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1 Introduction

Suppose (X, || -||) is a strictly convex Banach space. A non-empty set
M C X generates a distance function d(z, M) = inf{||lz—2||: 2 € M} and a
set-valued mapping P(z,M) = {y € M : ||z — y|| = d(z, M)} called metric
projection or nearest point mapping. It is known that P(-, M) is single-
valued at most points, i.e. on a dense subset of G5 type, provided that M is
a compact [St]. Zamfirescu [Za2] showed that P(-, M) might be multi-valued
on a dense set, as well, and that this is the typical case in the Euclidean space
R"™ when n > 2: In the Hausdor{l metric space of compacta L(R") most
compacta (in sense of Baire category) generate metric projections which are
multi-valued on everywhere continual sets, and according to the proof of
Stechkin’s result they are single-valued on everywhere continual sets too.
Recall that a set is everywhere continual in X if its intersection with any
non-empty open subset of X' contains continuum many elements.

Recently, De Blasi and Myjak extended Zamfirescu’s result to the case of
separable strictly convex Banach space X, dim X > 2, and showed various
analogous theorems for different Hausdorff complete metric spaces of non-
empty sets, [BM1], [BM2] and [BKM] (jointly with Kenderov), namely

- B(X) the space of bounded and closed subsets of X,

- K(X) the space of compacta,

- C(X) the space of continua, i.e. connected compacta,

- §(X) the space of starshaped continua.

A subsequent extension of a result of that type concerning K(X) for arbitrary
strictly convex Banach space X is obtained in [Zh2].

We shall prove here that in every strictly convexifiable Banach space
X with dim X > 2 a locally connected continuum K exists such that with
respect to any strictly convex norm defined on X the metric projection gen-
erated by I is multivalued on an everywhere continual subset of X. It is
shown that the constructed Peano continuum is a non-rectifiable curve of
Hausdorff dimension 1. Moreover, if dim X > 3 then there exists a star-
shaped locally connected continuum S of Hausdorfl dimension 2 with the
same property while in a two-dimensional strictly convex space there is no
starshaped Peano continuum with a densely multi-valued metric projection.

A paper of Gruber and Zamfirescu [GZ] is our motivation to consider
(ractal dimensions of continua. A theorem in [GZ] states that most elements
of S(R") have Hausdor(l dimension 1.

It should be noted that according to [Ma] and [Bi] the Peano continua
form a first Baire category set in C(.X'), and according to [Zal] the same is



true in S(X), thus sets like A and 5 are not typical.

The paper consists of four sections including the present one. At the end
of section 2 a general result about densely multi-valued metric projections
is established. In section 3 the basic planar construction which modifies an
example from [Zh1] is given. Section 4 contains the main result.

2 Preliminaries

Let (X,]|-]|) be a strictly convex Banach space with dimension dim X >
2. lor 2 € X and € > 0, the open (respectively closed) ball with center
z and radius ¢ is denoted by B(z,¢) (resp. B[z,e]). A line segment with
end-points z,y € X is denoted by [z,y] and (z,y) means [z,y]\{z,y}. The
symbols I(z,e) and L(z,ey,e;) will stand for a line {z = z + te : t € R},
lle]l > 0, and a plane {z = z+4te, +sey : t, s € R}, |leq]], |lez]] > 0 respectively.
I'or a subset M of X we denote by int M, bdM, coM and diamM its interior,
boundary, convex hull and diameter respectively. If M is starshaped then
ker M is its kernel. The Hausdorff distance between bounded and non-empty
sets is designated by II.

Connected compacta are called continua and metrizable locally con-
nected continua are referred to as Peano continua [Ku]. As a consequence of
the classical theorem of Hahn-Mazurkiewicz-Sierpinski [Ku] a continuum is
a Peano continuum if and only if for every € > 0 it is partitioned as a finite
union of subcontinuua with smaller than ¢ diameters, and if and only if it
is a continuous image of the interval I = [0, 1]. Hence the Peano continua
from C(X) might be viewed as continuous curves taking values in X.

