ИНСТИТУТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

INSTITUTE OF MATHEMATICS AND INFORMATICS

Секция Комплексен анализ

Section Complex Analysis

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ

BULGARIAN ACADEMY OF SCIENCES Комутанти на оператора на Ойлер и съответни средно-периодични функции

Иван Димовски и Валентин Христов

Commutants of the Euler Operator and Corresponding Mean-Periodic Functions

Ivan H. Dimovski and Valentin Z. Hristov

PREPRINT № 2/2005

Sofia September 2005

Commutants of the Euler operator and corresponding mean-periodic functions

Ivan H. Dimovski and Valentin Z. Hristov

Abstract

The Euler operator $\delta=t\frac{d}{dt}$ is considered in the space $C=C(\mathbb{R}_+)$, $\mathbb{R}_+=(0,\infty)$, and the operators $M:C\to C$ such that $M\delta=\delta M$ in $C^1(\mathbb{R}_+)$ are characterized. Next, for a non-zero linear functional $\Phi:C(\mathbb{R}_+)\to\mathbb{C}$ the continuous linear operators M with the invariant hyperplane $\Phi\{f\}=0$ and commuting with δ in it are also characterized. Further, mean-periodic functions for δ with respect to the functional Φ are introduced and it is proved that they form an ideal in a corresponding convolutional algebra $(C(\mathbb{R}_+),*)$. As an application the mean-periodic solutions of Euler differential equations are characterized.

Key words and phrases: commutant, Riesz-Markov theorem, invariant hyperplane, convolutional algebra, multiplier, cyclic element, mean-periodic function.

1 Introduction

Compared with the case of the differentiation operator $D=\frac{d}{dt}$ in a space C of continuous functions, the problem of characterizing the continuous linear operators $M:C\to C$ commuting with the Euler operator $\delta=t\frac{d}{dt}$, i.e. such that

$$M\delta = \delta M$$

in C^1 , had not been so intensively treated as the corresponding problem for D. Here we can mention only the classical book of B. Ya. Levin [12], Ch. 8 and 9, Theorem 20, pp. 379-380, where δ is considered in spaces of entire functions.

In the operational calculus developed in Elizarraraz and Verde-Star [9] in fact some operators commuting with the Euler operator are found.

Due to the analogy of the considerations for δ and D, a short survey of the results for the differentiation operator will be made.

N. Bourbaki [1], Chapter 6, seems to be the first to characterize the linear continuous operators $M: C(\mathbb{R}) \to C(\mathbb{R})$ with MD = DM in $C^1(\mathbb{R})$: These are the operators of the form

$$Mf(t) = \Phi_{\tau}\{f(t+\tau)\},\,$$

where Φ is a linear functional on $C(\mathbb{R})$. According to F. Riesz – A. Markov theorem ([8], Theorem 4.10.1) Φ has the form

$$\Phi(f) = \int_{\alpha}^{\beta} f(\tau) d\sigma(\tau)$$

where $-\infty < \alpha < \beta < \infty$ and $\sigma(\tau)$ is a Radon measure.

J. Delsarte [2] introduced the space of the mean-periodic functions determined by the functional Φ as the kernel space of M. For details see also L. Schwartz [13].

One of the authors (I. Dimovski [3]) had found the linear continuous operators $M: C(\mathbb{R}) \to C(\mathbb{R})$, such that the subspace $C_{\Phi} = \{f \in C(\mathbb{R}), \Phi(f) = 0\}$ is an invariant subspace of M and M commutes with D in C_{Φ}^1 . It happened that these are the operators of the form

$$Mf = \mu f(t) + m * f,$$

where $\mu = \text{const}$, $m \in C(\mathbb{R})$ and * is the operation

$$(f * g)(t) = \Phi_{\tau} \left\{ \int_{\tau}^{t} f(t + \tau - \sigma) d(\sigma) d\sigma \right\}.$$

Quite natural is the question about the relationship between the two types of commutants. A partial answer is given by the following theorem (Dimovski and Skórnik [6],[7]):

The space of the mean-periodic functions determined by the functional Φ forms an ideal in the convolutional algebra $(C(\mathbb{R}), *)$.

Similar results for the Pommiez operator $\Delta f(z) = [(f(z) - f(0))]/z$ are presented by the authors in [5].

An interesting historical survey about commutants of the differentiation operator and related operators like the Euler one can be found in the book [11] of Yu. F. Korobeinik.

2 General commutant

Theorem 1. A linear continuous operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$ commutes with $\delta = t \frac{d}{dt}$ in $C^1(\mathbb{R}_+)$ iff it admits a representation of the form

$$(Mf)(t) = \Phi_{\tau}\{f(t\tau)\}\tag{1}$$

with a continuous linear functional $\Phi: C(\mathbb{R}_+) \to \mathbb{C}$.

Proof: Consider the one-parameter family T^{τ} , $0 < \tau < \infty$, of the shift operators defined by

$$(T^{\tau}f)(t) := f(t\tau), \qquad 0 < \tau < \infty. \tag{2}$$

Each of them commutes with $\delta = t \frac{d}{dt}$ in $C^1(\mathbb{R}_+)$. Indeed,

$$(\delta T^{\tau} f)(t) = t f'(t\tau)\tau = t\tau f'(t\tau) = (\delta f)(t\tau) = (T^{\tau} \delta f)(t).$$

Lemma 1. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$ commutes with $\delta = t \frac{d}{dt}$ in $C^1(\mathbb{R}_+)$ iff M commutes with T^{τ} for all $\tau, 0 < \tau < \infty$.

