
tion minors when xi or xj are not essential in f , also. Thus if xi does not occur
in f , then we define fi←j := f .

Clearly, ess(fi←j) ≤ ess(f), because xi /∈ Ess(fi←j), even though it may
be essential in f .

For a function f ∈ P n
2 the essential arity gap (shortly arity gap) of f is

defined as follows

gap(f) := ess(f) − max
g∈Min(f)

ess(g).
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It is not difficult to see that the functions with huge gap are simpler for
realization by switching circuits and functional schemas in theoretical and applied
computer science.

Let us denote by Gm
p the set of all functions in P n

2 which essentially
depend on m variables and have gap equals to p i.e. Gm

p = {f ∈ P n
2 | ess(f) =

m & gap(f) = p}, with m ≤ n.
An upper bound of gap(f) for Boolean functions is found by K. Chimev,

A. Salomaa and O. Lupanov [2, 4, 5]. It is shown that gap(f) ≤ 2, when f ∈
P n

2 , n ≥ 2.
This result is generalized for arbitrary finite valued functions in [3]. It is

proved that gap(f) ≤ k for all f ∈ P n
k , n ≥ k.

Let m ∈ N , 0 ≤ m ≤ 2n − 1 be an integer. It is well known that for every
n ∈ N, there is a unique finite sequence (α1, . . . , αn) ∈ Bn such that

(1) m = α12
n−1 + α22

n−2 + . . . + αn.

The equation (1) is known as the presentation of m in binary positional numerical
system. One briefly writes m = α1α2 . . . αn instead of (1)for short.

For a variable x and α ∈ B, we define the following important function:

xα =

{

1 if x = α
0 if x 6= α.

This function is used in many investigation, concerning the applications of dis-
crete functions in computer science [2].

There are many normal forms for representation of functions from P n
2 . In

this paper we will use the Full Conjunctive Normal Form (FCNF) for studying
the essential arity gap of functions. This normal form is based on the table
representation of Boolean functions.

The next two theorems are in the basis of the Theory of Boolean functions,
and they are well known.

Theorem 2.1. Each function f ∈ P n
2 can be uniquely represented in

FCNF as follows

(2) f(x1, . . . , xn) = a0.x
0
1 . . . x0

n ⊕ . . . am.xα1

1 . . . xαn

n ⊕ . . . a2n−1.x
1
1 . . . x1

n

where m = α1 . . . αn, am ∈ B and ” ⊕ ”, and ”.” are the operations addition and
multiplication modulo 2 in the ring B.

Theorem 2.2. A variable xi is fictive in the function f ∈ P n
2 , if and

only if
f(x1, . . . , xn) =
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= x0
i .f1(x1, . . . , xi−1, xi+1, . . . , xn) ⊕ x1

i .f2(x1, . . . , xi−1, xi+1, . . . , xn),

with f1 = f2 and xi /∈ Ess(fj), where fj ∈ P n−1
2 , for j = 1, 2.

The next lemmas characterize the relation between the identification mi-
nors of Boolean functions.

Lemma 2.1. Let f, g ∈ P n
2 be two Boolean functions represented by their

FCNF as follows

f =

2n−1−1
⊕

m=0

am.xα1

1 . . . xαn

n and g =

2n−1−1
⊕

m=0

bm.xα1

1 . . . xαn

n ,

where m = α1 . . . αn. If fi←j = gi←j and αi = αj for some i, j with 1 ≤ j < i ≤
n, then am = bm.

P r o o f. Without loss of generality we will prove the lemma for i = 2 and
j = 1. Since f2←1 = g2←1 we have

f(x1, x1, x3, . . . , xn) = g(x1, x1, x3, . . . , xn).

Hence

am = f(α1, α1, α3, . . . , αn) = g(α1, α1, α3, . . . , αn) = bm.

�

Lemma 2.2. Let f, g ∈ P n
2 , be two functions, depending essentially on

n, n ≥ 3 variables. If fi←j = gi←j for all i, j, 1 ≤ j < i ≤ n, then f = g.

P r o o f. Let f and g be functions represented by their FCNF as in
Lemma 2.1. Let m = α1.2

n−1 + α2.2
n−2 + . . . + αn be an arbitrary integer

from {0, 1, . . . , 2n − 1}. Since n ≥ 3 there exist two natural numbers i, j with
1 ≤ j < i ≤ n and αi = αj . From Lemma 2.1 we obtain

am = f(α1, α2, . . . , αn) = g(α1, α2, . . . , αn) = bm.

Consequently, we have f = g. �

Example 2.1. Let us consider the Boolean functions f = x0
1x

0
2 ⊕ x1

1x
0
2

and g = x0
1x

0
2 ⊕ x0

1x
1
2. It is easy to see that for all i, j, 1 ≤ j < i ≤ n we have

fi←j = gi←j = x0
1, but f 6= g. This example shows that n ≥ 3 is an essential

condition in Lemma 2.2.
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3. Essential Arity Gap of Boolean Functions. For Boolean
functions ¬(x) denotes the unary operation negation, i.e.

¬x = x0 =

{

1 if x = 0
0 if x 6= 0.