Fors>0, 6>0and M C X, let

Hi; (M) = inf diamU;)* : | JU; D M,diamU; < é
1)

1=2)

To get the Hausdor{f s-dimensional outer measure of M let § — 0:

(M) = lim Hi(M) = sup HI(M)

There is a unique value, dim M, called Hausdor{l dimension of M (c.f. [Fa)),
such that

W (M)=o00 if 0<s<dimM, H(M)=0if dimM<s<oo



provided M is a subset ol a linite dimensional space. We denote the usual
dimension of a linear space and the Hausdorfl dimension of a set by one and
the same symbol.

Definition 2.1 Let yo € M C X. A line I = I(yo,e), ||€]| = 1, is called a
(two-sided) pseudo-tangent to M at yo if there exists a sequence (y,) C M,
Yn # Yo for all n, such that

(i) im y = yo,

(ii) lim d(yn, 1)/|[4n = oll = 0,

(iii) the sequence (Y — ¥o/||yn — wol|) has two cluster points e and —e.

It has to be noted that the notion of a psendo-tangent is invariant under
equivalent renormings of X.

For aset M C X, denote by N}, (resp. A},) the family of all continuous
images of I in M which are not points (resp. which are not line segments).

Definition 2.2 Let N be a proper subset of a compact M. N is said to
be a NV-separator (resp. N'-separator) of M provided that N meets each
element of N}y (resp. Nji).

In order to prove a general result about the sets of multi-valuedness of
metric projections we need two technical lemmas:

Lemma 2.3([Z12]) Let 29,90 € X, [lzo — yol| = d > 0 and | = I(yo, €)
with [le]| = 1 be a line such that {y} = I N B[z, d], and (y,) be a sequence
satisfying

(i) im yn = yo,

(ii) lim d(yn,)/llyn = wol| = 0.

Then there exists a sequence (x,,) such that lim z,, = z¢ and ||yo— z,|| =
lom — 2l

Lemma 2.4 Let xo,y0 € X, |[zo — wol| = d > 0 and ly = I(yo, €9) with
|leo|| = 1 and I = I(yo,€) with |le|| = 1 be two lines such that ey # e and
both ly and [ are supporting the ball Bz, d]. Let also (y,) be a sequence
satisfying conditions (i) and (ii) from the above lemma. Then there exists
a sequence (x,) such that limz,, = x¢ and d(z,,ly) = ||xn = yul|-

Proof: Denote ¢, = (yn = v0)/|lyn — vol|l. According to (ii) the sequence
(e,) has at most two cluster points ¢ and —e. Without any change of
indexes we consider the case lim(y, + ¢, ) = yo +e. The other case is treated
analogously.

Denote L,(y0) = L(¥o,€0,¢.), Lu(xo) = L(zg,€0,€,) and let (u,) and
(v, ) be sequences such that {u,,} = P(yo, La(20)) and {v,} = P(yn, Ln(20)).



Then {yo} = P(tn, Ln(%))y {¥n} = P(vn, Lu(wo)) and ||yo=yull = ||un—vull.
Obviously, ||yo—un]| < ||yn—un|l and ||y —v.]| < ||vo—vn]|. Hence d(un,lo) <
l|un = yn|l and ||, — yn|| < d(va,lo). Now applying the intermediate value
theorem to the function ¢, (z) = d(z,ly) = ||z — yu|| defined on [uy,v,] we
obtain a point z,, € (un,vy) such that d(z,,lp) = ||zn = yal|-

It has to be proved that lim z,, = z¢. Since (u,) is a bounded sequence
then (¢, ) and (s, ) are bounded too. Let ug = zq+tpeg+sge be a cluster point
of (un). If ug # o then ||yo—=ol|| < ||yo—uol| since {zo} = P(yo, L(z0, €0, €)).
There is § > 0, 6§ < ||lzg — ugl|, so that |lyg — zo|]| < |lyo — u|| whenever
u € B(ug,8). lHowever, the last inequality contradicts to the choice of
u, since for large n ||yo — zo|| < ||yo — un]| = d(yo, Ln(z0)). Therefore
zg = limu, = limz, = limv,.

