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Abstract

In every strictly convexifiable Banach space X with dimX > 2
there exists a dense (7 set of compacta A in the Hausdor(T set topology
such that with respect to an arbitrary equivalent strictly convex norm
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1 Introduction

Consider a Banach space X with norm ||-||. Designate by 2% the family of
all non-void sets in X. Let M € 2¥. The multi-valued maping P : X — M
defined by
P(z,M)={ye M : |z - y|| = d(z, M)}

with distance function d(z, M) = inf{|lz — z|| : 2 € M} is called metric
projection (the nearest point mapping) generated by M with respect to the
norm || - ||, and the multi-valued mapping Q : X — M defined by

Qz,M)={ye M:|lx-y| = f(l‘,]\‘f)},

with farthest distance function f(x, M) = sup{|lz — z|| : z € M} is a metric
antiprojection (the farthest point mapping) generated by M and || - ||.

Let K(X) and F(X) denote the families of non-empty compacta and
non-empty finite subsets of X respectively.

A lot of papers have been devoted to the investigation of generic proper-
ties of metric projections and antiprojections. Far from being complete we
mention works of [St], [Ko], [L2], [BI'] concerning projections and [As], [L1]
dealing with antiprojections. In all these works a certain “good” property
of the multi-valued projection (resp. antiprojection) such as existence of a
best approximation (resp. existence of a farthest element), uniqueness of
the solution, or well-posedness is shown to be fulfilled for the points from a
residual set, i.e. a dense and G'g subset of the space. It is of a natural interest
then to ask what happens with the sets of “bad” points, i.e. the sets whose
elements fail to have unique solution for the metric projection (respectively
the metric antiprojection). Following [Lu] we define ambiguous locus of a
projection (resp. antiprojection) as the set of points of multi-valuedness of
this projection (resp. antiprojecton). In [Za] Zamfirescu showed that in a
finite dimensional Euclidean space most compacta, in the Hausdorff metric
space of compacta, generate metric projections which are densely multi-
valued. Recently in a series of papers [BM1], [BM2] and [BM3] De Blasi
and Myjak extended this result of Zamlirescu and showed variuos analogous
theorems for different Hausdor(l spaces of sets in separable strictly convex
Banach spaces. The aim of this work is to give a proof of the following

Theorem. In a strictly convexifiable Banach space X with dim X > 2
there exists a dense Gg set of compacta A in the Hausdorfl set topology
such that with respect to an arbitrary equivalent strictly convex norm in
X both the metric projection and the metric antiprojection generated by



any member of A are densely multi-valued. Moreover, the ambiguous loci
of these projections and antiprojections are everywhere continual, i.e. loci’s
intersections with open sets in X" contain continuum elements.

This result is an extention of a theorem of De Blasi and Myjak from
[BM1] (see also [BM3]). It shows that the separability assumption can be
dropped and that the set of compacta A is in some sense universal, i.e. it
plays the same role with respect to any equivalent strictly convex norm in
the space. The main construction is motivated by the construction of an
example from [Zh].

2 Preliminaries

Suppose (X, || - []) is a strictly convex Banach space with dimension
dimX > 2,and Y C X is a closed subspace with codimY = 2. Suppose
||-|| 7 is an equivalent norm in Y, different and not necessarily strictly convex,
to the induced norm |||l in X. Consider the Banach space X’ := R?x Y =
{x = (r,s,y):r,s € R,y € Y} with norm |- |y defined by

lz|% = r? + s2 + ||y||%, for z € X".

Since X and X' are isomorphic, it might be viewed that an equivalent
norm || - || is defined in X’ and from now on all the considerations will be
made in X’ which will be denoted as X for the sake of simplicity.

The equivalence of the two norms implies existence of positive constants
71 and 7, such that

Tlz|n < ||z|| € 72]z|y whenever z € X (1)

The usual Euclidean norm in R? is denoted by |-|. We make a stipulation
to identify R? with R? x {8} with @ the origin of Y. The following simple
observation proves the usefullness of the norm |- |x: The distances between
clements in any two-dimensional plane which is parallel to R? x {#} are
measured by |- |.

