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Abstract,. On the basis of a property of Lhe hypercpace,
H.-1. Schmidt [5] introduced implicitely a clase of spaces called
in the present paper HS-spaces. In s, Theor.em 11(3d}]} I't is
stated Lthat every Hausdorff HS-epace ia regular. Later on M.Paoli

and E.Ripoli noted in [PR1] that the proof of the above assertion

is incorrect, but the question of the correctness of the statement

is open. We give a partial solution of this problem introeducing a
large class of spaces, which contains all Hauedorf(f spaces wilh
countable characler, where the theorem holds. Twao reduction

theorems are obtained as well.
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1. Introduction and Preliminary Results and Definitions
The following definition is motivated by the results of
H.-J.Schmidt in [S].

1.1. Definition. A topological space X is called a HS-space

if, for every subspace A of X, the map 1 ‘EA’T——~>2A‘T. defined by

A .

the formula ?A(B) = chB. for every B € 2A. is a continuous map.



Here and below, for every topological space (X,7), 2A stands

for the set of all non-empty closed subsets of X and clYB - for
the closure of the subset B of X in the space X. The set EX is

endowed with the Tychonoff topology 9 which is known also as

T
upper semi-finite topology [M], generated by the base B = { <»
Ue T}, where <U»> ={ Fe€ EX : Fcy). The topological space
(Zx,gT) is denoted briefly by ZX’T.

The class of all HS-spaces (resp., all Ti—spaces. for 4 =: };
2, 3, 3.5, 4) will be denoted by #¥ (resp., by Ti' oy L, 02s % 3
3.5, 4) and the class of all normal spaces - by N I.
In [S] H.-J. Schmidt proved the following theorem.
1.2. Theorem.([S, Theorem 11(3d)]). # N T2 Q'FJ.

M. Paoli and E. Ripoli noted in [PRl] that the proof of this
theorem is incorrect, but the question of the correctness of the
statement is open. In the present paper we give a partial solution
of this question. More precisely: a) we give an internal (i.e. in
terms of the space only) characterization of [lIiS-spaces (see
Theorem-z.IOI: b) we introduce a large class of spaces, called X*
(see Definition 2.17), containing all Hausdorff spaces with
countable character (see 2.24 and 2.22), where 1.2 holds (see
Theorem 2.19, where a stronger result is proved) and we show that
1.2 is true iff (= if and only if) the statement " T,cX " is
true (see Theorem 2.20); using Theorem 2.19, we demonstrate that

the limit of an inverse sequence of HS-spaces needs not be a

HS-space (see Example 2.26): c¢) we show that the class #F is
1

In thiec paper we assume Lhat T,.—upacou (1 = 3, 3.5 1) are

Hausdorrf, while Lhe regular and normal spacee are not assumed Lo
be, in general, T _ -spaces.

1
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invariant under closed mappings (see Theorem 2.11); d) we prove
that 1.2 is true iff the statement " @&F | T,=T, " does (see
Theorem 2.14). Moreover, some new classes of spaces, closely
related to the problem discussed here, are introduced and briefly
investigated. These are the class of F-normal spaces (see
Definition 2.4 and Theorems 2.12, 2.28) and the classes of K-, K -
and K'-spaces (see Definition 2.23, Theorems 2.30, " 2.31 and
Examples 2.32,%2.33).

Let us cite also the following corollary of Proposition 5 in
[Se]:

1.3. Proposition. ([Sel). ¥ c &%,

1.4. Notation. If ¥ is a class of topological spaces, then we
denote by Top the class defined in the following way: Xt?T? iff
Xgx,

For all notions and notations undefined here see [E].

Let us finally note, that many of the results of this paper

were announced (without proofs) in [BDN].

2. The results.

2.1. Notation. For any set X, we denote by E(X) the set of
all nonempty subsets of X.

2.2. Convention. Let (X,7) be a topological space, HE ZX,
Ue€T and HE U. Then we will say that (H,U) is a pair in X.

2.3. Definition. A pair (H,U) in (X,7) 1is said to be
F-embedded in X if there exists a V& 9 such that

i) H< V, and

ii) (ve2Y dcv) implies © € 2%,



2.4. Definition. A topological space X is said to be F-normal
if every pair (H,U) in X is F-embedded in X. The class of all
F-normal spaces will be denoted by FN.

2.5. Definition. A topological space X 1is said to be
LF-normal if for every pair (H,U) in X and for every subspace Y of
X such that H< Y, the pair (H,U[} ¥) in Y is F-embedded in Y. The
class of all LF-normal spaces is denoted by £¥N,

2.6. Remarks. Obviously, ¥ € £FN < F¥, The inclusions N c Z£IN
and T i ¥ N RyiE £IN N T, are strong-, since for any infinite set
X with the cofinite topology we have that X € (ZF¥ Tj) \ TZ and,
hence, X € (£3N ) TI) \ T4 and X € 3§ \ XN.

Now, we are going to show that the classes #¥ and ZIIN
coincide (which, in particular., will imply 1.3).