Proof: First a "multiplicative" version of the Taylor formula is needed. Let f be a polynomial and g be the function defined by

$$g(x) = f(e^x).$$

Then

$$f(t\tau) = g(\ln(t\tau)) = g(\ln t + \ln \tau).$$

Denote $x = \ln t$ and $\xi = \ln \tau$, i.e. $t = e^x$ and $\tau = e^{\xi}$, and apply the usual Taylor formula for g:

$$f(t\tau) = g(x+\xi) = \sum_{n=0}^{\infty} \frac{g^{(n)}(x)}{n!} \xi^n.$$
 (3)

Then,

$$g'(x) = \frac{dg(x)}{dx} = \frac{dg(\ln t)}{dt} \cdot \frac{dt}{dx} = \frac{df(t)}{dt} \cdot \frac{de^x}{dx} = f'(t)e^x = tf'(t) = (\delta f)(t). \tag{4}$$

Further,

$$g''(x) = (\delta^2 f)(t), \dots, g^{(n)}(x) = (\delta^n f)(t), \dots$$
 (5)

Substituting (4) and (5) in (3) gives the desired "multiplicative" Taylor formula:

$$(T^{\tau}f)(t) = f(t\tau) = \sum_{n=0}^{\infty} (\delta^n f)(t) \frac{(\ln \tau)^n}{n!}.$$
 (6)

It is true for arbitrary polynomial f(t).

Now suppose that M commutes with the Euler operator δ , i.e. $M\delta = \delta M$. Then, for every $\tau, 0 < \tau < \infty$, (6) implies

$$(MT^{\tau}f)(t) = M \sum_{n=0}^{\infty} (\delta^{n}f)(t) \frac{(\ln \tau)^{n}}{n!} = \sum_{n=0}^{\infty} (M(\delta^{n}f))(t) \frac{(\ln \tau)^{n}}{n!} =$$
$$= \sum_{n=0}^{\infty} (\delta^{n}(Mf))(t) \frac{(\ln \tau)^{n}}{n!} = (T^{\tau}Mf)(t).$$

In order to prove the opposite implication, suppose $MT^{\tau} = T^{\tau}M$ for every $\tau, 0 < \tau < \infty$, and for arbitrary polynomial f(t), and reverse the order in the last chain of equalities as follows:

$$\sum_{n=0}^{\infty} (M(\delta^n f))(t) \frac{(\ln \tau)^n}{n!} = (M(T^{\tau} f))(t) =$$

$$= (T^{\tau} (Mf))(t) = \sum_{n=0}^{\infty} (\delta^n (Mf))(t) \frac{(\ln \tau)^n}{n!}.$$

The sums have to coincide for every τ and hence the coefficients of $(\ln \tau)^n$ are equal for arbitrary n. For n=1 it follows that

$$(M(\delta f))(t) = (\delta(Mf))(t). \tag{7}$$

Assuming that (7) is true for polynomials, it follows that it is true for arbitrary $f \in C^1(\mathbb{R}_+)$ since f could be approximated by polynomials. The proof of the lemma is completed.

Proof of Theorem 1:

It is a matter of a direct check to show that the operators of the form (1) commute with δ and here only the proof of the necessity is needed.

If M commutes with δ , then by the lemma

$$MT^{\tau}f(t) = T^{\tau}Mf(t), \qquad 0 < \tau < \infty.$$
 (8)

Applying the symmetry property

$$(T^{\tau}f)(t) = f(t\tau) = f(\tau t) = (T^{t}f)(\tau)$$
 (9)

to the right hand side of (8) gives

$$(M(T^{\tau}f))(t) = (T^{t}(Mf))(\tau).$$
 (10)

Define the linear functional Φ as

$$\Phi\{f\} := (Mf)(1).$$

Then, substituting 1 for t in (10) and taking into account that T^1 is the identity operator, one has

$$(M(T^{\tau}f))(1) = (T^{1}(Mf))(\tau) = (Mf)(\tau).$$

The left hand side is the value of the functional Φ for the function $g(t) = (T^{\tau}f)(t)$, and hence

$$(Mf)(\tau) = \Phi_{\sigma}\{(T^{\tau}f)(\sigma)\} = \Phi_{\sigma}\{(T^{\sigma}f)(\tau)\}$$

Using (2) and (9), this is in fact the desired representation (1) of the commutant of δ with τ for t, and with the dumb variable σ instead of τ . This completes the proof.

The abundance of the operators, commuting with δ in $C(\mathbb{R}_+)$ given by Theorem 1 is in sharp contrast to the set of linear operators commuting with δ in $C(\Delta)$, where Δ is a segment $[a,b] \subset \mathbb{R}_+$. Then the only such operators are the trivial ones:

$$Mf(t) = cf(t), \qquad c = \text{const.}$$

Such a result for the differentiation operator $\frac{d}{dx}$ is shown by C. Kahane [10]. The corresponding result for the Euler operator δ will be stated in the following theorem:

Theorem 2. Let $[a,b] \subset \mathbb{R}_+$. Then a continuous linear operator $M: C[a,b] \to C[a,b]$, such that $M: C^1[a,b] \to C^1[a,b]$, commutes with the Euler operator δ in $C^1[a,b]$ if and only if it is an operator of the form

$$Mf(t) = cf(t),$$

with a constant c.

Proof: Let [a, b] be an arbitrary segment of \mathbb{R}_+ and let $M\delta = \delta M$ in $C^1[a, b]$. Consider the substitution $t = e^x$ as the transformation

$$Sf(t) = f(e^x) =: \widetilde{f}(x). \tag{11}$$

Obviously $S: C[a,b] \to C[\ln a, \ln b]$ and $S: C^1[a,b] \to C^1[\ln a, \ln b]$. Then, denoting $D:=\frac{d}{dt}$, one has as in (4)

$$S\delta f(t) = f'(e^x) = DSf(t). \tag{12}$$

It is supposed that

$$M\delta f(t) = \delta M f(t).$$

Applying S on the left and using (12) yields

$$SM\delta f(t) = S\delta M f(t) = DSM f(t).$$
 (13)