In order to avoid the ambiguity in notation of functions and multi-valued
mappings we use the symbol of the corresponding norm. For instance,
d(z,M;| - |n) is the distance from the element 2 to the set M € 2% with
respect to the norm |- |n, while f(-, M;|[-]]) is the farthest distance function
generated by M with respect to the norm [|-|[. Similarly, B(z,&;|-|n) is the
open ball with center # and radius ¢ with respect to | - |y, and Blz,&;]| - ||]



stands for the closed ball with the same center and radius with respect to
||-|]|- The symbol of the norm will be dropped whenever the norm is explicitly
indicated.
The Hausdorff distance for elements of 2% with respect to || -|| is defined
by
H(My, My; || - ||) := max{sup{d(z, My;||-||) : € M},
sup{d(z, M |- |]) : = € My }}.

Observe that K(X) equipped with a Hausdorfl distance is a complete
metric space and F(X) is dense in it. Besides, the different Hausdorff dis-
tances generated by equivalent norms in X do generate one and the same
set topology which is designated by H. For balls in a Hausdorff metric space
the symbol O is used. Let A € K(X). It follows immediately from (1):

O(K,ms; |- |l) € O(K, ;] [n) C OCK, 7263 || - |])-

A subset M € 2% is called completely disconnected whenever M contains
at least two different elements and for every x and y from X, z # y, there s
no continuous curve in M with end-points 2 and y, i.e. there is no continuous
map ¢ : [0,1] — M such that ¢(0) = z and ¢(1) = y.

A subset M € 2¥ is called ¢ — disconnected (with respect to | - |n)
whenever M contains at least two distant elements at greater than ¢ distance
and for every z and y in M with |z — y|x > ¢ there is no continuous curve
in M with end points x and y.

Obviously, M € 2% is completely disconnected, if and only if M is
e-disconnected for every positive £. Also, the notion of complete disconnect-
edness is purely topological.

For the elements of F(X') deline a separator function (with respect to

|- |n):
sep(F) = min{l,{|lz —y|n : 2,y € Fiz # y}, F € F(X).

The value of sep(F') is 1 whenever ' is a singleton.

Lemma 1. Let Ay and /', be two disjoint and non-void compacta in the
Banach space (X, ||-]|) and 2 € X is an element such that d(z, Ky) = d(z, K)
(respectively f(2,Ny) = [(x,K;)). Then arbitrary neighbourhood of z
contains continnaly many elements with the same property.

Proof: Projection part: Suppose y; € P(z, K;), 1 = 1,2. Denote y;(t) =
(1=t)z+ty;, i =12fort € (0, 1]. Obviously, y; € P(yi(t), K;),i = 1,2. Make
use of the continuity principle applied to the function ¢,(u) = d(u, Ky) -



d(u, K3) with u € [y1(2),y2(t)] and o(yi(t)) < 0,¢(y2(t)) 2 0. There is
y(t) € [y1(t), y2(t)] such that d(y(t), \'y) = d(y(t),K3). For different t the
values of y(t) are different and form a set with the power of continuum.
Antiprojection part: Suppose y; € Q(a, ), ¢ = 1,2. and define y;(t) =
(1 =tz + tyiyi = 1,2 for t < 0. Then y; € Q(wi(t), K;),i = 1,2 and the
continuity principle applied to the function ¥(u) = f(u,Ky) = f(u, K3)
with u € [y1(2), y2(1)] and ¥(y:(t)) > 0,9(y2(t)) < 0, completes the proof.

Lemma 2. Let (X,||-||) be a strictly convex Banach space, and z,,y, €
X be such that ||z, — || = d > 0. Suppose L = {y = y, + te : t € R} with
|le]| = 1is a line such that {y,} = LN B[z,,d], and there is a sequence (y,)
satisfying

(i) lim y = o,

(i) lim d(ym, L)/ lym = .'/o“ = 0.