2.7 Convention. Let X Dbe a topological space and

® € E(X).The statement " for every subspace A of X such that
¢ e 2‘4, the mapping TA:2A’F--->2‘Y’F is continuous at the point &
of ZA " will be shortened as " i is continuous at ¢ ",

28 Remark. X€ ®¥ iff i is continuous at any ¢ € E(X).

2.9. Lemma. Let (X,7) be a topological space. Then X € &% iff
i is continuous at any F € 2f,

Proof. ==>) This is trivial.

<==)Let ® € E(X). We will show that i is continuous at ®,

which will imply, by 2.8, that Xe€ #f. Let A be a subspace of X

A TianXa T

such that ¢ € 2, We have to show that the map ?Azz -— is

continuous at ®. Let F=cl @, U€J and F€E U. We put c=a4aUF.
2C,T >2X’T

Then F<€ C and F € 2C. Since the map 1 is continuous

C:

at F, there exists an open in C set V‘, such that F ¢ V‘, and

}‘C(<v1>);<u>. (1)



Let V=V, ) A. Then V is open in 4, ®< V and ?A(-:w} c <>,
Indeed, let Bei24, BE Vv  and B; =ccly B, Then
BISBUFE v U V,=V, and hence, by (1), cl,B=cl,B <U.
Q.E.D.

2.10. Theorem. &¥ = £3N.

Proof. A) Let (X,7) € &¥. We will show that X € L£¥N. Let
(H,U) be a pair in X and Y be a subspace of X such that- Hc Y. We

have to show that the pair (H,U[) Y) in Y is F-embedded in Y.

Put A= U Y. Then HE€ 24 and ?A(H} = H€ <U>. Since the map
?A:ZA‘T---b'ZX'T is continuous, there exists an open set V in A
such that H< Vv and ?A(<V>) € <U>. Obviously, V is open also in Y.
Let e 2V =24 and @< v. Then ® € <v> and hence cl“.!!"_‘- U. We
obtain that ¢=(_:IA¢=P’ﬂUﬂch‘b=Yﬂch‘l’=c]},¢. i.e.
o« 27,

B) Let (X,9) € £¥N¥, We will show that X€ &f. By 2.9,
it is enough to prove that i is continuous at each F € 2X.
Suppose there exists a FOG C) such that Ji is not continuous

at F Then there exists a subspace B of X such that F, € B and

0 0
the map }'B:Z‘B‘ T--->2X'? is not continuous at the point Fo of 2B.
Hence, there exists a Uaﬁff such that: a) FO‘-:- UO and b) for
every open in B set V, containing FU’ there exists a tbve ZB such
that @ < Vv and (cl®.) \ Uo#ﬁ. Let us put C= B[ U, Then the
map 'i'r,:zc‘ T2 7T s not continuous at the point Fo of 2C (since

every set, open in C, is open in B too). Let ¥=cU (x\ Ug,) .
Then FU c Y., Since X € LI¥N, it follows that the pair H"o.l’ﬂ UO)
in Y is F-embedded in Y. But YN Uy =
= (e (x \ Up)) N Up=CNU,=BNUy=C and hence C is open in

Y and the pair (FO.C) in Y is F-embedded in Y. So, there exists an



open in Y set VO such that: 1) FOE VO'

==> $ € 2Y. Then VJ = Von C is open in Y and in C. Hence VI

open in B and FOE VI' So, there exists a 'IK°J[.€E2"3 such that

and ii) (®c v, be 26)

is

lDIg Vl and
(01391} \ Uo?fﬂ. (2)
Since ¢IEC‘E B, we obtain that ¢I€ ZC. Now, ‘PIQ VIQ VO
» . Y - ‘
and ii) imply that ‘PIG 2°. Hence M= (clx‘bj) N\ Uo) c
C(chQI}ﬂY= cl},‘b1=¢’ICCC Uy i.®. Mc (X\ Uo)nUo=¢.

while (2) shows that M# @. Q.E.D.

2.11.Theorem. Let f:XgEEg Z be a closed map and X € #¥. Then
Zes.

Proof. By 2.10, it is enough to show that Z € £¥N., Let (®,U)
be a pair in Z and let Y be a subspace of Z such that # < Y. We
have to prove that the pair (®,U( ¥) in Y is F-embedded in Y.

Since Xe€ ®&F and hence, by 0425103 X € LFN, the pair

(o, r funr) =, lun £ ly) is F-embedded in £ 'y. Then

there exists an open in fﬂf}’ set Vysach *thats 1) !'_.1‘1"-: v, and

- -1 -1
ii) B€ Vv and BE€ Zf (thy) imply that BE€ 2!‘ Y.

1

Obviously, the
same holds for the set V' = V[ f "U. The map ¢ = f'i,:f-IY--->Y is
closed since f is closed (see [E, 2.1.4]). Hence, there exists an

open in Y set W such that ¢ € W and w-I(H’} €V (see [E, 1.4.12]).