Denoting by \widetilde{M} the operator

$$\widetilde{M} = SMS^{-1}. (14)$$

it is easily seen from (13) and (12) that

$$\widetilde{M}D\widetilde{f}(x) = D\widetilde{M}\widetilde{f}(x). \tag{15}$$

This means that the conditions of Kahane's theorem ([10]) are fulfilled for the operator \widetilde{M} in $C[\ln a, \ln b]$ and the result is that

$$\widetilde{M}\widetilde{f}(x) = c\widetilde{f}(x), \qquad c = \text{const},$$

which in view of (11) and (14) gives also the desired

$$Mf(t) = cf(t),$$
 $c = const.$

3 A general convolution related to the Euler operator

Basic for the theory of the differentiation operator $\frac{d}{dt}$ considered in a space $C(\Delta)$ of continuous functions on an interval Δ is the operation

$$(f * g)(t) = \Phi_{\tau} \left\{ \int_{\tau}^{t} f(t + \tau - \sigma)g(\sigma)d\sigma \right\}, \tag{16}$$

where Φ is a linear functional on $C(\Delta)$. Its properties are studied in details in [4]. The operation (16) is bilinear, commutative, and associative in $C(\Delta)$. It generalizes the classical Duhamel convolution

$$(f * g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau \tag{17}$$

when the functional Φ in (16) is $\Phi(f) = f(0)$.

In [3] it is shown that any operator of the commutant of $\frac{d}{dt}$ in $C(\Delta)$ with an invariant hyperplane $C_{\Phi}(\Delta) = \{f \in C(\Delta), \Phi(f) = 0\}$ has the form $Mf(t) = \mu f(t) + (m * f)(t)$ with $\mu = \text{const}$ and $m \in C(\Delta)$.

In order to extend this result to the Euler operator an analogue of the operation (16) is needed. In the literature only the analogue

$$(f * g)(t) = \int_{1}^{t} f\left(\frac{t}{\tau}\right) g(\tau) \frac{d\tau}{\tau}$$

of the Duhamel convolution (17) is known (see [9]).

Definition 1. The analytic function

$$E(\lambda) = \Phi_{\tau}(\tau^{\lambda}) \tag{18}$$

is said to be the Euler indicatrix of the functional Φ .

It is also convenient to denote for the rest of the paper

$$\varphi_{\lambda}(t) = \frac{t^{\lambda}}{E(\lambda)} = \frac{t^{\lambda}}{\Phi_{\tau}(\tau^{\lambda})}.$$
(19)

Here a "multiplicative variant" of (16) is proposed:

Theorem 3. Let Φ be a continuous non-zero linear functional on $C(\mathbb{R}_+)$. Then the operation

$$(f * g)(t) = \Phi_{\tau} \left\{ \int_{\tau}^{t} f\left(\frac{t\tau}{\sigma}\right) g(\sigma) \frac{d\sigma}{\sigma} \right\}$$
 (20)

is a separately continuous, bilinear, commutative, and associative operation in $C(\mathbb{R}_+)$ such that

$$\Phi(f * g) = 0. \tag{21}$$

Proof: According to Riesz-Markov theorem ([8], Theorem 4.10.1)

$$\Phi\{f\} = \int_{\alpha}^{\beta} f(\tau) d\sigma(\tau)$$

with $\Delta = [\alpha, \beta] \subset \mathbb{R}_+$ and a Radon measure $\sigma(t)$. Hence (20) is a separately continuous operation in $C(\Delta)$.

The bilinearity and the commutativity of the operation (20) are almost evident, while the associativity of (20) is by no means obvious and needs a proof.

Let $f(t) = t^{\mu}$ and $g(t) = t^{\nu}$. Then

$$\begin{aligned} \{t^{\mu}\} * \{t^{\nu}\} &= \Phi_{\tau} \left\{ \int_{\tau}^{t} \frac{(t\tau)^{\mu}}{\sigma^{\mu}} \sigma^{\nu} \frac{d\sigma}{\sigma} \right\} = t^{\mu} \Phi_{\tau} \left\{ \tau^{\mu} \int_{\tau}^{t} \sigma^{\nu - \mu - 1} d\sigma \right\} = \\ &= t^{\mu} \Phi_{\tau} \left\{ \tau^{\mu} \frac{t^{\nu - \mu} - \tau^{\nu - \mu}}{\nu - \mu} \right\} = \frac{E(\mu) t^{\nu} - E(\nu) t^{\mu}}{\nu - \mu}. \end{aligned}$$

Using this expression, it follows that

$$(\{t^{\mu}\} * \{t^{\nu}\}) * \{t^{\varkappa}\} = \{t^{\mu}\} * (\{t^{\nu}\} * \{t^{\varkappa}\})$$
(22)

because both sides of (22) have one and the same symmetric form

$$t^{\mu} \frac{E(\nu)E(\varkappa)}{(\mu-\nu)(\mu-\varkappa)} + t^{\nu} \frac{E(\varkappa)E(\mu)}{(\nu-\varkappa)(\nu-\mu)} + t^{\varkappa} \frac{E(\mu)E(\nu)}{(\varkappa-\mu)(\varkappa-\nu)}.$$

with respect to μ, ν , and \varkappa . Then, (22) differentiated m, n, and k times with respect to μ, ν , and \varkappa correspondingly, gives

$$(\{t^{\mu}(\ln t)^{m}\} * \{t^{\nu}(\ln t)^{n}\}) * \{t^{\varkappa}(\ln t)^{k}\} = \{t^{\mu}(\ln t)^{m}\} * (\{t^{\nu}(\ln t)^{n}\} * \{t^{\varkappa}(\ln t)^{k}\}).$$

Next, passing to the limits $\mu \to +0$, $\nu \to +0$ and $\varkappa \to +0$, one gets

$$(\{(\ln t)^m\} * \{(\ln t)^n\}) * \{(\ln t)^k\} = \{(\ln t)^m\} * (\{(\ln t)^n\} * \{(\ln t)^k\}).$$

But the bilinearity of (20) implies for arbitrary polynomials P, Q and R

$$(\{P(\ln t)\} * \{Q(\ln t)\}) * \{R(\ln t)\} = \{P(\ln t)\} * (\{Q(\ln t)\} * \{R(\ln t)\}).$$