Proposition 2.5 Suppose M is a nowhere dense in X compact such
that

(a) every point y € M lies on a pseudo-tangent to M at y,

(b) il y € (u,v) C M then there is a pseudo-tangent to M at y which
does not contain u and v,

(c) there is a N''-separator N of M,

(d) the set Q = {z € X : P(z,M)N N # @} is nowhere dense in X.
Then the metric projection P(-, M) is multi-valued on a dense subset of X.

Proof: Let zg € X and ¢ > 0 be given. Since MUQ is nowhere dense, we
may assume with no loss of generality that B(zg,e)N(MUQ) = @. Assume
now, that P(-, M) is single-valued on B(z¢,¢). According to a result in [Si]
the metric projection restricted on I}{zg,€) is a continuous mapping.

We shall prove that all points of B(z¢,¢) are mapped on a line [, passing
through yo. If not so, there are x; € B(xg,¢) with {y;} = P(2;, M) for
1=1,2,3 such that co{y;,¥y2,¥3} is a non-degenerated triangle. Hence the
relative interior of co{z,z2, 23} is non-empty and for a point z from it the
image of [zy,z]U [z, z2] via P(-, M) is contained in the line [(y;,y2 — y1). By
similar reasonings we see that x belongs also to [(y2, y3—v2) and I(y3, y1 —ya),
thus proving that yy,y, and yy are colinear.

Consider now the alternative:

(I) Either P(xz, M) = {yo} for all € B(xo,¢),

(11) or there is = € B(zg,¢) with {y} = P(z, M) such that for some
u,v€ M y€ (u,v).

In case (I) let ! be a pscudo-tangent to M at yo. Obviously, [ is a
supporting line for the ball B(:;u,d), d = d(zog,M) > 0,ie. IN B(xg,d) =
{vwo}. Applying Lemma 2.3 we obtain a sequence (z,), limz, = z¢ such



that ||yo = zal| = ||yn — ul|. But now, for large n z,, belongs to I(zo,¢€)
and this violates the single-valuedness assumption.

The case (II) is treated analogously after applying Lemma 2.4. The
proof is completed.

Corollary 2.6 Suppose M is a nowhere dense compact with pseudo-
tangents at all points and there is a N%separator N of M such that the
set {z € X : P(z,M)N N # @} is nowhere dense too. Then the metric
projection P(-, M) is multi-valued on a dense subset of X.

The case of totally disconnected compact M is considered in [Zh2].

3 Planar Construction

In the Euclidean plane (R%,|-|) a Cartesian coordinate system Ozy is
used. The closed unit disk(ball) is denoted by B.

Let A, = [Pary Pa2y ooy Pu2n] be a regular 2"-gon inscribed in B with
vertices Pp; = (cos(m(i = 1)/2" "), sin(x(i — 1)/2" 1)) for i = 1,2,...,2",
n > 1. For g, = sin(x/2") /(1 + sin(x/2")) let Dy = (1 = qu) Pui + qu B3, i.c.
D,,; are the images of B via homothets with centers P, and scaling factor
equal to gn. Define My = U™, Dyiy My = {Dyi i = 1,2,..,2"},n =
1,2,.... The scalars ¢, are chosen such that any two adjoining disks from
M, have only one boundary point in common and thus M, are continua.

Now, a Peano continuum A C R? will be constructed as a countable
intersection of a nested family of continua K,, such that for each n the set
K, is a finite union of closed disks with equal radii r,.

Assign Ko = B, Ky = {B}. We are going to define K,, and K,, under
the inductive assumption that K’ and X; have already been defined, so
that the disks of K; have radii r; = qy¢3...q; for j =1,2,...n—1. (See Figure
visualizing the sets Ko, 'y, K5 and K3.)

For D € K,,—1 let Tp be the translation carrying O to the center of D.
Set

Kn = | J{To(ra-1Mn) : D € Ky}

and

Kn = {TD(tn-1 E): D € Kn-1, E € My).

The elements of X, are closed disks with radii equal to r, = ¢1¢2...¢n. Put
finally K = neo Kn. .



Figure. The union of filled disks is 3.

The set I is a compact as an intersection of a nested sequence of com-
pacta. It is easily seen that int A" = © and

lim H(K,,)=0. (3.1)

n=—+0o0

With K we associate sets V,,, N, forn > 1 and V and N.