Then 10 s rim=90Im ¢ v ¢« Flun v) and, consequently,

s wes U Y. Let ' mowi. B.- S W ‘and~ B €29% Then B =
-1 g

s o i@y e £ lpy s and-mesale VDT sonoe inieie’i s Lt isinee

® is a quotient map, this shows that B € 2Y

. 'S0, Z2€RY. Q.B.D.
2.12.Theorem. Let f‘:xgglg Z be a closed map and X € FN., Then
Z € FN,

Proof. Put Y= Z in the proof of 2.11. Q.E.D.



The next definition will be used in the proof of Theorem 2.14
and further in the text.

2.13.Definition. A pair (H,U) in a topological space (X,7) is
called nonseparable pair if (ciXV) \U#@ for every V€T such
that H< V.

2.14.Theorem. The following assertions are equivalent:

a) &7 N T, & Ty
b) N T, &7

N
-3

c) % N T,

]

d) ¥ N T, =T

4

Proof. Obviously, d)==>c)==>b)==>a) and c)==>d) (see 1.3 or
2.10 and 2.6). Hence, in order to prove the theorem, we have to
show that a)==>c).

Let ;\'E?&fv"ﬂTz. Then, by a). XETJ. Suppose X¢T4. This
means there exists a nonseparable pair (F,U) in X. Let Y = X/F,
i.e. the quotient space Y is obtained by identifying the points of
the closed subset F of X, and let ¢@:X--->X/F =Y be the natural
map. &hen ¢ is a closed map and, hence, by 2.11, VY€ &7,
Obviously, we have that Y € Tz (since X € 'I'J). Now, the condition
a) implies that Y € T3- But the pair (¢(F),¢(U)) is, obviously, a
nonseparable pair in ¥, which shows that Y ¢ T3 - a contradiction.
Hence X €T, .. "Q.EiD.

4

2.15.Remark. The inclusion &¥ T,< T, doesn’t hold: any
infinite space X with the cofinite topology testifies to this (see
2.6)

2.16.Definition. Let (X,7) be a topological space and (H,U)
be a pair in X. The pair (H,U) is said te be N-embedded in X if

for every ve€ 9 with Hc Ve U, there exists a subset B, of V such



that © # (cIXBV) N Vs XN OU=x

2.17.Definition. A space X is said to be a K*—space if either
X€ KN or there exist a nonseparable pair (#H,U) in X and a subspace
Y of X such that H< Y and the pair (H,UN ¥Y) in Y is N-embedded
in Y.

The class of all K*-spaces is denoted by 1*.

2.18.Proposition. Let (H,U) be a pair in (X,7). Then (H,U) is
N-embedded in X iff (H,U) is not F-embedded in X.

Proof. ==») Let (H,U) be N-embedded in X and suppose that
(H,U) is also F-embedded in X. Then there exists a V € T such that

H < V and (tber,tDc V) ==>» (tbe:J,X

). Since (H,U) is N-embedded
in X, there exists a subset B of V [y U such that
g # (chB) \(vn U) € X\ U.

Then (cl B) \ (VN U) = (cl, B) N UN (X\ (VN D)) = ((clB) \
\(vnw) Nue(Xx\N U NU=9 Hence, =cl Bc VO Uc V and
S 2”. This implies that ¢62X. Thus (chB) M (VB U= @ \I
\ (v U) =9¢, which is a contradiction. Hence, (H,U) is not
F—embe;ided in X.

<==) Let (H,U) be not F-embedded in X. We will show that
(H,U) is N-embedded in X. Indeed, let V€ J and Hc Vv c¢ U. Then

there exists a ® € 2Y such that ® ¢ v and @ ¢ 28, Further, (cleh)n

n vs= cli;b
(chlP) N
\ V= (ch‘D) \ ¢ = (ch‘IJ) \ clU‘b= (chfDl \ ((clxﬁ’) n o) = (ch'b)\

\ Uc X\ U. Hence, the pair (H,U) is N-embedded in X. Q.E.D.

(clu‘!l) N v=¢ n v=¢ and (cl)‘;b) \ ¢ # 9. Thus
(clx‘b) \ “Cl,\’” f} V) = (chM \ P # ¥ and (cl,2) \

2.19.Theorem. a) #f ) X* = ¥ and hence N T,MN . il Ty

b) #¢ = ¥ U (132*) and, equivalently,
x*=x U ay,



c) If & is a <class of spaces such that
F NP < N, then S‘s;.x*.