Proposition 3.1. For each Boolean function f the following sentences
are held:

(i) gap(f(x1, . . . , xn)) = gap(f(¬x1, . . . ,¬xn));
(ii) gap(f(x1, . . . , xn)) = gap(¬(f(x1, . . . , xn)));
(iii) gap(f(x1, . . . , xn)) = gap(f(xπ(1), . . . , xπ(n))), where π : {1, . . . , n} →

{1, . . . , n} is a permutation of the set {1, . . . , n};
(iv) ess(fi←j) = ess(fj←i) for all i, j, 1 ≤ j < i ≤ n.

Note that the last two assertions (iii) and (iv) are valid in the more
general case of k-valued functions.

For any natural number n, n ≥ 2 we define the following two sets:

Odn
2 := {α1α2 . . . αn ∈ {0, 1}n | α1 ⊕ α2 ⊕ . . . ⊕ αn = 1}

and
Evn

2 := {α1α2 . . . αn ∈ {0, 1}n | α1 ⊕ α2 ⊕ . . . ⊕ αn = 0}.

Clearly, α1α2 . . . αn ∈ Odn
2 if and only if the number of 1’s in α1α2 . . . αn is odd,

and α1α2 . . . αn ∈ Evn
2 when this number is even.

Proposition 3.2. For any n, n ≥ 4, if

f =
⊕

α1...αn∈Odn

2

xα1

1 . . . xαn

n or f =
⊕

α1...αn∈Evn

2

xα1

1 . . . xαn

n ,

then f ∈ Gn
2 .

P r o o f. Without loss of generality let us assume that
f =

⊕

α1...αn∈Odn

2

xα1

1 . . . xαn

n . We have to show that ess(fi←j) ≤ n − 2 for all

i, j, 1 ≤ j < i ≤ n. Without loss of generality, again we will assume i = 2 and
j = 1. Then we have

f2←1 =
⊕

α1,α3,...αn∈Odn−1

2

xα1

1 xα3

3 . . . xαn

n =

= x0
1.





⊕

α3,...αn∈Odn−2

2

xα3

3 . . . xαn

n



 ⊕ x1
1.





⊕

α3,...αn∈Odn−2

2

xα3

3 . . . xαn

n



 =
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=
⊕

α3,...αn∈Odn−2

2

xα3

3 . . . xαn

n .

The result is the same when α1 . . . αn ∈ Evn
2 . �

We are going to describe the set Gn
2 for n = 2, 3, 4. The results for n = 4

can be easily extended in the more general case of n ≥ 4.

Theorem 3.1. Let f ∈ P 2
2 . Then f ∈ G2

2 if and only if

f = a0.(x
0
1x

0
2 ⊕ x1

1x
1
2) ⊕ a1.x

0
1x

1
2 ⊕ a2.x

1
1x

0
2, with a1 6= a0 or a2 6= a0.

P r o o f. Let f = a0.x
0
1x

0
2 ⊕ a1.x

0
1x

1
2 ⊕ a2.x

1
1x

0
2 ⊕ a3.x

1
1x

1
2. The variables x1

and x2 are essential in f if and only if (a0, a1) 6= (a2, a3) and (a0, a2) 6= (a1, a3).
Consider the identification minor h := f2←1 = a0.x

0
1 ⊕ a3.x

1
1 of f . We need

ess(h) = 0 and from Theorem 2.2 it follows a0 = a3. If we suppose that a1 =
a2 = a0, then f(x1, x2) = a0, which contradicts ess(f) = 2. �

Corollary 3.1. There are 6 functions in G2
2, i.e. |G2

2| = 6.

P r o o f. Let a0 ∈ {0, 1}. For a1 and a2 there are 3 possible choices which
satisfy Theorem 3.1. The cases a1 = a2 = a0 = 0 and a1 = a2 = a0 = 1 are both
impossible because then ess(f) < 2, since Theorem 2.2. �

Corollary 3.2. If f = a0.x
0
1x

0
2 ⊕ a1.x

0
1x

1
2 ⊕ a2.x

1
1x

0
2 ⊕ a3.x

1
1x

1
2 ∈ P 2

2 then
ess(f2←1) = 0 if and only if a0 = a3.

The next step is to describe the functions which essentially depend on 3
variables and have an essential arity gap equal to 2.

Theorem 3.2. Let f be a Boolean function of three variables. Then
f ∈ G3

2 if and only if it can be represented in one of the following special forms:

f = xα
3 (x0

1x
1
2 ⊕ x1

1x
0
2) ⊕ xβ

1xβ
2 ,(3)

or

(4) f = xα
3 (x0

1x
0
2 ⊕ x1

1x
1
2) ⊕ x

¬(α)
3 (x0

1x
1
2 ⊕ x1

1x
0
2),

where α, β ∈ {0, 1}.