To finish the proof, note that if $t \in \mathbb{R}_+$, then $\ln t$ covers the whole real line \mathbb{R} . Then Weierstrass' theorem allows any function in $C(\mathbb{R}_+)$ to be approximated almost uniformly by polynomials of $\ln t, t > 0$, i.e. by a sequence uniformly convergent to the function on each segment $[a, b] \subset \mathbb{R}_+$. Due to the continuity of the functional Φ the desired equality holds for every $f, g, h \in C(\mathbb{R}_+)$

$$(f * g) * h = f * (g * h).$$

The second statement (21) of the theorem can fe checked as follows: The function

$$h(t,\tau) = \int_{\tau}^{t} f\left(\frac{t\tau}{\sigma}\right) g(\sigma) \frac{d\sigma}{\sigma}$$

is antisymmetric with respect to t and τ , i.e. $h(t,\tau) = -h(\tau,t)$, and, hence

$$\begin{aligned}
\Phi\{f * g\} &= \Phi_t\{(f * g)(t)\} = \Phi_t\Phi_\tau\{h(t,\tau)\} = \\
&= \Phi_t\Phi_\tau\{-h(\tau,t)\} = -\Phi_t\Phi_\tau\{h(\tau,t)\} = \\
&= -\Phi_\tau\Phi_t\{h(\tau,t)\} = -\Phi_t\Phi_\tau\{h(t,\tau)\} = -\Phi\{f * g\}.
\end{aligned} (23)$$

Here the Fubini property of the functional Φ is used, i.e. the possibility of interchanging of Φ_t and Φ_τ . At the end, t and τ are also interchanged, since they are "dumb" variables in the expression. Thus the last chain of equalities gives $2\Phi\{f*g\}=0$ and $\Phi\{f*g\}=0$ holds.

4 The commutant of δ in an invariant hyperplane

In this section another commutant of δ will be described. Here it is supposed that the operators $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ preserve $C^1(\mathbb{R}_+)$, i.e. $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$, and additionally they preserve invariant also a hyperplane

$$C_{\Phi} := \{ f \in C(\mathbb{R}_+) : \Phi\{f\} = 0 \},$$
 (24)

i.e. $M: C_{\Phi} \to C_{\Phi}$, where $\Phi: C(\mathbb{R}_+) \to \mathbb{C}$ is an arbitrary non-zero linear functional.

The main result of this section is the explicit representation $Mf = \mu f + m * f$ of any linear continuous operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C_{\Phi} \to C_{\Phi}$ and commutting with $\delta = t \frac{d}{dt}$ in $C_{\Phi}^1 := C_{\Phi} \cap C^1(\mathbb{R}_+)$.

To this end some auxilliary results will be considered.

Lemma 2. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$ and $M: C_{\Phi}(\mathbb{R}_+) \to C_{\Phi}(\mathbb{R}_+)$, commutes with the Euler operator δ in $C_{\Phi}^1(\mathbb{R}_+)$ iff M commutes with L_{λ} in $C(\mathbb{R}_+)$, where L_{λ} is the right inverse in $C(\mathbb{R}_+)$ of the perturbed Euler operator $\delta_{\lambda} = \delta - \lambda$, satisfying the boundary condition $\Phi(L_{\lambda}f) = 0$.

Proof: First an explicit expression for L_{λ} will be found. Let λ be such that $E(\lambda) \neq 0$. Then

$$L_{\lambda}f(t) = \int_{1}^{t} \left(\frac{t}{\tau}\right)^{\lambda} f(\tau) \frac{d\tau}{\tau} - \frac{t^{\lambda}}{E(\lambda)} \Phi_{\tau} \left\{ \int_{1}^{\tau} \left(\frac{\tau}{\sigma}\right)^{\lambda} f(\sigma) \frac{d\sigma}{\sigma} \right\}. \tag{25}$$

Indeed, the general solution of the linear differential equation $t\frac{dy}{dt} - \lambda y$ = f(t) is $y = t^{\lambda} \left(c + \int_{1}^{t} \frac{f(\tau)}{\tau^{\lambda+1}} d\tau\right)$ with an arbitrary constant c. Then, using the condition $\Phi\{y\} = 0$, one obtains the value

$$c = -\frac{t^{\lambda}}{E(\lambda)} \Phi_{\tau} \left\{ \int_{1}^{\tau} \left(\frac{\tau}{\sigma} \right)^{\lambda} f(\sigma) \frac{d\sigma}{\sigma} \right\}.$$

Now suppose that $ML_{\lambda} = L_{\lambda}M$ in $C(\mathbb{R}_+)$ and $f \in C^1_{\Phi}(\mathbb{R}_+)$. To prove that

$$h = (M\delta_{\lambda} - \delta_{\lambda}M)f = 0,$$

consider

$$L_{\lambda}h = L_{\lambda}M\delta_{\lambda}f - L_{\lambda}\delta_{\lambda}Mf = M(L_{\lambda}\delta_{\lambda})f - (L_{\lambda}\delta_{\lambda})Mf) = Mf - Mf = 0.$$

But $L_{\lambda}h = 0$ implies $\delta_{\lambda}L_{\lambda}h = 0$, i.e. h = 0. Hence $M\delta_{\lambda}f = \delta_{\lambda}Mf$.

Conversely, let $M\delta_{\lambda}f = \delta_{\lambda}Mf$ for every $f \in C_{\Phi}^{1}(\mathbb{R}_{+})$. If $g \in C(\mathbb{R}_{+})$, then there is a function $f \in C_{\Phi}^{1}(\mathbb{R}_{+})$, for which $f = L_{\lambda}g$. After the substitution $f = L_{\lambda}g$ in $\delta_{\lambda}Mf = M\delta_{\lambda}f$, one gets

$$\delta_{\lambda}(ML_{\lambda}g) = M\delta_{\lambda}L_{\lambda}g = Mg.$$

Since $\Phi\{L_{\lambda}g\}=0$, then $\Phi\{ML_{\lambda}g\}=0$. But the solution of the equation $\delta_{\lambda}y=Mg$ with the condition $\Phi\{y\}=0$ by definition is $y=L_{\lambda}(Mg)$, which implies

$$ML_{\lambda}g = L_{\lambda}Mg$$

in $C(\mathbb{R}_+)$, which completes the proof.