(o o)
Vo= {(To(ra-1Fni) i DEK T e 8508 2%), Ve U Va
n=1

00
Nai= {.’D €Ny, 31)1,])2 € Kot Dy # 1)2,{1‘} =11 F) Dg}, N = U Ny
n=1
The properties of I are collected in the subsequent lemmas.

Lemma 3.1 I\ is a Peano continuum.

Proof: It should be established at first that K is a connected set. Hav-
ing in mind (3.1) it suffices to prove that I, are continua. It is seen that K,
is connected if and only if N,_; C I, since M,, is connected. Let z € N,
and m < n be the least integer for which there are disks Dy, Dy € K,, with
centers ¢; and ¢p such that Dy # Dy, {z} = D, N Dy and both D; and
D, are contained in a disk from A, _y. Then [ey,e;] is parallel to a side of
Ay There is a vertice v of A, 4 which is perpendicular to that side, hence



there are two vertices vy and vy, vy = —v, both parallel to [ey,ez]. Then the
images of {vy, vz} via rp,Tp,, 1 =12, meet the middle point z = (¢) +¢3)/2.

In order to verify the local connectedness of ' we observe that for every
n and every disk D of K,, the set DN K is a continuum, thus K is partitioned
as a finite union of continua with diameters 2r,, but r,, tends to 0 when n
increases. The proof is completed.

It is seen from the proof of the above lemma that N C V C K.

Lemma 3.2 N is a N'separator of K.

Proof: It is suflicient to observe that for each n > 1 N, separates K,
i.e. the set ')\ NV, is not connected.

Lemma 3.3 I is a non-rectifiable curve.

Proof: Let K be parametrized by a continuous mapping ¢ : I — R?,
i.e. o(I) = K. For a fixed integer n, n > 1, let T = {t) < t3 < ... <
tm} be a partition of I such that ¢(7") = V,4, and for each i =1,...,m~-1
@(ti) # @(tis1). Up to a subpartition of T we may assume also that any
two adjoining points t; and t;4; are mapped by ¢ in one disk from K,;,. This
is so, because N, separates I,, and K,, is a finite set. If ¢(2;) and ¢(ti41)
belong to different disks for some 1, then there is a finite set of reals between

t; and tj4y such that the images of any two neighboring numbers are in one
disk. Therefore,

m-—1

2 lelti) = eltip)] 2 om
i=1

where o, is a sum of the perimeters of all 2"+ -gons inscribed in disks of
K,.. However,

: 2" sin(w /2")
tim o = 2 [t L
LA ,I:Il 1 + sin(7/2")

and the infinite product is not convergent since the n-th multiplier does not
approach 1.

Lemma 3.4 The Hausdorfl dimension of I is 1.

making use of monotonicity of H( L) with respect to §, we write:

Proof: Since I is not a point then dim A > 1. On the other hand,

H(K) = lim 75, (K)< lim Z{(diaml))’ cDeky) =

=)



=2° lim_ ]2 =2 "lix‘goHa.-(s)l).'(s)

g=1 izl
where a;(8) = sin(7/2")/(1 + sin(r/2')) and bi(s) = sin*~}(x/2'). Since
lima;(s) = =, and for s > 1 limb;(s) = 0, then H*(K) = 0 for s > 1.
Therefore dim i = 1.

2"1"2"12(27-“)’

lim
N—+00

Lemma 3.5 Every point yg € /" lies on a pseudo-tangent.

Proof: Let D € Ky, D' € K,,, D" € Kyy1 and yo € D" C D' C D.
Let also v,vy,v2 € V, N D, v € D" and v; and v, be v’s two neighboring
vertices. It will be used later that v; and v, depend on n, i.e. vy = vy(n)
and vz = vz(n). Denote by ¢ the center of D" and by I, = l(yo,€n), lea] = 1,
the straight line through yy which is parallel to [vj,v2). An elementary
calculation shows that

|vi = yo| 2 rn-15in(x/2"" ) = 141, i=1,2

On the other hand for large n [vy, v2] does not intersect D", i.e.
Fa—1(1=cos(7 /2" 1) > 2ru 41, and d(v;,ly) € ra-1(1 = cos(x/2"~1). llence

d(vi,ly) by ks ke sin(m/2")
lvi = yol = sin(x/2"1) = gugnsr  coS(7/2") = Gngn41

(3.2)

with a, = 271(1 + sin(x/2"))~'. The expressions in (3.2) tend to 0.
Let e be a cluster element of the sequence (e,). Without any change of
indexation we assume that lime, = e. Denote 1, = |le, — €| and | = {y =