P r o o f. Note that the presentation of f in (4) is symmetric with respect
to the variables, but in (3) f is not symmetric with respect to the variables x1
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and x3. So, the theorem asserts that f ∈ G3
2 if and only if f can be represented

in one of the forms (3) or (4), after a suitable permutation of the variables.
“⇐”: Clearly, x1, x2 and x3 are essential variables in the functions of the

right sides of (3) and (4). To see that f ∈ G3
2 it is enough to do an immediate

check. Thus for the function f in (3) we have f2←1 = xβ
1 ,

f3←1 =

{

xβ
1 if β = α

xβ
2 if β 6= α

and f3←2 =

{

xβ
2 if β = α

xβ
1 if β 6= α.

The functions f as in (4) are in G3
2 because xi, xj /∈ Ess(fi←j) for all i, j, 1 ≤

j < i ≤ 3.
“⇒”: Assume that f ∈ G3

2. Let the FCNF of f is written as follows:

f = x0
3(a0.x

0
1x

0
2 ⊕ a1.x

0
1x

1
2 ⊕ a2.x

1
1x

0
2 ⊕ a3.x

1
1x

1
2) ⊕

⊕x1
3(a4.x

0
1x

0
2 ⊕ a5.x

0
1x

1
2 ⊕ a6.x

1
1x

0
2 ⊕ a7.x

1
1x

1
2) =

= x0
3.g(x1, x2) ⊕ x1

3.h(x1, x2).

A. Suppose that x1 ∈ Ess(g2←1) or x1 ∈ Ess(h2←1). Then x1 ∈
Ess(f2←1) because f2←1(x3 = 0) = g2←1 and f2←1(x3 = 1) = h2←1. Hence
f ∈ G3

2 implies x3 /∈ Ess(f2←1) i.e g2←1 = h2←1. Consequently, a0 = a4 and
a3 = a7. Then we obtain

u = f3←1 = a0.x
0
1x

0
2 ⊕ a1.x

0
1x

1
2 ⊕ a6.x

1
1x

0
2 ⊕ a7.x

1
1x

1
2,

and

v = f3←2 = a0.x
0
1x

0
2 ⊕ a2.x

1
1x

0
2 ⊕ a5.x

0
1x

1
2 ⊕ a7.x

1
1x

1
2.

There are the following cases:

A.a. x1 /∈ Ess(u). Hence a0 = a6 and a1 = a7.

A.a.1. If we suppose that x1 /∈ Ess(v), then a0 = a2 and a5 = a7 implies
(according to Theorem 2.2) that x1, x3 /∈ Ess(f) and f /∈ G3

2.

A.a.2. If x2 /∈ Ess(v), then a0 = a5 and a2 = a7. Note that if a0 = a7,
then f has to be a constant. Hence a7 = ¬(a0). Then we obtain

f = a0.
[

x0
1x

0
2x

0
3 ⊕ x0

1x
0
2x

1
3 ⊕ x0

1x
1
2x

1
3 ⊕ x1

1x
0
2x

1
3

]

⊕

⊕ ¬(a0).
[

x0
1x

1
2x

0
3 ⊕ x1

1x
0
2x

0
3 ⊕ x1

1x
1
2x

0
3 ⊕ x1

1x
1
2x

1
3

]

=

= a0

[

x1
3(x

0
1x

1
2 ⊕ x1

1x
0
2) ⊕ x0

1x
0
2

]

⊕ ¬(a0)
[

x0
3(x

0
1x

1
2 ⊕ x1

1x
0
2) ⊕ x1

1x
1
2

]

∈ G3
2.
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Clearly, f is presented as in (3).

A.b. x2 /∈ Ess(u). Hence a0 = a1 and a6 = a7.

A.b.1. If we suppose that x2 /∈ Ess(v), then a0 = a5 and a2 = a7 implies
(according to Theorem 2.2) that x2, x3 /∈ Ess(f) and f /∈ G3

2.

A.b.2. If x1 /∈ Ess(v), then a0 = a2 and a5 = a7. Again, if a0 = a7, then
f has to be a constant. Hence a7 = ¬(a0). Then we obtain

f = a0.
[

x0
1x

0
2x

0
3 ⊕ x0

1x
0
2x

1
3 ⊕ x0

1x
1
2x

0
3 ⊕ x1

1x
0
2x

0
3

]

⊕

⊕ ¬(a0).
[

x0
1x

1
2x

1
3 ⊕ x1

1x
0
2x

1
3 ⊕ x1

1x
1
2x

0
3 ⊕ x1

1x
1
2x

1
3

]

=

= a0

[

x0
3(x

0
1x

1
2 ⊕ x1

1x
0
2) ⊕ x0

1x
0
2

]

⊕ ¬(a0)
[

x1
3(x

0
1x

1
2 ⊕ x1

1x
0
2) ⊕ x1

1x
1
2

]

∈ G3
2.

Clearly, f is presented as in (3).

B. Let us suppose that x1 /∈ Ess(g2←1) and x1 /∈ Ess(h2←1). Then we
have g ∈ G2

2 and h ∈ G2
2. From Theorem 3.1 it follows that

g(x1, x2) = a0.(x
0
1x

0
2 ⊕ x1

1x
1
2) ⊕ a1.x

0
1x

1
2 ⊕ a2.x

1
1x

0
2,

and

h(x1, x2) = a4.(x
0
1x

0
2 ⊕ x1

1x
1
2) ⊕ a5.x

0
1x

1
2 ⊕ a6.x

1
1x

0
2.