Proof. a) Obviously, J'fcxﬂ'ﬂx*. Hence, we have to show that
2e 0 x*cw,

Lét! X'€ ?wnx*. Suppose that X# N. Since XE€ x*, there
exist a nonseparable pair (H,U) in X and a subspace Y of X such
that H<¢ Y and the pair (H,UN ¥Y) in Y is N-embedded in ¥. Since
Xce¥®f and &F = LFN (see '2.10), the pair (H,UNY) in Y |is
F-embedded in Y. But this contradicts 2.18. So, X € N,

b) In a) we have shown, in fact, that (x*\x)nvw=a.
This, obviously, implies that WGNU(TK*). Let us prove now
that ¥ U (71*) c &F, Since N ¢ ¥ (see 2.6 and 2.10 or 1.3), we
have only to show that Tx* ¢ Xy,

Let XE.IJC* and suppose that X ¢ &¥, i.e. that X ¢ £FN¥ (by
2.10). Then there exist a pair (H,U) in X and a subspace Y of X
such that H< Y and the pair (H,U[) ¥) in Y is not F-embedded in
Y. The pair (H,U) in X is a nonseparable pair (otherwise the pair
{H,U[1'Y) in ¥ should be F-embedded in Y) and, by 2.18, the pair
(H,UNY) in Y is N-embedded ‘in ‘Y. Hence, X € gl TN
contradiction.

c) Let ® be a class of spaces such that #f | ? € ¥, Then,by
b), 2n (1x*) =2n(@P\N) cH\N=9, i.e. 2cX*. 0Q.E.D.

2.20.Theorem. The following assertions are equivalent:

a) ¥ (T, T

b) TR s

3€

Proof. a)==>b). By 2.14, the assertion a) implies that

7 - Hence, by 2.19¢), we obtain that T.ZE x*.

b)==>a) If T,< X', then, by 2.19a), ® (} T, = & T, N %* =

2SN T, =T



=T,<T,;. Q.E.D.

2.21.Definition.([DIT],[0]). A topological space X is called
a gF-space if for every subset Al oftusX sband for every
xtitcle) Nitds there exists a subset B' 4 of A  such that
{x) = (chB)\ B. The class of all gF-spaces will be denoted by
&%.

2.22.Remark.([DIT],[0]). Obviously, every Frechet-Urysohn
T}—space (and hence every Tz-space with countable character) is a
gF-space.

2.23.Definitions. A topological space (X,7) is called a

i) K-space if for every U€ T and for every x € (chU} sl
there exists a subset B of U such that {x} = (cIXB) \«83

ii) K -space if every nonseparable pair (H,U) in X is
N-embedded in X;

iii) K'-space if either X € N or there exists a pair (H,U) in
X which is N-embedded in X.

The class of all K-spaces (resp., K -spaces; K'-spaces) will
be dcn;ted by X (resp., ¥ ; X’).

2.24 .Remark. Obviously, gF ¢« X <« X' € X" ¢ %,

2.25.Remark. The theorem from [PR2, n.1] asserts that if X is
a Hausdorff countably compact space with countable character, then
X€ XY, We will show that this assertion is not true. ( The fact
that the proof of Theorem 1 from n.l1 of [PR2] is incorrect was
mentioned in MR # 88a:54020.) Indeed, J. Vaughan constructed in

(V] a Hausdorff countably compact space X with countable

0
character which is not normal. By Remarks 2.22 and 2.24 we get
that XOETZ*. 80, :1f XO were a HS-space,then, by Theorem 2.19a),

Xo should be a normal space - a contradiction. Thus, Xo is not a

10



HS-space.

2.26.Remark. Theorem 2.19a) together with Remarks 2.22 and
2.24 show that any space XETE\T4 with countable character is
not a HS-space( i.e. X contains a subspace A for which the map

?A:Z_A‘T———>2X’T is not continuous). Since the square X of the

Sorgenfrey line L is such a space, we obtain that L2= X¢& &S,
which is the content of Theorem f) in n.3 of [PR1].

2.27.Example. A limit of an inverse sequence of T4—spaces.
which is not a HS-space.

Let N, @ and P be the subspaces of the real line R (endowed
with its natural topology) consisting of all natural, all rational
and all irrational numbers respectively and let X:RQ be the
Michael line (see [E, 5.1.32]). Then, as shown by E. Michael, the
space Y= Xx P is not normal ! (see [By 5:1.32]))c Since nP . is
homeomorphic to N and Y has a countable character, the standard
representation of the infinite Cartesian product X Xx NN as the
limit of an inverse sequence (see [E, 2.5.3]) and our Theorem
2.19a). (together with 2.22 and 2.24) show that the space Y is the
desired example. Q.E.D.

2.28.Theorem. a) ¥ N X" = ¥;

b) $¥ = ¥ U (lxr);
c) If 2 is a class of spaces such that
5-”[']5“9.#, then 2 X".

Proof. The proof of this theorem can be obtained from the
Proof of Theorem 2.19 putting there Y = X, Q.E.D.

Now, we are going to present examples testifying that the

first three inclusions in 2.24 are strong; as a first step in this

direction we prove an auxiliary theorem (which generalizes the

11



construction of one of the examples), using the following
definition.

2.29.Definition.([A]). A topological space X is called a
funnel-shaped space if for every point x of X there exists a well
ordered by inclusion local base 3(x) at x.