Then there exists a sequence (w,,), limw,, = z, such that ||y, — wy,|| =
”ym - wm”'

Proof. Denote e,, = (Ym—=Yo)/||¥m —¥ol|- According to (ii) the sequence
(em) has at most two cluster points e and —e. With no change of indexation,
assume lim(y, + €n) = Yo + €. The case lim(y, + (,'m) = Y, — e is treated
analogously.

Define the lines /,,,(!/n) = {.’/ = Yo + /\('m A€ R} and Lm(wo) -
{z = 2, + Xem : A € R} and the sequences (u,,) and (vy) such that
{um} = P(yo, Lm(-'ro);”'”)’ {Um} = P(yvam(xo);”'”)' Moreover, {yO} -
P(tmy Lin(%)i || - 1)s {ym} = P(vm, Lun(o); |l - |I) and

||yo o ym” = ”um 7 vm”- (2)

It follows that ”!jo e um” < ”ym £ "m” and “ym e vm" < "yo o vm”- Apply
the continuity principle to the function ¢y, (u) = ||yo — w|| = ||ym — w||,w €
[Um, vm] in order to show the existence of w,, € (um,vy) such that

%o = wmll = [lym — wmll- (3)

It is to be proved that lim u,, = a,. Indeed, u,, = z,+ A\, A € R.
Since ||tm = Yoll < |20 = Yoll, then |Ju,, — z,]| = [Am| £ 2d, i.e. the sequence
of reals (\,.) is bounded. Let A, be a cluster point. Then u, = z, + Ase
is a cluster point of (uy,). If we assume that u, # ,, then from the strict
convexity of ||-|| and P(z,, L;||*]|) = {v.} it follows that ||z, —yo|| < ||%o—yol|-
There exists then § > 0, 6 < ||lu, — z,]|, such that ||z, — y,|| < ||u = woll
whenever u € B(u,,d;||-]|): The last inequality contradicts to the choice of



(um), since for infinitely many values of m ||z, = yo|| < d(Yo, Lm(zo); ||+ |])
and u,, # z,. Hence A, = 0 and z, is the only cluster point of (u,,).
According to (2) and (i) it follows that lim v, = limw,, = z,.

3 Proof of Main Result

It suffices to prove the statement of the theorem with the norm || - ||.
The proof is partitioned on six steps.

The first step is a definition of a set A: Designate by V,, the set of
vertices of a regular 2"-gon inscribed in the unit circumference in R?, i.e.

V. = {(cos(in/2""!),sin(ix /2""1),0) :i = 0,1,...,2" - 1;0 € Y}n23.
It is a routine matter to verify that
sep(Vy,) = 2sin(m/2"). (4)

Assign Uy, 1= J{O(F + n~'sep(F)V,,n~sep(F)oy; | - |n) : F € F(X)},
with o, = sin?(7/2"), n >3, and define

A= ﬁun

n=3

Obviously U, are open sets as unions of open balls. On the other hand
all elements from the type F' + n~'sep(F) for FF € F(X) and n > 3 form a
dense subset of F(X) in the H-topology, and since F(X) is dense in K(X)
then ¢, are open and dense. Hence A is a dense G5 subset of (K(X), H).

The second step of the proof is to show that any element A of A is a
completely disconnected set. For that reason let A € A and fix n > 3. There
is a finite set I with k different elements, & > 1, such that

H(AF +n'sep(F)Vy: |- |n) < n”tsep(F)ay, (5)

Having in mind (4) we get
sep(F + n”'sep(F)Vy,) = 211"sep(F)\/&—,[ (6)
It is seen from (5) and (6) that A might be viewed as union of k2"

disjoint compacta A;,

k‘zn

A= U A; (7)
1=1



such that for y, € A; and y; € A,
lys = yaln > 20 tsep(F) (o, — a,), il i#j (8)

which implies that A is an ¢,-disconnected set, for ¢, = 2n~1(\ /o, — o,).
Now let n go to infinity.
For the third step a “tangent” property of the elements of A is needed.

