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Abstract

A short mathematical background of fractal dimensions, and some methods for
computing spectrum of dimensions (capacity, information and correlation dimensions,
etc.) are presented. Several aspects of attractors reconstructed from experimental data
are also investigated.

A corresponding software system for IBM-PC is created and some of its possibilities
are described. The system is used for calculating the spectrum of dimensions of fractal
sets, discrete dynamical systems and attractors of differential equations. Also, the
results of processing real astronemical data (electrophotometric data for the variable
stars TT Ari and KR Aur) are obtained aand discussed.

1 Introduction

There are different methods for finding the dimension of the attractors. The correlation
integral method (introduced by Grassberger and Procaccia [7]) is one of the widespread
methods for practical computations. I'nis method can be applied in astronomy for objects,
possessing any observed (and measured) variability (see Kollath and Nuspl {11]). Such
investigations aim at:

- determining low-dimensional attractor — global evolution of the system which can be
described by non-linear dillerential equations showing deterministic chaos in their behaviouvr
(cf. Auvergne and Baglin (2], Atmanspacher et al. [1], Harding et al. [8]);

determining local scaling properties (white or shot noise) — a system consisting of a
number of uncorrelated elements which appear at random and live only a short time (cf.
Cannizzo and Goodings [5], Lehto et al. [13]);

~ comparing similar variable astronomical objects (galaxies, variable stars, etc.) in order
to do its classification (cf. Lehto et al. [13]).

The main problems in the determination ol correlation dimension are high noise level
of the observations and the small length of the data (see Lochner et al. [14], Norris and
Matilski [17]). In this paper, we apply correlation integral method for a number of simulated
light curves (including noise) and real data. Comparison analysis of the graphics obtained
is the main tools in our investigations.

*This work was pattially supported by grants No 58/91 and No 39/91 of the Bulgarian Ministry of Scieace
and Higher Education.



2 Generalized attractor dimensions

Balatoni and Renyi [3] and then Grassberger and Procaccia [7] introduced the notion of
attractor dimensions.

Let A be an attractor (limit attracting set) of a dynamical system. Cover A with volume
elements (spheres, cubes, etc.) each with diameter €. Let N(¢) be minimum number of such
volume elements needed to cover A. Generalized information of order ¢ is defined by

—
N(e) q-1
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where p; is the relative frequency with which a typical trajectory enters the :-th volume
element of the covering. When ¢ — 1, I'Y(¢) is the well known Shennon information
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Generalized dimension of order ¢ (spectrum of dimensions, Renyi dimensions) is intro-
duced by

119(¢)

D = lim —
=0 log, ¢

(3)

Usually, dimension of order 0 is called capacity, Hausdorfl dimension or fractal dimension,
DM — information dimension and D?) - correlation dimension.
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Lel us assume that a trajectory {x;}2, forms the attractor A. For a given ¢ > 0,
generalized correlation function of order ¢ is introduced by

| N Ty 4
(D) = | & s i
ey = Ju |\ v & ( va I r,n> : (5)

where z;, 2; are trajectory points, 0 is Heaviside function, i.e. 0(2) = 1 for z > 0 and 0(2) =
for z < 0. Then the correlation integral of order ¢ is given by the following formu'a

(a)
9 = lim lUL\( e )
£l l()j_,E

(6)

3 Reconstruction of attractors

A remarkable result, first proved by Takens [21], allows a strange attractor to be reconstruct-
ed from a sampled.time waveform of just one component of the state. For a system where
one or more of the state variables cannot be measured directly, reconstruction may be the
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only way to observe the attractor. This is a useful technique in experimental settings. Tls
is the usunal case in astronomy.

Let an attractor A of an n-th-order system with flow ¢, be contained in an K-dimensional
compact manifold M ¢ R*M*! 4

F(z) = [v,o:,")(.zr), oV)(x),... ,wg’)\),,(x)]T

where cpﬁ”(:c) is the j-th component of p,(z), 5 is arbitrary, and 7 > 0 is the sampling period,
also arbitrary.

Generally, F'is an embedding, that is, F' diffeomorphically maps M onto compact K-
dimensional manifold M’ ¢ R***!'. This fact implies that given a sequence {z,}N_, :=
{tpS,’T) (z)}N_, that corresponds to a uniformly time-sampled component of a trajectory that
lies on an attractor A, the sequence of points
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lies on a diffeomorphic copy of A.

Let {xx} Y, be a sequence of measurements of an attractor, contained in K-dimensional
manifold. Then we build sequences of d-dimensional points X; = (i, Zig1y.-. »Tigd-1),
t = 1,2,...,N — d and calculate the dimension in the space R%. According to Takens’
theorem, the dimension will not depend on d when d > 2K 4 1. The correlation integral
method is consists of first calculating the correlation function (5) in d-dimensional space and

then determining the slope of the lincar part of correlation function C@(¢) vs. e.