Then we obtain

u = f3←1 = a0.x
0
1x

0
2 ⊕ a1.x

0
1x

1
2 ⊕ a6.x

1
1x

0
2 ⊕ a4.x

1
1x

1
2,

and

v = f3←2 = a0.x
0
1x

0
2 ⊕ a2.x

1
1x

0
2 ⊕ a5.x

0
1x

1
2 ⊕ a4.x

1
1x

1
2.

B.a. x1 /∈ Ess(u). Hence a0 = a6 and a1 = a4.

B.a.1. If x1 /∈ Ess(v), then a0 = a2 and a4 = a5. Note that if a0 = a4,
then f has to be a constant. Hence a4 = ¬(a0). Then we obtain

f = a0.
[

x0
1x

0
2x

0
3 ⊕ x1

1x
0
2x

0
3 ⊕ x1

1x
0
2x

1
3 ⊕ x1

1x
1
2x

0
3

]

⊕

⊕ ¬(a0).
[

x0
1x

0
2x

1
3 ⊕ x0

1x
1
2x

0
3 ⊕ x0

1x
1
2x

1
3 ⊕ x1

1x
1
2x

1
3

]

=

= a0

[

x1
1(x

0
2x

1
3 ⊕ x1

2x
0
3) ⊕ x0

2x
0
3

]

⊕ ¬(a0)
[

x0
1(x

0
2x

1
3 ⊕ x1

2x
0
3) ⊕ x1

2x
1
3

]

∈ G3
2.

Clearly, f is presented as in (3).
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B.a.2. If x2 /∈ Ess(v), then a0 = a5 and a2 = a4. Again, if a0 = a4, then
f has to be a constant. Hence a4 = ¬(a0). Then we obtain

f = a0.
[

x0
1x

0
2x

0
3 ⊕ x0

1x
1
2x

1
3 ⊕ x1

1x
0
2x

1
3 ⊕ x1

1x
1
2x

0
3

]

⊕

⊕ ¬(a0).
[

x0
1x

0
2x

1
3 ⊕ x0

1x
1
2x

0
3 ⊕ x1

1x
0
2x

0
3 ⊕ x1

1x
1
2x

1
3

]

=

= a0

[

x0
3(x

0
1x

0
2 ⊕ x1

1x
1
2) ⊕ x1

3(x
1
1x

0
2 ⊕ x0

1x
1
2)

]

⊕

⊕ ¬(a0)
[

x1
3(x

0
1x

0
2 ⊕ x1

1x
1
2) ⊕ x0

3(x
1
1x

0
2 ⊕ x0

1x
1
2)

]

∈ G3
2.

Clearly, f is presented as in (4).

B.b. x2 /∈ Ess(u). Hence a0 = a1 and a6 = a4.

B.b.1. If we suppose that x1 /∈ Ess(v), then a0 = a2 and a4 = a5 implies
(according Theorem 2.2) that x1, x2 /∈ Ess(f) and f /∈ G3

2.

B.b.2. If x2 /∈ Ess(v), then a0 = a5 and a2 = a4. Again, if a0 = a4, then
f has to be a constant. Hence a4 = ¬(a0). Then we obtain

f = a0.
[

x0
1x

0
2x

0
3 ⊕ x0

1x
1
2x

0
3 ⊕ x0

1x
1
2x

1
3 ⊕ x1

1x
1
2x

0
3

]

⊕

⊕ ¬(a0).
[

x0
1x

0
2x

1
3 ⊕ x1

1x
0
2x

0
3 ⊕ x1

1x
0
2x

1
3 ⊕ x1

1x
1
2x

1
3

]

=

= a0

[

x1
2(x

0
1x

1
3 ⊕ x1

1x
0
3) ⊕ x0

1x
0
3

]

⊕ ¬(a0)
[

x0
2(x

0
1x

1
3 ⊕ x1

1x
0
3) ⊕ x1

1x
1
3

]

∈ G3
2.

Clearly, f is presented as in (3). �

Corollary 3.3. Let f ∈ P 3
2 . Then ess(fi←j) ≤ 1 for all i, j, 1 ≤ j < i ≤

3 if and only if

f = xα
3 (x0

1x
0
2 ⊕ x1

1x
1
2) ⊕ a1.x

0
1x

1
2x

0
3 ⊕ a2.x

1
1x

0
2x

0
3 ⊕

⊕ ¬(a2).x
0
1x

1
2x

1
3 ⊕ ¬(a1).x

1
1x

0
2x

1
3,

where α, a1, a2 ∈ {0, 1}.

P r o o f. This Corollary summarizes all cases considered in Theorem 3.2.
For instance if α = 1, a1 = 0 and a2 = 0 we obtain

f = x1
3(x

0
1x

0
2 ⊕ x1

1x
1
2) ⊕ x0

1x
1
2x

1
3 ⊕ x1

1x
0
2x

1
3 = x1

3.