Yo+te:t € R}. Let y # yo and u,, € P(y,l,). The following estimation for
distances holds:

d(y)l) < Iy vy unl + ‘l(uml) < l!/ - “nl 4 3 Iun pars !/ol-lcn o Cl <

(1 + 1)d(y, 1) + nly = vol (3.3)

Deline a sequence (v, ):

vy(m) for  n=2m-1
Un = g8 Sy
vy(m)  lor n=2m

Then by (3.3)

Iy, 1 : (Yo, 1
i"(-y‘—“_)" S ( l l 7’1” ) "( i 'l—)’ + ”"H
|yn = ol [yn = vol




here m is the integer part of (n+ 1)/2.

Having in mind (3.2) we see that the expressions tend to 0 when n
increases. It is a routine matter to verify that (yn — ¥0)/|yn — Yol has two
cluster points. Therefore [ is a pseudo-tangent.

Lemma 3.6 Lvery line through every element yo of N is a pseudo-
tangent to M.

Proof: Let n > 1 be an integer and {yo} = Dy N Dy for Dy, D; € K,,.
Denote by [ the line which separates Dy and D,. Let [;; be the lines through
yo which make elementary angles equal to n¢/2", i = 1,2,...,2" — 1, with
lg. These lines contain points from V;, for every m > n. Obviously, [,,; are
pseudo-tangents. Thus there is a dense set of pseudo-tangents. In order to
prove that any line through yo is a pseudo-tangent we make use of (3.3).

4 General Case

Theorem 4.1 Suppose X is a strictly convexifiable Banach space.

(I) If dim X > 2 then there exists a Peano continuum K of Hausdorfl
dimension 1 in X such that for any strictly convex norm in X the metric
projection generated by A" is multi-valued on a dense set which is everywhere
continual in X,

(I1) If dim X > 3 then there exists a starshaped Peano continuum S of
Hausdorff dimension 2 in X such that for any strictly convex norm in X the

metric projection generated by S is multi-valued on an everywhere continual
subset of X.

Proof: Let Y be a two-dimensional subspace of X and f : R? — Y
be a linear isomorphism. Denote by A the image of the constructed in
the preceding section Peano continuum K, ie. K = f(K). Denote also
N = f(N), V = f(V) etc. Suppose || -] is a strictly convex norm in
X. There are positive constants ¢; and ¢, such that for any z,y € R?,
ale =yl SIf(=@) =Wl L ealz =yl 3

All the properties of A are shared by ', In order to verily that dim K =
I we make use of the next

Lemma 4.2([l'a] Lemmma 1.8) Let [ : My — M, be a surjective map-
ping such that || f(z) = f(y)|| € e|lx — y| x,y € M,y for a constant ¢. Then
H(M,) < "H(My). ‘

9



‘I'rivial checks establish the other properties of i analogous to those of I
listed in lemmas 3.1-3.6. I'rom now on the parts (I) and (II) are considered
separately.

Part (I): In order to apply Corollary 2.6, we have to show only that
intQ = @, where Q = {z € X : P(z, k)N N # @)}. For this purpose let
z €Q,y € Pz, KN N and C(z) = Y N Blz,d(z,K)]. Since any line
through y is a pseudo-tangent, then C'(z) has an empty relative interior in
Y. Thus

d(z, ) = d(z,Y) whenever z € Q.

If Q is dense in some open and non-empty set U then the above equality
holds for all points in U, but this is impossible since A" is a nowhere dense
compact and || - || is strictly convex.

Denote by W the set of points of multi-valuedness of P(-, f\) According
to Corollary 2.6 W is dense in X. In order to show that W is everywhere
continual in X we employ the following

Lemma 4.3([Zh2]) Let M, and M; be two disjoint and non-void com-
pacta and z € X be a point such that d(z, M) = d(z, M) Then arbitrary
neighbourhood of z contains continually many elements with the same prop-
erty.