2.30.Theorem. Let (X,7) be a topological space which can be
mapped by a continuous one-to-one map [ onto a - Hausdorff
funnel-shaped space (Y,0) such that x(y,Y) = t, for every yE€ Y,
where t is an infinite regular cardinal number. Then the space X
can be homeomorphically embedded as a closed nowhere dense subset
of a Hausdorff K-space Z.

Proof. Obviously, there is no loss of generality in assuming
that the set Y coincides with the set X and that f(x) = x for
every x € X. Then O0< 7., Denoting by A the initial ordinal number
of cardinality t©, let W be the set of all ordinal numbers less
than or equal to A.

Since the space (Y,0) is funnel-shaped and the character of ¥
at anf point y€ ¥V is equal to t, we can fix, for every y€ VY, a
well-ordered by inclusion local base B(y) = { v%‘y st «, . <*A8 ) for
Y at y.

Let Z be the Cartesian product of the sets Y and W. We will
define a topology 7' on the set Z in the following way:

a) if (y,x) € Z and « # A then (y,«) is an isolated point of
Z3

b) for every point z = (y,2) of Z, the local base & (z) for 2
at z is the family { (P;.y x (a,¥)) U (Ux (8}) v @ <X, y€E Ue?
and U ¢ ql’y }, where (ox,A) = { f € Wy L a Nakes A ], Then,

obviously, (Z2,95) is a Hausdorff space and the map

12



Fo (X, T )me=d (2T, Fxamasix N),' 'S8 " & homeomorphic embedding and
i(X) is a closed nowhere dense subset of (Z,9°'). We will show that
(2,9°) is a K-space.

Let 0 € ¥ and z € (clzo) \ 0. Then, obviously, z € ¥ x (A},
i.e._z= (y,\) for some y € Y. Let us put 0,=0\ (Yex (%)) We

will 'show that 'z € cl, 0O Indeed, supposing that 2z ¢ clzo we

AT s 37
will obtain a neighbourhood V of z in Z such that V OI =@ and
VA on (Y'x {x}) #@. Let "V ="V 0. Then 'V '€ &', V' ¢ 0, V#90
and V' Olzﬁ. Hence | ¥ T sypifg s Y(X) “and’ this is a

contradiction since Intzi(X) =P So, z € CIZOI'

Now, for every a < A, .we put V. R y X (a,2] and define a
: ]

point bu = (ya,sa) € 0, in the following way:

1
1) 'if @« =1, then .!74f is any point from VI N OI;
2) let P < A and assume that bu has already been defined for

every a < B in such a way that bcz (S V'p(u) N OI' where ¢:[1,B)=--->W

is some increasing function and b,y # by  for a' #a”, We shall
define.the point bﬁ' Let us prove, first, that the set FB =
= { b,:« < B} is closed in Z. Indeed, since T is a regular
cardinal number, there exists a Yy € W\ (A} such that g > €, for
every « < B. Then, for every 2z' = (y'«A) € ¥ x {7}, we have that

02, = X (73,1] is a neighbourhood of 2z in Z and Oz’ N

v :
Iﬁ,y
n FB = #. Hence, FB

Yo(a)®
¥g > ¢(«) for every « < B. Putting ¢(B) = Iy and choosing a point

is a closed subset of Z and FB c 01,. Since
b,_-, - (.Vq.Eu) € we have that § > ¢(«) and, consequently,
bﬁ from the set V‘P(ﬂ) n o0,, we complete the construction of the
points { b : « < A }.

If we put now B = { B SRR A} then, obviously, z € chB

and B c O! € 0. We shall show that B U {z} = CIZB- Indeed, let

13
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Y € ¥ \ {y}: Then there exists a J €1 \ {Xx} ssuch that Ye.y N
N V)‘..V" =@ ., By the construction of the points by we have that
b, € V,‘ N 0, for every a > y. Let ¥’ = sup({ €, ¢ « S ¥ }. Then
Fo%uky 32 ¥ and V}"_.y" x (¥,A] is a neighbourhood of (¥ .,A) in
Z which has no common points with B. Hence, chB::B U {z).
Q.E.D.

2.31.Theorem. All of the inclusions g ¢ X ¢ X'-c X" are
Strong even in the class of Hausdorff spaces.

Proof. A). Construction of a space Z € (X \ 2%) T,.

Let X, = (0,0.5] U {1} U {1+ %} : n € N} with the topology of
it subspace of R (see 2.27 for N and' R) :and 'let FE be the
equivalence relation on A'O defined by letting x E y iff either x =
=y or dxp = 3, Lot X=x0/!;‘ and q:x{)——->x be the natural quotient
mapping. Then g is not hereditarily quotient (= pseudo-open)
mapping (see [E, 2.4.17 and 2.4.F]). Since x(XO} = RO we have, by
2,22, that X, € g%, These facts, together with [DIT,Theorem 3.48],
show that X ¢ g%. Let ¥ be the set [0,0.5] endowed with the
‘-OPOIOI::.V of a subspace of R. Then the map f:X--->Y, defined by the
formula f(g(t)) = t, for any t € (0,0.51, and f(q(1)) = 0, is,
Obviously a continuous bijection. Since Y € ‘I‘z and X(y,¥) = RO for
every y € Y, we obtain, using Theorem 2.30, that there exist a
Hausdorff K-space Z and a homeomorphic embedding ¢:X--->Z. Then
?(X) is a subspace of Z which is not a g¥-space. This implies, by
[DIT, 3.46e)], that 2z ¢ g%. So, Z€ (X \ %) T,.