This is the case B.b.1. �

Corollary 3.4. |G3
2| = 10.
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P r o o f. As we have noted the functions f in the form (4) are symmet-
ric with respect to their variables. Hence there are exactly two such functions,
obtained for α = 1 and α = 0. These functions are realized in the case B.a.2.

Let us consider the functions f in the form (3) with α = β. Then we have

f = x0
1x

1
2x

α
3 ⊕ x1

1x
0
2x

α
3 ⊕ xα

1 xα
2 x0

3 ⊕ xα
1 xα

2 x1
3.

It is easy to check that in both cases α = 1 and α = 0 the function f is symmetric.
Hence there exist exactly two functions from P 2

2 in the form (3) with α = β. These
two functions are realized in the case A.b.2.

Finally, let us consider the functions in the form

(5) f = xα
3 (x0

1x
1
2 ⊕ x1

1x
0
2) ⊕ x¬α

1 x¬α
2 .

Since f(α, β,¬(α)) = 0 and f(¬(α), β, α) = 1 for all β ∈ {0, 1} it follows that
f is not symmetric with respect to x1 and x3. Furthermore, it is clear that f is
symmetric with respect to x1 and x2. Hence there are exactly six functions from
P 3

2 in the form (5). When α = 1 we obtain three function by three permutations
of the variables and the same number of functions for α = 0. These functions are
realized in the cases: A.a.2., B.a.1. and B.b.2. �

Lemma 3.1. Let f = x0
4.g(x1, x2, x3) ⊕ x1

4.h(x1, x2, x3) ∈ P 4
2 . If f ∈ G4

2,
then ess(gi←j) < 2 and ess(hi←j) < 2 for all i, j, 1 ≤ i < j ≤ 3.

P r o o f. Let us suppose that the lemma is false. Without loss of generality
let us assume ess(g2←1) ≥ 2. If f ∈ G4

2, then x4 /∈ Ess(f2←1) because

f2←1 = x0
4.g2←1 ⊕ x1

4.h2←1 and f2←1(x4 = 0) = g2←1.

From Theorem 2.2 it follows that g2←1 = h2←1. Let us set

g :=

7
⊕

m=0

a(0)
m .xα1

1 xα2

2 xα3

3 and h :=

7
⊕

m=0

a(1)
m .xα1

1 xα2

2 xα3

3 ,

where m = α1α2α3, and

t := a
(0)
0 .x0

1x
0
2x

0
3 ⊕ a

(0)
1 .x0

1x
0
2x

1
3 ⊕ a

(0)
6 .x1

1x
1
2x

0
3 ⊕ a

(0)
7 .x1

1x
1
2x

1
3.

Then from g2←1 = h2←1, we obtain

g := t(x1, x2, x3) ⊕





⊕

α1 6=α2

a(0)
m .xα1

1 xα2

2 xα3

3



 and
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h := t(x1, x2, x3) ⊕





⊕

α1 6=α2

a(1)
m .xα1

1 xα2

2 xα3

3



 .

Note that
f2←1 = t2←1 = g2←1 = h2←1.

If ess(g2←1) > 2, then from f2←1(x4 = 0) = g2←1 it follows that f /∈ G4
2.

Hence ess(g2←1) = 2. Thus we have {x1, x3} = Ess(g2←1). This implies

(6) (a
(0)
0 , a

(0)
6 ) 6= (a

(0)
1 , a

(0)
7 ) and (a

(0)
0 , a

(0)
1 ) 6= (a

(0)
6 , a

(0)
7 ).

From x4 ∈ Ess(f) it follows that there are three numbers α1, α2, α3 ∈ {0, 1} such

that a
(0)
m 6= a

(1)
m where m = α1α2α3. Then α1 6= α2. Hence we have α1 = α3 or

α2 = α3.
Let us assume α1 = α3. Then the identification minor u = f3←1 can be

written as follows

u = a
(0)
0 .x0

1x
0
2 ⊕ a

(0)
7 .x1

1x
1
2 ⊕ x0

4(a
(0)
2 .x0

1x
1
2 ⊕ a

(0)
5 .x1

1x
0
2) ⊕ x1

4(a
(1)
2 .x0

1x
1
2 ⊕ a

(1)
5 .x1

1x
0
2).

Without loss of generality let us assume that a
(0)
2 6= a

(1)
2 , i.e. m = 010 = 2.

(An alternative opportunity is m = 5.) Then we have a
(0)
2 6= 0 or a

(1)
2 6= 0.

Again, without loss of generality let us assume a
(0)
2 = 1 and a

(1)
2 = 0. Then

u(x1 = α1, x2 = α2) = a
(0)
2 .x0

4 ⊕ a
(1)
2 .x1

4. Hence x4 ∈ Ess(u).
On the other hand we have

u1 = u(x4 = 0) = a
(0)
0 .x0

1x
0
2 ⊕ a

(0)
7 .x1

1x
1
2 ⊕ x0

1x
1
2 ⊕ a

(0)
5 .x1

1x
0
2 and

u2 = u(x4 = 1) = a
(0)
0 .x0

1x
0
2 ⊕ a

(0)
7 .x1

1x
1
2 ⊕ a

(1)
5 .x1

1x
0
2.