4 Methods and program system

A program system is created for calculating the correlation integral C9). 1t works on IBM-P(!
(386 and better) and supports EGA and VGA graphics display. The first (computationa!)
part of the system calculates the generalized correlation function CW(g) for sequences of
values for € and ¢, and for embedding dimensions d = 1,2, ..., dpae. Our main efforts have
been directed to an efficient realization of correlation integral method (cf. Parker and Chua
(18]). Data up to 3000 points can be processed into a reasonable time interval.,

Also, we implemented a version of the box counting method, (using udeas of Malinetzkii
and Potapov [16]), which allow us to compute the dimensions D@, Now this part of the
program works efliciently only for small data sets.

The second part represents the results (the calculated correlation functions) as different
graphics. It privides means for an interactive work with the user when drawing basic graphics
of the following kind:

= artificial 2-dimensional phase space ry vs. x4y for different [ and for different subse-
quences of the data sequence xy:

= the correlation iptegral of order ¢. '), as a logarithmic graphic log C%9(¢g) vs. loge
for a single einbedding dimension o or for a set of embedding dimensions;
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Figure 1: The correlation function of the attracting limit cycle for Van der Pol’s equation
(N =1000,d = 1...10) - slope vs. loge and slope vs. log C®(e).
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Figure 2: The correlation function of the attracting limit cycle for Van der Pol’s equation
plus 10 percent noise -~ slope vs. log e and slope vs. log C?)(¢).

~ the slope of the correlation function of order ¢ vs. loge and vs. log C@(¢), again for a
single embedding dimension d or for a set of embedding dimensions;

- the correlation integral of order ¢, (") vs. ¢ and vs. embedding dimensions .

Here, we include only calculations of correlation function of order 2 log C®)(¢), as a first
step of our investigations. T'he slope in these cases can be clearly seen when drawing graphics
slope vs. ¢ and slope vs. ("19(¢).

5 Results

5.1 Simulated light curves

Some simulated light curves produced from deterministic functions are used as test examples
for the correlation integral method and for our software system. The dimensions of a few
attracting sets of the discrete dynamical systems Logistic and Henon maps (for various values
of the parameters) have been calculated. Also, the dimension of the Serpinski triangle fractal
set has been obtained using a random algorithm for building this set (see Barnsley [4}).
Data from some trajegtories of differential equations (represented attractind sets) have been
processed. ’
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Figure 3: The correlation function of the Lorenz light curve (N = 1200,d = 1...10) - slope
vs. log € and slope vs. log C'))(¢).
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Figure 4: The correlation function of the Lorenz light curve with 10 percent noise - slope
vs. log e and slope vs. log ('?)(¢).

Van der Pol’s equation
x =y,
- 2 .
y=(—-a)y—x

is a classical example of an attracting limit cycle. This attractor is 1-dimensional, of course
(see Figure 1). The effect of adding 10 percent white noise is seen on Figure 2. Our
experimental data consist of #-measurements, obtained by numerically calculated limit cycle
using Runge-Kutta scheme of order 2.

Lorenz attractor (see Lorenz [15]) is produced by one of the simplest sets of differential
equations demonstrating chaotic behaviour:

r=-—ox+oy
y=-—rz+re—y

- xy — bz,

I

-~
~

where 0 = 10,7 = 28,b = 8/3. The dimension of the attractor is approximately 2.05
(Grassberger and Procaccia [7]). '

An Euler numerical scheme is applied for chaotic trajectory calculation with step 0.02.
More detailed investigation of this attractor is given by Lehto et al.[13). Our results are
given on Figures 3 and 4.
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Figure 5:  The correlation function for Gaussian distributed noise (¢ = 1, N = 1200,d =
1...10) - slope vs. loge and slope vs. log C?)(e).
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Figure 6: The correlation function for uniformly distributed white noise (N=1280.d =
L...10) = slope vs. loge and slope vs. log ('3)(g).

5.2  White noise.

m % . . . . . . . .

he dimension of the ideal white noise (random quantity, uniformly or normally distributed)
In R is equal to the embedding dimension d. In practice, as Figures 5 and 6 shows, the
correlation function has a slope which increases with the higher embedding dimension.

5.3 TT Arietis and KR Aurigae.

Processing data of these cataclysmic stars were obtained by Kraicheva et al. [12] for T'T
Arietis and Popov, Antov [20] for KR Aurigac.

The observations were made in U-color of the standard UBV system using single channel
photon-counting photoelectric photometer, attached to 60 cm Cassergain telescope in the
National Astronomical Observatory Rozhen. Photometric data reduction has been made by
the program system APR (Kirov et al. [9]). Two sources of T'T' Ari and one of KR Aur are
Processed and prsented here.

A definite assertion for existence (or non existence) of a low-dimensional attractor can
not be given on the basis of the presented graphical results (Figures 7, 8 and 9). Probably,
the further more detailed invest igations, using the full possibilities of the software systemn can
be lead up to a definite answer. Also, Fourier technques to search for and remove any strong
Periodic components will be. used and some predictive procedures can help us to establish
the presence of deterministic chaos.
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Figure 7: The correlation function for fivst T'T" Ari light curve (N = 1050,d = 1...10)

slope vs. loge and slope vs. log ("4)(¢).
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Figure 8:  The correlation function for second T Ari light curve (N = 950,d = 1...10) -
slope vs. log e and slope vs. log C')(¢).
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Figure 9: The correlation function for KR Aur light curve (N = 1200,d = 1...10) - slope
vs. log e and slope vs. log C")(2).
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