B) Construction of a space X € (X' \ X) ] T,.
Let X = PN - the Stone-Cech compactification of N, Then X is

@ normal space and hence, by Definition 2.23ii), X € X', We shall

Prove that X ¢ X, Indeed, let ‘U=N € PN and:.x € (ciiU) \
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\ U= X\ U. Suppose that X € XK. Then therc exists a subset B of
N = U such that cIXB= BU {x}. Since, obviously, B is an infinite
set, we have that clxn is homeomorphic with X = PN, Hence ICIX.BI >
> R, and H{x}l = I{clxz'_n \ Bl > hizh =o 3 contradiction. So,
Xe€ (X' \X)nT,

C) Construction of a space X€ (X" \ X') nTz.

Let W be the space of all ordinal numbers less than or equal
to the first uncountable ordinal numbe_r @ with the usual order
topology, Z be the subsect of W consisting of all isolated points
in W and N be the space of all natural numbers with the discrete
topology. Let X = (W x N) U {p}, where p ¢ W x N. Endow the set X
with the following topology 9: all sets which are open in the
Space W x N belong to 9; the local base B(p) for X at the point p

consists of all subsets of X of the form U = {p}u

Ayl
Ui ax {7} : j 2 i}, where i € N and A is a subset of Z such that
lz\ al < N The space (X.9) is., obviously, a Hausdorff space,
but (x,9) ¢ T,. Indeed, let = { (MI.J') €W x MNuk! inesMe)e Then
i = CIAJ! and hence 0= X\ #H € 49, The pair (p,0) is a nonseparable
Pair in X since for every U“,' € B(p) we have that {wj.j] € 1N
N Cl.‘i'u:l.i’ for every j 2 i, i.e. (el U, 1) \ 0#9. So, X¢ T,

In order to prove that X ¢ X', it is suffices to show that
the nonseparable pair (p,0) is not N-embedded in X.

Let U= UA..-' ¢ B(p). Then p ¢ U < O, We will show that, for
€very subset B of U, either ICIXB) \ U= ar (clxll} X U:is not a
Subset of X \ 0= H. Indeed, let B © U and (clyB) \ U#9. Then
there exists a j & i such that 1B (Wx {(jhI 2 R, Let € be an

infinite countable subset of B [) (W x {j}). Then there exists an

& € (chx {J.}c) \(olUm = [cl\.(f‘) \ (ol H). Hence, {CIXB) | 4

15



is not a subset of X \ 0. So, the pair (p.0) is not N-embedded in
X and hence X ¢ X'.
Let U= Uh i € B(p). We will show that the pair (p,U) is not

F-embedded in X. Indeed, it is enough to prove that for every

4 e € B(p) with U/ © U, there exists a ¢U‘ c U such that

'b; ¢ ZU \ 2A . But, obviously, i, for every U € B(p) such that

{
U < U, we put o, =0, then we will get that b, €

U
S 2U X 2X. Hence, the pair (p,U) is not F-embedded in X, which
implies that X ¢ FN. Now, we gct, by Theorem 2.28b), that X € X",
So, Xe (X" \ X') N Tt |1Q-BLD,

The Hausdorff space XY ¢ X" \ X' which was constructed in the
bProof of Theorem 2.31 seems to be a natural and simple example
With such properties, but it has cardinality R,o Now, we will
describe a countable T,-space Y € X'\ X,

2.32.Example. A countable, sequential, Hausdorff space Y
Which is a K’-space and is not a K -space.

Proof. Denote by AF(x) the Arhangel’ skii-Franklin space S,
With basic point x (see [AF]). Since we use it, we shall describe
Its construction for the convenience of the reader.

The set AF(x) is of the form AF(x)=9{ AF(x) : 1€ N U {0}},

th eiel of the set APLE). for

Where the set AF (x) is called the i
tvery i€ N, The levels AF (x) will be constructed by induction.
Put AFfo} = {x). Assuming that all levels AFi(x}. for
L& 0, 2 oncgly BEve already been defined, we will construct the
set AFp (X)) With every point y€ AF (x), we associate an
infinite countable set M, (called a sequence corresponding to y )
in such a way that M, n.U{ AF (X) : 0= 0,1,..5.K } = @ and M, N

N Mz =® for y,z € ,u-‘k(x). y # z. Then we put AF“‘,{X) = U {( My=
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Y € Al*‘k(.\'} .

For every point z € AF(x) we denote by ¢z the Frechet filter
on the sequence Mz corresponding to z

The topology ﬂx on the set AF(x) is defined as follows. Let
Y€ AF(x). Then there exists a unique i, €N U {0} such that y €

.