Thus we have:
If a

(0)
0 = a

(0)
7 = 0 or a

(0)
0 = a

(0)
7 = 1, then Ess(u1) = {x1, x2}.

Let a
(0)
0 6= a

(0)
7 . Then according to (6) we can assume without loss of

generality that a
(0)
0 = 1 and a

(0)
7 = 0. Now, we have:

If a
(0)
5 = 1 or a

(1)
5 = 0, then Ess(u1) = {x1, x2} or Ess(u2) = {x1, x2}.

Finally, if a
(0)
0 = 1, a

(0)
7 = 0, a

(0)
5 = 0 and a

(1)
5 = 1 we have u1(x1, x2) = x0

1

and u2(x1, x2) = x0
2.

So, we have shown that Ess(u) = {x1, x2, x4}. Hence f /∈ G4
2, which is a

contradiction.
By symmetry, we obtain the same contradiction when α2 = α3 and we

have to use the identification minor v = f3←2 instead of u = f3←1. �
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Lemma 3.2. Let f = x0
4.g(x1, x2, x3) ⊕ x1

4.h(x1, x2, x3) ∈ P 4
2 . If f ∈ G4

2,
then ess(g) = ess(h) = 3.

P r o o f. Let us suppose that x3 /∈ Ess(g) and f ∈ G4
2.

Let g and h are represented as follows

g :=

7
⊕

m=0

am.xα1

1 xα2

2 xα3

3 and h :=

7
⊕

m=0

bm.xα1

1 xα2

2 xα3

3 ,

where m = α1α2α3 = α1.2
2 + α2.2 + α3. Since x3 /∈ Ess(g), we obtain

(7) (a0, a2, a4, a6) = (a1, a3, a5, a7).

On the other hand x3 /∈ Ess(g) implies x3 ∈ Ess(h). Hence, we have

(8) (b0, b2, b4, b6) 6= (b1, b3, b5, b7).

Without loss of generality let us assume that b0 = 1 and b1 = 0. Conse-
quently,

u = f2←1 = x0
4(a0x

0
1 ⊕ a6x

1
1) ⊕ x1

4(x
0
1x

0
3 ⊕ b6.x

1
1x

0
3 ⊕ b7x

1
1x

1
3).

From u(x1 = 0, x4 = 1) = x0
3 it follows that x3 ∈ Ess(u). If a0 = 1, then

u(x1 = 0, x3 = 1) = x0
4 and if a0 = 0, then u(x1 = 0, x3 = 0) = x1

4. Hence
x4 ∈ Ess(u). The proof will be complete if we show that x1 ∈ Ess(u). Suppose
the opposite, i.e., x1 /∈ Ess(u). From Theorem 2.2 it follows that a0 = a6, b6 = 1
and b7 = 0. Then we have

v = f3←1 = x0
4[a0.(x

0
1x

0
2 ⊕ x1

1x
1
2) ⊕ a2.x

0
1x

1
2 ⊕ a4.x

1
1x

0
2] ⊕

⊕ x1
4[x

0
1x

0
2 ⊕ b2.x

0
1x

1
2 ⊕ b5.x

1
1x

0
2].

If a0 = 1, then v(x1 = 1, x2 = 1) = x0
4 and if a0 = 0, then v(x1 = 0, x2 = 0) = x1

4.
Hence x4 ∈ Ess(v). On the other side it is clear that v(x4 = 1) := x0

1x
0
2 ⊕

b2.x
0
1x

1
2 ⊕ b5.x

1
1x

0
2 is not a constant. Assume that x2 ∈ Ess(v). Suppose that

x1 /∈ Ess(v). Hence a0 = a2 = a4, b5 = 1 and b2 = 0. Thus we obtain

w = f3←2 = a0.x
0
4 ⊕ x1

4(x
0
1x

0
2 ⊕ b3.x

0
1x

1
2 ⊕ b4x

1
1x

0
2).

Clearly x4 ∈ Ess(w). On the other hand it is clear that w(x4 = 1) :=
x0

1x
0
2 ⊕ b3.x

0
1x

1
2 ⊕ b4.x

1
1x

0
2 is not a constant. Assume that x2 ∈ Ess(w). Suppose

that x1 /∈ Ess(w). Hence b3 = 0 and b4 = 1. Thus finally, we obtain

f = a0.x
0
4 ⊕ x1

4(x
0
1x

0
2x

0
3 ⊕ x1

1x
0
2x

0
3 ⊕ x1

1x
0
2x

1
3 ⊕ x1

1x
1
2x

0
3).
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The contradiction is f /∈ G4
2 because f4←2 = a0.x

0
2 ⊕ x1

1x
1
2x

0
3.