Lemma 3. Suppose A € A and y, € A. There exist a line L = {y =
Yo+ Ae: A € R}, |le]| =1 and a sequence (y,,) in A such that

(i) im ¥ = Yo,

(ii) lim d(ym, L; || - ID/Wlym = woll = 0,

(iii) the sequence (Yo + (Ym = ¥o)/||ym — ¥o||) has two cluster points y, + e
and y, — e.

Proof. lor every n > 3 there is I' € F(X) satisfying (5). Set for
convenience 7, = n~'sep(F). There exist 2 and v, 2 € F and v € z 4+ 7,V,,,
such that |y, — v|§ < Tm0n. Denote by vy(n) and vy(n) the two neighbouring
(and nearest with respect to |+ |x) to v elements from z + 7, V,,. It follows
from (6) that

v = vi(n)|N = 2T /O,, =12 (9)

Designate by [ the line in the plane 2+ R?, passing through v and parallel
to the segment [vy(n), va(n)]. After elementary calculations we get

d(v,[vi(n),va(n));] - IN) = (1 = cos(1r/2"'1)) =

d(vi(n), ;] |n), 1=12 (10)

Choose in accordance to (5) y2n—1 € AN B(vy(n),mon;| - |n) and
Yoan € AN B(vy(n), Thon; |“|n). Assign e, := (vao(n)— vl(n))/”v?(n) o vl(n)ll
and L, 1= {y = yo + Aen : A € R}. Since all the members of the sequence
(e,) belong to R? then it has a cluster point e, |le]| = 1, which is a limit of
a subsequence (e,,). Denote L = {y = y, + Ae : A € R} and 5, = |le, — e]|.

The triangle inequality and (9) imply

27'71(\/(771 o 011‘) < Iy‘ln—j e 2 .’/olN < 27'11(\/(771 + (7"), ] = 0,1. (ll)

Moreover
ly'hu = Yn-1 IN 2> l")(") b vl("‘)IN T 2Traan =

2T,,\_/(7—”(2('us(7r/2")-— Von). (12)



It follows from (1), (5), (10) and (11) that

d(y2n—j» Ly; ” ¥ ") < 72 5 d(y2n—jv Ln;l ¥ IN) <

”y2n—j ) yo" TN Iy2n—j - yolN

v2 1-cos(x/2"" ")+ 20, 72 2\/0n
N 2(\/"11"071) a M 1—\/011’
Let now y € X, y # y,. In order to evaluate the distance from y to the
line L by making use of the distances from y to Ly, pick w, € P(y, L; | -||)
and consider the inequalities:

j=0,1 (13)

d(y, Li || -1I) € ly = wall + d(wn, L |[ -|]) < |y = wall + llwn = gol|-llen — €]l <

< (L4 n)d(y, L || - 1D + wally = woll (14)

Redefine a sequence (y,,) with abuse of notation:

Yo, -1 for m =2k -1
Ym = _ ¢
Yan, for imi=2k

herein k is the integer part of (m + 1)/2.
The statement (i) follows from (1) and (11):

lym = Yoll € ¥2l¥m — YoIN < 279270, (/Ory + On,) < 27203

In order to get (ii) compare (13) with (14)
d(Yoms Ly 1+ 1D/ Ny = Yoll € (U4 1 )l (Yms L |- 1D/ g = Yoll + 1y <

29277 (14 )V /(1 = /Fa) + 1y

The expression from the right side of the last inequality tends to 0 when m
increases unboundedly.