Lemma 3. The operator L_{λ} given by (25) is a convolution operator of the form

$$L_{\lambda}f = \varphi_{\lambda} * f = \left\{\frac{t^{\lambda}}{E(\lambda)}\right\} * f.$$
 (26)

Proof: The equality (26) can be checked directly using (21) and the representation $\int_{\tau}^{t} = \int_{1}^{t} - \int_{1}^{\tau}$.

Theorem 4. The commutant of δ in the invariant hyperplane C_{Φ} coincides with the commutant of any of the operators L_{λ} in $C(\mathbb{R}_{+})$.

Proof: Let $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ be a linear operator commuting with L_{λ} for some $\lambda \in \mathbb{C}$, i.e. $ML_{\lambda} = L_{\lambda}M$. First, it will be proved that C_{Φ} is an invariant hyperplane for M. Indeed, let g be a function from $C(\mathbb{R}_+)$ and f be the solution of the problem

$$\delta f - \lambda f = g, \qquad \Phi\{f\} = 0. \tag{27}$$

Then

$$L_{\lambda}Mg = ML_{\lambda}g = Mf \tag{28}$$

and hence

$$Mg = (\delta - \lambda)Mf.$$

Using (27) this can be written as

$$M(\delta - \lambda)f = (\delta - \lambda)Mf$$

or, equivalently,

$$(M\delta)f = (\delta M)f.$$

It remains to show that $\Phi\{Mf\} = 0$. This follows using (28) and the representation (26) of L_{λ} as a convolutional operator, along with the property $\Phi\{p*q\} = 0$ for arbitrary $p, q \in C(\mathbb{R}_+)$ of the convolution (20).

Conversely, let $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ have the hyperplane C_{Φ} as an invariant subspace and let $M\delta = \delta M$ in C_{Φ}^1 . One has to prove that $ML_{\lambda} = L_{\lambda}M$ for $\lambda \in \mathbb{C}$ with $E(\lambda) \neq 0$.

Let $f \in C(\mathbb{R}_+)$ be arbitrary and denote $h = (ML_{\lambda} - L_{\lambda}M)f$. Then

$$(\delta - \lambda)h = (\delta - \lambda)ML_{\lambda}f - Mf = M(\delta - \lambda)L_{\lambda}f - Mf = 0$$

and also

$$\Phi\{h\} = \Phi\{ML_{\lambda}f\} - \Phi\{L_{\lambda}Mf\} = 0,$$

according to our assumptions. Since λ is not an eigenvalue, i.e. $E(\lambda) \neq 0$, then h = 0, or

$$ML_{\lambda}f = L_{\lambda}Mf.$$

The proof is completed.

Definition 2. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ is said to be a multiplier of the convolutional algebra $C(\mathbb{R}_+), *)$ when for arbitrary $f, g \in C(\mathbb{R}_+)$ it holds

$$M(f * g) = (Mf) * g.$$

Theorem 5. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ with $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$ is a multiplier of the convolution algebra $(C(\mathbb{R}_+), *)$ iff it has a representation of the form

$$Mf(t) = \mu f(t) + (m * f)(t),$$
 (29)

where $\mu = \text{const}$ and $m \in C(\mathbb{R}_+)$.

Proof: The sufficiency is obvious. In order to prove the necessity, the notations from (18) and (19) will be used for convenience.

Let $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ be an arbitrary multiplier of $(C(\mathbb{R}_+), *)$. Applying (26), one has

$$ML_{\lambda}f = M(\varphi_{\lambda} * f) = (M\varphi_{\lambda}) * f = \varphi_{\lambda} * Mf = L_{\lambda}Mf, \tag{30}$$

i.e. $ML_{\lambda}f = L_{\lambda}Mf$. Also, denoting $e_{\lambda} = M\varphi_{\lambda}$, one has $e_{\lambda} \in C^{1}(\mathbb{R}_{+})$, and (30) gives

$$L_{\lambda}Mf = e_{\lambda} * f.$$

It remains to apply the operator $\delta_{\lambda} = \delta - \lambda$ and the definition of L_{λ} as the right inverse operator of δ_{λ} to obtain

$$Mf = \delta_{\lambda}(e_{\lambda} * f).$$

The right hand side can be represented in a different way using the identity

$$\delta_{\lambda}(u * v) = (\delta_{\lambda}u) * v + \Phi(u)v \tag{31}$$

which can be checked directly. Then

$$(Mf)(t) = [(\delta_{\lambda}e_{\lambda}) * f](t) + \Phi(e_{\lambda})f(t),$$

which is the representation (29) with $\mu = \Phi(e_{\lambda}) = \Phi\{M\varphi_{\lambda}\}$ and $m(t) = (\delta_{\lambda}e_{\lambda})(t) = [\delta_{\lambda}M\varphi_{\lambda}](t)$. Thus, the necessity is proved.

Theorem 6. The function $\varphi_{\lambda}(t) = \frac{t^{\lambda}}{E(\lambda)}$ is a cyclic element of the operator L_{λ} .

Proof: Let $f \in C(\mathbb{R}_+)$ be arbitrarily chosen. It is needed to prove that there is a sequence of functions of the form

$$f_n(t) = \sum_{k=0}^{n} c_{nk} L_{\lambda}^k \varphi_{\lambda}(t), \quad n = 1, 2, \dots$$

converging to f(t) uniformly on any segment [a, b] of \mathbb{R}_+ . First, it is easy to show by induction that

$$L_{\lambda}^{k}\varphi_{\lambda}(t) = t^{\lambda}p_{k}(\ln t), \tag{32}$$

where p_k is a polynomial of degree k, i.e. $p_k(\ln t) = \sum_{s=0}^k a_{ks}(\ln t)^s$.