By analogy we conclude that f /∈ G4
2 for all other cases generated by (7)

and (8), which is a contradiction. �

Theorem 3.3. Let f ∈ P 4
2 . Then f ∈ G4

2 if and only if f = x0
4.g(x1, x2, x3) ⊕

x1
4.h(x1, x2, x3), with

(9) g = xα
3 (x0

1x
0
2 ⊕ x1

1x
1
2) ⊕ x

¬(α)
3 (x0

1x
1
2 ⊕ x1

1x
0
2),

and

(10) h = x
¬(α)
3 (x0

1x
0
2 ⊕ x1

1x
1
2) ⊕ xα

3 (x0
1x

1
2 ⊕ x1

1x
0
2),

for some α, α ∈ {0, 1}.

P r o o f. “⇐′′: The proof in this direction is given in Proposition 3.2.

“⇒”: Suppose that some of the equations (9) or (10) are not satisfied.
From Lemma 3.1 and Lemma 3.2 there are two possible cases:

A.

g = xα
3 (x0

1x
1
2 ⊕ x1

1x
0
2) ⊕ xβ

1xβ
2 ,

and

h = xγ
3(x0

1x
0
2 ⊕ x1

1x
1
2) ⊕ x

¬(γ)
3 (x0

1x
1
2 ⊕ x1

1x
0
2).

Then we have the following identification minor of f :

u = f4←1 = x0
1x

1
2x

α
3 ⊕ ¬(β).x0

1x
0
2 ⊕ x1

1x
1
2x

γ
3 ⊕ x1

1x
0
2x
¬(α)
3 .

Since u(x1 = 0) = x1
2x

α
3 ⊕ ¬(β).x0

2 it follows that {x2, x3} ⊆ Ess(u). We will
show that x1 ∈ Ess(u), also.

Let β = 0. If γ = α, then we have u(x2 = 0, x3 = γ) = x0
1, and if γ 6= α,

then we have u(x2 = 1, x3 = γ) = x1
1.

Let β = 1. If γ = α, then u(x2 = 0, x3 = ¬(γ)) = x1
1, and if γ 6= α, then

we have u(x2 = 1, x3 = γ) = x1
1.

Hence x1 ∈ Ess(u) and f /∈ G4
2 in the case A.

B.

g = xα
3 (x0

1x
1
2 ⊕ x1

1x
0
2) ⊕ xβ

1xβ
2 ,

and

h = xγ
3(x0

1x
1
2 ⊕ x1

1x
0
2) ⊕ xδ

1x
δ
2.

Since x4 ∈ Ess(f) it follows that g 6= h.
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Let us also consider the identification minor u of f :

u = f4←1 = x0
1x

1
2x

α
3 ⊕ ¬(β).x0

1x
0
2 ⊕ x1

1x
0
2x

γ
3 ⊕ δ.x1

1x
1
2.

Since u(x1 = 0) = x1
2x

α
3 ⊕ ¬(β).x0

2 it follows that {x2, x3} ⊆ Ess(u). We
will prove that x1 ∈ Ess(u), also.

Let β = δ = 0. Then u(x2 = 1, x3 = α) = x0
1;

Let β = δ = 1. Then u(x2 = 0, x3 = γ) = x1
1;

Let β = 1 and δ = 0. Then u(x2 = 0, x3 = γ) = x1
1;

Let β = 0 and δ = 1. Then u(x2 = 1, x3 = ¬(α)) = x1
1.

Hence x1 ∈ Ess(u) and f /∈ G4
2 in the case B., also. This is a contradic-

tion. �

Remark 1. Note that g and h have to be two special functions from G3
2,

represented by the equation (4) of Theorem 3.2. Such functions can be obtained
in the cases of the same theorem B.a.2 and B.b.2, only.

Corollary 3.5. Let f ∈ P 4
2 . Then f ∈ G4

2 if and only if f = x0
4.g(x1, x2, x3) ⊕

x1
4.h(x1, x2, x3), with

g = xα
3 (x0

1x
0
2 ⊕ x1

1x
1
2) ⊕ x

¬(α)
3 (x0

1x
1
2 ⊕ x1

1x
0
2),

and h = ¬(g(x1, x2, x3)).

Corollary 3.6. Let f ∈ P 4
2 . Then f ∈ G4

2 if and only if

f = a0.





⊕

α1α2α3α4∈Od4
2

xα1

1 xα2

2 xα3

3 xα4

4



 ⊕ ¬(a0).





⊕

α1α2α3α4∈Ev4
2

xα1

1 xα2

2 xα3

3 xα4

4



 .

Corollary 3.7. If f ∈ G4
2 then xj /∈ Ess(fi←j) for all i, j ∈ {1, 2, 3, 4}

i 6= j.

P r o o f. The three corollaries above can be proved by immediate checking
of both functions from G4

2, obtained in Theorem 3.3. �

Theorem 3.4. A Boolean function f ∈ P n
2 , depending on n essential

variables with n ≥ 4, has essential arity gap 2 if and only if

f =
⊕

α1...αn∈Odn

2

xα1

1 . . . xαn

n or f =
⊕

α1...αn∈Evn

2

xα1

1 . . . xαn

n .
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P r o o f. “⇐”: In this direction the proof is done by Proposition 3.2.