Suppose = € W\Q aund yy,y2 € P(x, 1), |lys = 32|l =d > 0. There is a
sulliciently large integer n so that y; and y; belong to two different sets D,
and Dy from K. Since G = bdD; N N,, is a finite set (in fact it contains
no more than three points) and G'N P(x, k') = @ then there is § > 0 and
an open neighbourhood U of z such that M =:K\ U,eg B(v,6) does not
contain y;, 1 =1,2, and both P(-, k') and P(-, M) coincide on U. It remains
to apply Lemma 4.2 in order to complete the proof of (1).

Part (I1): Since dim X > 2 there is ¢ € X\Y. Denote by Z the linear
span of {e} UY and consider the set

S={te+y):y€ k,te[-1,1]}

It is obviously a starshaped Peano continnum of Hausdorfl dimension 2 with
ker § = 0, where @ is the origin of X. The set N = {le+y):y€ N,te
[-1,1]} is a N'-scparutoﬁr of 5. In applying Proposition 2.5 we need verify
condition (d) only, i.e. Q = {z € X : P(z,5)NN # @} is nowhere dense
in X. If not so, then there is an open set U ¢ X such that U NS = @ and
Q is dense in U. Denote F = (10} U (e + K)U (=€ + K')) and consider the
alternative:

10



(i) Either P(x,5) C & whenever x € U,

(ii) or there is an open and non-empty set Uy C U such that P(z,8) C
S\E whenever z € Uy.

The case (i) has been treated already. In the latter case observe that
for every y € S\ E any line through y which is contained in Z is a pseudo-
tangent to S at y, hence

d(z,S) = d(z,Z) whenever z € U,. (4.1)

However, S is nowhere dense in Z and (4.1) cannot be true.

For the remaining part of the proof our reasonings are very similar to
those concerning part (1) when proving that the set of points of multi-
valuedness of the metric projection is everywhere continual. We need only
consider two separate cases again: I’(-, ) maps an open set U on E, and
P(-,§) maps an open set U on S\ E. The proof is completed.

The next result shows that the minimal dimension at which (11) holds
is 3.

Proposition 4.4 Suppose S is a starshaped Peano continuum in a two-
dimensional strictly convex space X. If the metric projection P(-,S5) is

multi-valued on a dense subset of some open set U C X, then § has non-
empty interior.

Proof: Let P(-,S5) be multi-valued at some z¢g € U. Since the norm
is strictly convex, then kerS N P(zy,5) = @. For yo € P(z0,S) denote
¢ = (1 = t)zo + tyo and choose t > 0 sufliciently small so that 2, € U.
It follows from a well-known lemma (c.f. [St]) that {yo} = P(z¢,S5). Let
(zy) be a converging to zy sequence such that the metric projection is multi-
valued at each point z,. For every integer n there is y, € P(z,,5) such
that y, # yo. The continuity of P at z, implies lim y, = yo.

Let now zy € ker S and € = ||yy — 2]|/2 > 0. Since § is locally connected
at yo, then for a sufliciently large number n a continuous path in §NB(yo,¢€)
connect yo with y,. Therefore, co{zo, yo, yn } N (X \B(y0,€) is a subset of §,
and obviously it has non-empty interior.

Remarks. It has to be mentioned that theorem 4.1 provides new in-
formation not only for non-separable Banach spaces since most continua in
C(X)and §(X)are not Peano continua. According to a result of Mazurkiewicz
[Ma], later extended by Bing [Bi], the (hereditarily) indecomposable con-
tinua form a dense G subset of C(X'). A continuum is indecomposable if it
cannot be represented as union of two proper subcontinua. It is seen that

11



an indecomposable continuum is not locally connected at any of its points.
This is no longer true for continua in S(X ) since the starshaped sets are lo-
cally connected at the points of their kernels. However, an analogous result
of Zamfirescu [Zal] still holds and it shows that the set of Peano continua in
S(X) is of first Baire category (although formulated for S(R") the proof of
Zamfirescu combined with [BKM] works in arbitrary Banach space). Hence
the existence of sets like & and S even in R? and R® respectively is not
guaranteed by any of before quoted theorems.
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