Indeed, if k = 1, then by (26) and (20)

$$L_{\lambda}\varphi_{\lambda}(t) = \left\{\frac{t^{\lambda}}{E(\lambda)}\right\} * \left\{\frac{t^{\lambda}}{E(\lambda)}\right\} = \frac{1}{E^{2}(\lambda)}\Phi_{\tau}\left\{\int_{\tau}^{t} \left(\frac{t\tau}{\sigma}\right)^{\lambda} \sigma^{\lambda} \frac{d\sigma}{\sigma}\right\} =$$

$$= \frac{1}{E^{2}(\lambda)}t^{\lambda}\Phi_{\tau}\left\{\tau^{\lambda}\int_{\tau}^{t} \frac{d\sigma}{\sigma}\right\} = t^{\lambda}\left[\frac{\Phi_{\tau}\{\tau^{\lambda}\}}{E^{2}(\lambda)}\ln t - \frac{\Phi_{\tau}\{\tau^{\lambda}\ln \tau\}}{E^{2}(\lambda)}\right].$$

Next, the inductive step will be made. Suppose that

$$L_{\lambda}^{k-1}\varphi_{\lambda}(t) = t^{\lambda}p_{k-1}(\ln t).$$

Then

$$L_{\lambda}^{k}\varphi_{\lambda}(t) = L_{\lambda}(L_{\lambda}^{k-1}\varphi_{\lambda}(t)) = \left\{\frac{t^{\lambda}}{E(\lambda)}\right\} * L_{\lambda}^{k-1}\varphi_{\lambda}(t) =$$

$$= \frac{1}{E(\lambda)}\Phi_{\tau}\left\{\int_{\tau}^{t} \left(\frac{t\tau}{\sigma}\right)^{\lambda} \sigma^{\lambda} p_{k-1}(\ln \sigma) \frac{d\sigma}{\sigma}\right\} =$$

$$= \frac{1}{E(\lambda)}t^{\lambda}\Phi_{\tau}\left\{\tau^{\lambda}\int_{\tau}^{t} p_{k-1}(\ln \sigma) d\ln \sigma\right\}.$$

The integration of p_{k-1} gives a polynomial q_k of $\ln t$ of degree k and the above chain of equalities can be continued as

$$L_{\lambda}^{k}\varphi_{\lambda}(t) = \frac{1}{E(\lambda)}t^{\lambda}\Phi_{\tau}\left\{\tau^{\lambda}[q_{k}(\ln t) - q_{k}(\ln \tau)]\right\} =$$

$$= t^{\lambda}\left[\frac{\Phi_{\tau}\{\tau^{\lambda}\}}{E(\lambda)}q_{k}(\ln t) - \frac{\Phi_{\tau}\{\tau^{\lambda}q_{k}(\ln \tau)\}}{E(\lambda)}\right],$$

where the expression in the square brackets is obviously a polynomial p_k of $\ln t$ of degree k, as desired.

Now let $f \in C(\mathbb{R}_+)$ be arbitrarily chosen. Consider the function $\widetilde{f}(t) = \frac{f(t)}{t^{\lambda}}$, which is again in $C(\mathbb{R}_+)$. Making the substitution $t = e^x$, $x = \ln t$, the new function $g(x) = \widetilde{f}(t)$ is in $C(-\infty, \infty)$. By Weierstrass' theorem, g(x) = f(t)

can be approximated almost uniformly on $(-\infty, \infty)$ by a sequence of polynomials $\{r_n(x)\}_{n=1}^{\infty}, r_n(x) = \sum_{k=0}^n b_{nk} x^k$, i.e. the convergence is uniform on any segment $[a,b] \subset (\mathbb{R}_+)$. Returning to the old variable, $\tilde{f}(t)$ can be approximated by the sequence of polynomials $\{r_n(\ln t) = \sum_{k=0}^n b_{nk} (\ln t)^k\}_{n=1}^{\infty}$. Finally, multiplying by t^{λ} and using (32), the desired approximation of f(t) on (\mathbb{R}_+) follows from the representation

$$f_n(t) = t^{\lambda} r_n(\ln t) = \sum_{k=0}^n b_{nk} t^{\lambda} (\ln t)^k = \sum_{k=0}^n c_{nk} t^{\lambda} p_k(\ln t) = \sum_{k=0}^n c_{nk} L_{\lambda}^k \varphi_{\lambda}(t).$$

The new coefficients c_{nk} can be calculated from the old ones b_{nk} . Thus, φ_{λ} is a cyclic element of L_{λ} in $C(\mathbb{R}_+)$.

Theorem 7. A linear operator $M: C(\mathbb{R}_+) \to C(\mathbb{R}_+)$, such that $M: C^1(\mathbb{R}_+) \to C^1(\mathbb{R}_+)$, and with an invariant hyperplane $C_{\Phi} = \{f \in C(\mathbb{R}_+) : \Phi\{f\} = 0\}$ commutes with δ in C_{Φ}^1 if and only if it has a representation of the form

$$(Mf)(t) = \mu f(t) + (m * f)(t)$$
(33)

with a constant $\mu \in \mathbb{C}$ and $m \in C(\mathbb{R}_+)$.

Proof: Since $\Phi\{f * g\} = 0$ for $f, g \in C(\mathbb{R}_+)$ (see (10)), then each operator of the form (33) has C_{Φ} as an invariant subspace. It commutes with δ in C_{Φ}^1 . Indeed, if $f \in C_{\Phi}^1$, then (31) gives

$$\delta(m * f) = m * \delta f + \Phi\{f\}m$$

and, using (33),

$$\delta Mf = \mu \delta f + m * (\delta f) + \Phi \{f\} m = \mu \delta f + m * (\delta f) = M \delta f.$$

The sufficiency is proved.