It remains to be proved (iii). Set u, = Yo + (¥m = ¥o)/||Ym — ¥o||. The
statement (i) is equivalent with lim d(u,,, L; ||-]|) = 0. The local compactness
of L entails existence of a cluster point u = y, + Ae for (u,,). It follows from
the continuity of || - || that |A| = 1, i.e. either u = y, + € or u = y, — e. Now,
it is to be shown that (u,,) is not convergent whence both y, + € and y, — e
are cluster points. To reach this goal it suffices to prove that (u],), with
ul = Yo+ (Ym = Yo)/Vm, and vy = |y — Yo|N, is not a convergent seguence:

-1 -1 -1
Iulgk & "fzk-llN e |I/’2k (y2k = Yor-1) + ("2k P Vzk_l)(yl‘k-l o yo)lN 2

o}



after applying (11) and (12)

Vo (1y2k = yak—1In = [vak = var=a1]) 2 vy ([yak = vak-1|N = 4Ty00,) >

2 (2cos(m /2™ ) = 3\/T0, )/ (1 + \/On,)

The last expression tends to 2 with & going to infinity. The proof of
Lemma 3 is completed.

Continue the proof of the theorem. The fourth step is to show that for
given A € A there is a dense subset of X' whose elements have at least two
best approximations for the projection mapping P(-, A;|| - ||). Assume the
contrary. There exist z, € X and ¢ > 0 such that P(-, A;||-]|) is single-valued
in the ball B(z,,e;]|| - ||). Therefore all elements of this ball are projected
onto a single point y, € A. Indeed, if 2,29 € B(z,,&;|| - ||), 21 # 22, and
{vi} = P(zi, A;||-]]), i = 1,2, then the upper semi-contunuity of P(-, A;||-||)
[Si] and its single-valuedness imply the existence of a continuous curve k :=
{y € A:{y} = Pty + (1 = Dry, A5 [),0 < t € 1) K(0) = y1,5(1) = 1
connecting y; and y, whence y, = y as A is completely disconnected.

Assume now, with no loss of generality, that ||z, — yo|| = d > 0 since
intA = @ and let L be the line through y, satisfying (i), (ii) and (iii)
from Lemma 3 for a sequence (y,,). In order to apply Lemma 2 we need
only prove that L is a supporting line for Blz,,d;|| - ||]. Suppose this is
not true, i.e. there exists 2 € L N B(a,,d;|| - |[). Then for some § > 0
co( B(z,6;]|-1NU{y.}) C B(zo,d;||-||)U{yo} (here co stands for the convex
hull of a set). It follows from (iii) that B(z,,d;|| - ||) contains elements
from A and y, is not a best approximation which is a contradiction. Hence
{vo} = LN Blz,,d; | - ||]-

To conclude the fourth step of the proof apply Lemma 2. There is a
sequence (w,,) such that lim w,, = z, and (3) holds: ||yo—wm|| = ||ym —wm]|-
Therefore, for large m w,, is in the e-neighbourhood of z, and P(-, A;|| - ||)
is multi-valued at w,, since y,,y,, € A and y, # y,. Thus, the assumption
for single-valuedness of P in B(z,,¢;] - ||) leads to a contradiction.

The next fifth step is to show that the ambiguous locus of a projection
generated by arbitrary A € A is everywhere uncountable (in fact everywhere
continual). Let z, € X and yy,y2 € P(ao, A;|||])y |l1a—32]| = r > 0. Choose
n sufficiently large so that n='(\/a,, — 0,,) < r/27;. There is F € F(X) such
that (5), (7) and (8) hold. Since 2n~Tsep(F)(\/0, —0y) < r-y{‘ < |y —y2|N
then by (8) there are i and j, i # j, such that y; € A; and y2 € A;. The set




A might be represented as union of two disjoint compacta Ky and Ky, It
remains to apply Lemma 1.

The final part of the proof concerns metric antiprojections. We proceed
in analogous way. The assumption that there is A € A such that Q(-, A;||-||)
is single-valued in some open set leads to the conclusion that @ maps all
the elements from this open set onto a singleton, because an antiprojection
generated by a compact is upper semi-continuous [Bl], and A is comletely
disconnected. Further, apply consequitively Lemmata 3, 2 and 1 (the an-
tiprojection part). The proof of the theorem is completed.
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