€ AF} (x). The local base %y for AF(x) at the point y consists of
y -

all  subsets U of AF(x) which satisfy the following two
Conditions:

1) (¥} = U n U{ AFj(x) A iy ¥s

2) UN AF, (x) = U { A, 1 z€ U AF(x) }, for every k 2 i
(Where, for every z ¢ U AF (x). A, is some element of ¢ ).

It is easy to check that in such a way we define a topology
gx on the set AF(x) and that the space (AF(.\'l.ff'\,l is ' &
tountable, Hausdorfl, sequential, zero-dimensional space.

Let now { X; :71 € N } be a sequence such that xi# xj for
I#j, i,j € N. we put vV = f AF(x;) : i€ N, Taiy A {c},

where ¢ ¢ ¥ . and T, o= U { AF (x;) : s 2k }y for every i,k € N,

k

Obviously, the sets T are open subsets of (AF(xf).ﬂx )y :for

1,k i
every i,k € N, Let’'s introduce a topology 7 on the set Y. The
local base %c for (V.9) at the point c¢ consists ol all subsets
o, vei dg i € 7 : s + : = u »

f5J J € N, of ¥ which have the form: U; ; {c} v U{ T g
M2 i }. Further, for every point v € ¥ there exists a unique | €
€ N such that y e AF(x;). Then the local base for (Y,7) at the

Point y coincides with the local base %, for (AF(x ), 7 ) at yv. It
. i

!S easy to see that in such a way we define a topology J on Y and
that the space (v,7) is a countable, Hausdorff, sequential space.
We are going to show that vy e X" \ X',

Let us first prove that ¥ € X”.

17



Pt = X; o i € N }). Then the pair (H,¥V) in Y is not

F-embedded in Y. Indeed, let v =U({ U, :+ i € N}, where U, € B
i
for every i € N, Putting ® = V. we obtain that ® € Er. ¢ € VvV and
b ¢ Ey- Since the open sets like V form a local base for (V,7) at
the set H, we get that the pair (H,Y ) is not F-embedded in VY.
Hence, v ¢ ¥¥. This implies, by 2.28b), that Y € X",
Next, let us show that Y ¢ X",
Put 0= Y \ H. Then the pair (¢,0) in Y is nonseparable one
Since any pair of neighbourhoods of ¢ and H has nonvoid
intersection. Further, the pair (¢,0) in Y is not N-embedded in Y.

Indeed, put v=u € ﬁBC. Then ¢ € V € 0. We will show that there

1,2

1S no subsel of V such that ¢ # (el B) \ V& Il . For proving

”V
this, consider a subset B of V such that (cll,ll) \ V # 8., W¢ have

that (L‘JYB) \ Ve vy \ v=Huv Ul AF (‘\'1.) : 1 €N }. Suppose that

1
{cIYH} \ V€ H and let X “ (clr.m \ V. Then, for every y €
(3 AF - 2 r r ~ = i !

F,x;). there exists a o, fﬁy such that U N B . Let

W= {X_J-l u Uy Uy s e AF!(A'I.) }. Then W is a neighbourhood of X
in ¥ and, hence, W B # #.. But W B< (x;} and x ¢ B since
Y ¢ V.o llence. W) B=#¢. This is a contradiction, showing that
(Cl},B} \ VvV € H. So, the nonseparable pair (¢,0) in Y is not
N-embedded in v. This implies that ¥ ¢ X'. Q.E.D.

2.33.Example. A Hausdorff non-normal space (Z,7) € X" such
that, for each pair (H,U) in Z.every local base :‘BH for Z at H has
Non-clopen in U elements (in contrast with the Hausdorff spaces X
and Y constructed in the part C) of the proof of 2.31 and in 2.32,
Fespectively).

Let ' be the natural Fuclidean topology on the real line R

and 7 be the cocountable topology on R. Let Z coincides with R as
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i set and 9 be the suprema of 9° and I, We will show that (Z.9)
is the desired example.

It is easy to see that: 1) a set O is open in (Z,9) iff
O= U\ A, where U € 9 and lal =< R and 2) if 0= U\ A, where
Ue T and 1Al = R then CI{Z.ﬁ}C)= cl(R.g.)U (see [SS, Example
63]). Using these two facts and the local connectedness of (R,7'),
one easily recalizes that (Z,9) has the desired local base property
described above. Since (Z,9) is obviously a Hausdorff space and
(Z,T) ¢ T, (scc [88]1), we have only to prove that Z € X', We will

show that the pair ({42.P), where P is the set of irrationals (sece

2.27 for the notations), is not F-embedded in (Z,7), which, by

2

<18, will imply that (45.?} is N-embedded in (Z,7), i.e. that Z €
€ X". For doing this, it is cnough to prove that for every n € N
and for every countable set A © Z such that Q [) Vo & &€ V., where