In order to prove the necessity of (33), according to Lemma 2, $ML_{\lambda} = L_{\lambda}M$ for $\lambda \in \mathbb{C}$ with $E(\lambda) \neq 0$. As it is shown in the book [4] (Theorem 1.3.11, p.33), the commutant of L_{λ} coincides with the ring of the multipliers of the convolution algebra $(C(\mathbb{R}_+), *)$ since L_{λ} has a cyclic element. By Theorem 6 such a cyclic element is the function $\varphi_{\lambda}(t) = \frac{t^{\lambda}}{E(\lambda)}$ for which $L_{\lambda}f$

 $=\varphi_{\lambda}*f$. The proof is completed.

Remark. The constant μ and the function $m \in C(\mathbb{R}_+)$ in (29) are uniquely determined. Indeed, assume that $\mu f + m * f = \mu_1 f + m_1 * f$. Take f such that $\Phi(f) \neq 0$. Then, (23) implies $\mu \Phi(f) = \mu_1 \Phi(f)$, and hence $\mu = \mu_1$. From $m * f = m_1 * f$ for arbitrary $f \in C(\mathbb{R}_+)$ it follows that $(m - m_1) * f = 0$, and hence $m = m_1$.

5 Mean-periodic functions for the Euler operator

Definition 3. A function $f \in C(\mathbb{R}_+)$ is said to be mean-periodic for the Euler operator with respect to the linear functional Φ if

$$\Phi_{\tau}\{f(t\tau)\} = 0$$

identically in \mathbb{R}_+ .

It is clear that the mean-periodic functions with respect to Φ form the kernel space of the operator

$$Mf(t) = \Phi_{\tau}\{f(t\tau)\}\$$

commuting with the Euler operator δ in $C(\mathbb{R}_+)$.

Now a connection between the mean-periodic functions and the convolutional algebra $(C(\mathbb{R}_+), *)$ will be shown.

Theorem 8. The mean-periodic functions for the Euler operator δ with respect to any non-zero functional $\Phi: C(\mathbb{R}_+) \to \mathbb{C}$ form an ideal in the convolutional algebra $(C(\mathbb{R}_+), *)$.

Proof: One need to prove only that the convolutional product (f * g)(t) of a mean-periodic function f and an arbitrary function $g \in C(\mathbb{R}_+)$ is a mean-periodic function, too, i.e. it is given that $\Phi_{\tau}\{f(t\tau)\}=0$ and then $\Phi_{\tau}\{(f * g)(t\tau)\}=0$ is to be shown. By (20)

$$(f * g)(t\tau) = \Phi_{\sigma} \left\{ \int_{\sigma}^{t\tau} f\left(\frac{t\tau\sigma}{\eta}\right) g(\eta) \frac{d\eta}{\eta} \right\}$$

and

$$\Phi_{\tau}\{(f * g)(t\tau)\} = \Phi_{\tau}\Phi_{\sigma}\left\{\int_{\sigma}^{t\tau} f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\} =$$

$$= \Phi_{\tau}\Phi_{\sigma}\left\{\int_{\sigma}^{\tau} f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\} + \Phi_{\tau}\Phi_{\sigma}\left\{\int_{\tau}^{t\tau} f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\}. (34)$$

Interchanging τ and σ in the first term of (34) and using the Fubini commutational property of the functionals yields

$$\begin{split} & \Phi_{\tau}\Phi_{\sigma}\left\{\int_{\sigma}^{\tau}f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\} = \Phi_{\sigma}\Phi_{\tau}\left\{\int_{\tau}^{\sigma}f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\} = \\ & = \Phi_{\sigma}\Phi_{\tau}\left\{-\int_{\sigma}^{\tau}f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\} = -\Phi_{\tau}\Phi_{\sigma}\left\{\int_{\sigma}^{\tau}f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\}, \end{split}$$

thus obtaining

$$\Phi_{\tau}\Phi_{\sigma}\left\{\int_{\sigma}^{\tau} f\left(\frac{t\tau\sigma}{\eta}\right)g(\eta)\frac{d\eta}{\eta}\right\} = 0.$$
 (35)

The second term in (34) also vanishes

$$\Phi_{\tau}\Phi_{\sigma}\left\{\int_{\tau}^{t\tau} f\left(\frac{t\tau\sigma}{\eta}\right) g(\eta) \frac{d\eta}{\eta}\right\} = \Phi_{\tau}\left\{\int_{\tau}^{t\tau} \Phi_{\sigma}\left\{f\left(\frac{t\tau\sigma}{\eta}\right)\right\} g(\eta) \frac{d\eta}{\eta}\right\} = 0$$
(36)

since f is mean-periodic and hence

$$\Phi_{\sigma} \left\{ f \left(\frac{t \tau \sigma}{\eta} \right) \right\} = 0.$$

Finally, (34), (35), and (36) give the desired result $\Phi_{\tau}\{(f*g)(t\tau)\}=0$.

6 Application to the Euler differential equation

Now Theorem 8 will be applied to find necessary and sufficient conditions in order an Euler differential equation

$$P(\delta)y(t) = f(t), \qquad 0 < t < \infty, \tag{37}$$

to have a unique mean-periodic solution with respect to a non-zero linear functional Φ in $C(\mathbb{R}_+)$. Here $\delta = t \frac{d}{dt}$ is the Euler operator and $P(\mu) = a(\mu - \mu_1)(\mu - \mu_2) \dots (\mu - \mu_k)$ is a polynomial.

Theorem 9. In order the Euler differential equation (37) to have a unique mean-periodic solution with respect to a non-zero linear functional Φ in $C(\mathbb{R}_+)$, it is necessary and sufficient no roots of the equation $P(\lambda) = 0$ to be roots of the Euler indicatrix $E(\lambda) = \Phi_{\tau}(\tau^{\lambda})$.