“⇒”: We will proceed by induction on n. If n = 4 the theorem is true
because of Theorem 3.3. Suppose that if 4 ≤ n ≤ l and f ∈ Gn

2 , then

f =
⊕

α1...αn∈Odn

2

xα1

1 . . . xαn

n or f =
⊕

α1...αn∈Evn

2

xα1

1 . . . xαn

n .

Let f ∈ Gl+1
2 . Hence f can be presented as follows

f = x0
l+1.g(x1, . . . , xl) ⊕ x1

l+1.h(x1, . . . , xl).

In the same way as in Lemma 3.1 and Lemma 3.2 it can be proved that g, h ∈ Gl
2.

By the inductive supposition g and h are functions of the forms

⊕

γ1...γl∈Odl

2

xγ1

1 . . . xγl

l or
⊕

γ1...γl∈Evl

2

xγ1

1 . . . xγl

l ,

with g 6= h. Note that g and h are not constants because ess(f) = n ≥ 4. Hence
Ess(gi←j) = Ess(hi←j) for i, j ∈ {1, . . . , l} and i 6= j. Assume that

g =
⊕

γ1...γl∈Odl

2

xγ1

1 . . . xγl

l and h =
⊕

δ1...δl∈Evl

2

xδ1
1 . . . xδl

l .

Consequently

f = x0
l+1.(

⊕

γ1 ...γl∈Odl

2

xγ1

1 . . . xγl

l ) ⊕ x1
l+1.(

⊕

δ1 ...δl∈Evl

2

xδ1
1 . . . xδl

l ) =

=
⊕

α1...αl+1∈Odl+1

2

xα1

1 . . . x
αl+1

l+1 .

The case g = h is impossible because ess(f) = l + 1, but the replacement of g
and h will produce the function

f =
⊕

α1...αl∈Evl

2

xα1

1 . . . xαl

l ,

which does not depend on xl+1. �
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Corollary 3.8. A Boolean function f ∈ P n
2 , which essentially depends

on n variables with n > 4, has essential arity gap 2 if and only if

f = x0
n.g(x1, . . . , xi, . . . , xn−1) ⊕ x1

n.g(x1, . . . , xi−1,¬(xi), xi+1, . . . , xn−1),

where g ∈ Gn−1
2 and i ∈ {1, . . . , n − 1}.

P r o o f. If

g =
⊕

γ1...γn−1∈Odn−1

2

xγ1

1 . . . x
γn−1

n−1 and h =
⊕

γ1...γn−1∈Odn−1

2

xγ1

1 . . . x
γn−1

n−1 ,

then ¬(g) = h and ¬(h) = g for all l ≥ 4. On the other hand, for each i ∈
{1, . . . , n − 1}, we have

¬(g) =
⊕

γ1...γn−1∈Odn−1

2

xγ1

1 . . . x
γi−1

i−1 ¬(xγi

i )x
γi+1

i+1 . . . x
γn−1

n−1 .

�

Corollary 3.9. |Gn
2 | = 2 for each n, n ≥ 4.

One of the most important problems concerning the essential arity gap
is to calculate the number of all functions from P n

2 , which depend essentially on
at most n variables and which have the maximum gap, i.e., with gap equal to 2.
The next theorem gives the answer of this problem. It summarizes the results
obtained above in the paper.

Let us denote by Hn the set of all functions in P n
2 , which have gap equal

to 2, i.e.,

Hn :=

n
⋃

m=2

Gm
2 and hn := |Hn|.

Theorem 3.5. The following combinatorial equations are held:
(i) h2 = 6;
(ii) h3 = 28;

(iii) hn = 3.

(

n

2

)

+ 5.

(

n

3

)

+ 2n+1 − 2n − 2, when n ≥ 4;

P r o o f. (i) follows from Corollary 3.1 of Theorem 3.1;

(ii) Let X3 = {x1, x2, x3}. There are 6.

(

3

2

)

Boolean functions with

essential arity gap equal to 2, which depend essentially on 2 variables from X3,
according to Corollary 3.1 of Theorem 3.1.
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From Corollary 3.4 of Theorem 3.2 it follows that there are 10 Boolean
functions with essential arity gap equal to 2, which depend essentially on all 3
variables from X3. Hence h3 = 6.3 + 10 = 28.

(iii) Let Xn = {x1, . . . , xn}, n ≥ 4. There are 6.

(

n

2

)

Boolean functions

with essential arity gap equal to 2, which depend essentially on 2 variables from
Xn, according to Corollary 3.1 of Theorem 3.1.

There are 10.

(

n

3

)

Boolean functions with essential arity gap equal to 2,

which depend essentially on 3 variables from Xn, according to Corollary 3.4 of
Theorem 3.2.

Finally, for each m, 3 < m ≤ n there are 2.

(

n

m

)

Boolean functions with

essential arity gap equal to 2, which depend essentially on m variables from Xn,
according to Corollary 3.9 of Theorem 3.4.

Hence we have

hn = 6.

(

n

2

)

+ 10.

(

n

3

)

+ 2.
[

(

n

4

)

+

(

n

5

)

+ . . . +

(

n

n

)

]

=

= 3.

(

n

2

)

+ 5.

(

n

3

)

+ 2n+1 − 2n − 2.

�
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