I‘" — __..! _.! » ¥ yAF R e . ) ‘] 1 ' o
n (42 =4 42+n}. there exists a subset % of V. \ A which is

¢losed in (I,71P), but which is not closed in (Z,9). So, let n € N
and v - e a e ' 3
adVvV. N®ca I1f ANP is not dense in (Vn.5 an}, then we can

find a closed interval [r v I4le Where Iy Ty € @, such that P

1" 2

N [rfcrzl C V” \ A, and put b = Ir!.rzl N P. This ¢ will do the

iob (see 2) above).
Let now A | " be dense in {l'”.f'?'ll-'nl. Then 1a n Pl = Rog» 8O
We can let: AN P={ a; :i € N}. To obtain the subset ® of Vv '\

\ 4 under question, we exploit a construction similar to that of

the Cantor set. First of all. let lyy ry € ® be such that

% - s 5 1 : .
12 2n < 1p < 12 < r, < 12 + 3n° Then we start with a, and find
o _ 1
fj- r, ¢ © such that !0 < II < a, £ 588 < 1, and fj-jo . T
r - ! L.
1 S < g We put F,= (11,1 U (r,r,l. Let

i,=min{ je N ; a; ¢ (I =min{ ie€N: a; € (1,1,))]
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and ;'3.3 = min{ i€ N : ;o t:",. rp) 1. Then i:t { :'__,' T :'3._, ]
Obviously, there exist 12.!. r;,‘I. 13‘2. r‘?'z ¢ @ such that

y§ 2

6° dg ¥y, Tty FptdggtAp, K FagdiEpied
I -1 < -—!— R < —"-’— ! -rI < ; =T < ! We
2 9 9 2 > 5 5

4 0 3°n I -2.1 3°n 2,2 1 J3%n 02,2 , n

u = . i ¥
put F, ”U";’.IIU II,?.I‘!.']U [rf,lg“?] U [r‘?.z.ro]. Further,

we define FJ. , for every j € N, in the similar way. Put
= n FJ. : JEN}. Then ® is homeomorphic to the Cantor set
and, hence. 19| = ZRU. Thus ® =" | P is a nonvoid closed subset
of (P, 91P) and ¢ ¢ Vn \ A. It is well known that every point of
the Cantor set is a complete accumulation point of it. Hence,

fg‘f' CI(Z.‘JJ'I" Thus ¢ is not closed in (Z.,9). So, we proved that

(2,7) « X". Q.E.D.



[A]

[AF]

[BDN]

[DIT]

[E]
(M]

[0]

[PR1]

[PR2]

[s]

Relerences

Arhangel'skii A.V., Some properties of radial spaces, Mat.
Zametki 27, 1 (1980), 95-104 (in Russian).

Arhangelskii A.V., Franklin S.P., Ordinal invariants for
topological spaces, Michigan Math. J., 15 (1968), 313-320.
Barov S., Dimov G., Nedev St., On a theorem of H.-J.
Schmidt, Compt. rend. Acad. bulgare Sci. 46, 2 (1993).

Dimov G., Isler R.., Tironi G., On functions preserving
almost radiality and their relations to radial and
pseudo-radial spaces, Comm. Math. Univ., Carolinae 28, 4
(1987), 751-781.

Engelking R.. General Topology, PWN, Warszawa, 1977.

Michael E., Topologies on spaces of subsets, Trans. Amer.
Math. Soc. 71 (1951), 152-182.

Okromeshko N.G., Quotient mappings and embeddings of
topological spaces, Mappings and Functors, Moskwa, MGU
(1984), 66-72 (in Russian).

Paoli M., Ripoli E., Su un’ immersione in topologie su spazi
di sottoinsiemi, Bollettino U.M.I. (6) 4-A (1985), 111-118.
Paoli M., Ripoli E., Ulteriori proprieta di una particolare
immersione in spazi di sottoinsiemi, Bollettino U.M.I. (6)
S-A (1986), 345-347.

Schmidt H.-J.. Hyperspaces of quotient and subspaces. 1.
Hausdorff topological spaces, Math. Nachr. 104 (1981),

A
271-280,



[Se]

[ss]

(v]

Stoyu Barov

Institute or Mathematice, Hulg. Acad. of Sciencen,

George Dimov
Institute or Mathematice, Bulg. Acad. of Sciences, 1113

Stoyan Nedevy
Institute of Mathematics, Bulg. Acad. of

Sekanina M.. Topologics on systems of subsets. Proc. of the

4. Prague Top. Symp.. 1976. Part B. Contributed Papers.

Prague 1977, 420-424.
Steen L. A. and Scebach J. A., Counterexamples in Topology,

Springer Verlag (1978).
Vaughan J. E., A countably compact, [first countable,

non-normal T ,-space, Proc. Amer. Math. Soc. 75, 2 (1979),

339-342.

1113 Sofia, Hulgaria.
Sofia, Hulgaria.

Sciences, 1113 Sofia, Bulgaria.

ta
tJ



SHUHYE T

WAAIH

-70