Proof: Consider the Euler differential equation (37). It is clear that in order y to be a mean-periodic solution, the right hand side, i.e. the function f(t), should be mean-periodic, too. Formally, let $Mf(t) = \Phi_{\tau}\{f(t\tau)\}$. Applying M to (37) and using the commutativity of $\delta = t\frac{d}{dt}$ and M yields

$$P(\delta)My(t) = Mf(t).$$

Then from My = 0 it follows that Mf = 0, i.e. the requirement f to be mean-periodic is a necessary condition for existing of a mean-periodic

solution y. It can be shown that it is also a sufficient condition, but in general the solution may not be unique. Indeed, if a root μ of the equation $P(\lambda) = 0$ is a root of the Euler indicatrix $E(\lambda)$, then the function t^{μ} is a solution of the homogeneous equation $P(\delta)u = 0$, and hence the uniqueness of the solution holds no more.

Now it will be shown that if neither of the roots $\mu_1, \mu_2, \dots, \mu_k$ of the equation $P(\lambda) = 0$ is a root of the Euler indicatrix $E(\lambda) = \Phi_{\tau}\{\tau^{\lambda}\}$, then there exists a unique mean-periodic solution of the Euler equation $P(\delta)y = f$, provided f is a mean-periodic function with respect to Φ .

Assuming that y is a mean-periodic solution of (37), an explicit expression for y will be obtained. Let P be a polynomial of degree k

$$P(\mu) = a(\mu - \mu_1)(\mu - \mu_2) \dots (\mu - \mu_k).$$

From the assumption that y is a mean-periodic solution it follows that

$$\Phi\{y\} = \Phi\{\delta y\} = \dots = \Phi\{\delta^{k-1}y\} = 0.$$
 (38)

Indeed, the mean-periodicity of y means that

$$\Phi_{\tau}\{y(t\tau)\} = 0.$$

Applying the operator δ to this identity with respect to t, Theorem 1 gives

$$\Phi_{\tau}\{(\delta^n y)(t\tau)\} = 0, \qquad n = 1, 2, \dots, k-1.$$

It remains to put t = 1 in order to obtain the boundary conditions (38). Next, the unique solution of (37) is

$$y = \frac{1}{a} L_{\mu_k} L_{\mu_{k-1}} \dots L_{\mu_1} f(t). \tag{39}$$

Indeed, the equation (37) can be represented as

$$(\delta - \mu_1)[(\delta - \mu_2) \dots (\delta - \mu_k)y(t)] = \frac{1}{a}f(t).$$

Denoting the square brackets by $u_1(t)$ yields

$$\delta u_1 - \mu_1 u_1 = \frac{1}{a} f,$$

for u_1 with $\Phi\{u_1\} = 0$, as it follows from (38). This equation has the unique solution $u_1 = \frac{1}{a} L_{\mu_1} f$ with L_{μ_1} defined as in Lemma 2. Next solve

$$\delta u_2 - \mu_2 u_2 = u_1, \qquad \Phi\{u_2\} = 0,$$

for $u_2(t) = (\delta - \mu_3) \dots (\delta - \mu_k) y(t)$ with the unique solution $u_2 = L_{\mu_2} u_1$. Continuing in the same manner one gets the unique solution (39) of the initial equation (37). Now it is easy to verify that (39) is indeed a mean-periodic solution. It can be written in the form of convolutional product using Lemma 3:

$$y = \frac{1}{a} L_{\mu_{k}} L_{\mu_{k-1}} \dots L_{\mu_{1}} f(t) =$$

$$= \left(\frac{1}{a} \varphi_{\mu_{k}} * \varphi_{\mu_{k-1}} * \dots * \varphi_{\mu_{1}}\right) * f = \varphi * f$$
(40)

with $\varphi := \frac{1}{a} \varphi_{\mu_k} * \varphi_{\mu_{k-1}} * \dots * \varphi_{\mu_1}$. It remains to use Theorem 8 to assert that the mean-periodicity of f implies the mean-periodicity of f.

References

- [1] N. Bourbaki, Éléments de mathématique, Livre IV, Fonctions d'une variable réelle, Théorie élémentaire, Hermann, Paris, 1951.
- [2] J. Delsarte, Les fonctions moyenne-périodiques, J. Math. Pures Appl., 14(1935), 403-453.
- [3] I. H. Dimovski, Representation of operators which commute with differentiation in an invariant hyperplane, C. R. Acad. bulg. Sci., 31(1978), 10, 1245-1248.
- [4] I. H. Dimovski, Convolutional calculus, Kluwer, Dordrecht, 1990 (or Az Buki, Bulg. Math. Monographs, 2, Publ. House of Bulg. Acad. Sci., Sofia, 1982).
- [5] I. H. Dimovski, V. Z. Hristov, Commutants of the Pommiez operator, International Journal of Mathematics and Mathematical Sciences, 2005(2005), No 8, 1239-1251.
- [6] I. H. Dimovski, K. Skórnik, Mean-periodic operational calculi, Algebraic analysis and related topics, Banach Center Publications, vol. 53, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 2000. 105-112.
- [7] I. H. Dimovski, K. Skórnik, Mean-periodic operational calculi. Singular cases, Fractional Calculus & Applied Analysis, 4(2001), 2, 237-243.

- [8] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965.
- [9] D. Elizarraraz, L. Verde-Star, On a class of differential equations that contains the equations of Euler and Chebyshev, Adv. Appl. Math., 19(1977), 514-528.
- [10] C. Kahane, On operators commuting with differentiation, Amer. Math. Monthly, 76(1969), 171-173.
- [11] Yu. F. Korobeinik, Shift operators on numerical families, Rostov University, 1983. (Russian)
- [12] B. Ya. Levin, Distribution of zeros of entire functions, Translations of Mathematical monographs, vol. 5, AMS, Providence, Rhode Island, 1964.
- [13] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. Math., 48(1947), 857-929.

Address of the authors: Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Section Complex Analysis, Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria.

E-mail addresses:

dimovski@math.bas.bg (Ivan Dimovski)

valhrist@bas.bg (Valentin Hristov) - preferable for contacts.