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Commutants of the FEuler operator and
corresponding mean-periodic functions

Ivan H. Dimovski and Valentin Z. Hristov

Abstract

The Euler operator § = tdit is considered in the space C' = C'(Ry),
R4+ = (0,00), and the operators M : C' — C such that M§ = §M
in C'(R4) are characterized. Next, for a non-zero linear functional
® : C(R4) — C the continuous linear operators M with the invariant
hyperplane ®{f} = 0 and commuting with § in it are also charac-
terized. Further, mean-periodic functions for § with respect to the
functional ® are introduced and it is proved that they form an ideal
in a corresponding convolutional algebra (C'(R;),*). As an appli-
cation the mean-periodic solutions of Euler differential equations are
characterized.

Key words and phrases: commutant, Riesz-Markov theorem, invariant hy-
perplane, convolutional algebra, multiplier, cyclic element, mean-periodic
function.

1 Introduction

: . A i .
Compared with the case of the differentiation operator D = =7 in a space C

of continuous functions, the problem of characterizing the continuous linear

operators M : C' — C commuting with the Euler operator § = tgt-, i.e. such

that
Mé=0M

in C'', had not been so intensively treated as the corresponding problem for
D. Here we can mention only the classical book of B. Ya. Levin [12], Ch.
8 and 9, Theorem 20, pp. 379-380, where ¢ is considered in spaces of entire
functions.

In the operational calculus developed in Elizarraraz and Verde-Star [9] in
fact some operators commuting with the Euler operator are found.

1



Due to the analogy of the considerations for § and D, a short survey of
the results for the differentiation operator will be made.

N. Bourbaki [1], Chapter 6, seems to be the first to characterize the linear
continuous operators M : C(R) = C(R) with MD = DM in C*(R): These

are the operators of the form

Mf(t) = & {f(t+ 1)},

where @ is a linear functional on C'(R). According to F. Riesz - A. Markov
theorem ([8], Theorem 4.10.1) ® has the form

8
8(f) = / £(r)do(r)

where —0o < @ < 8 < oo and o(7) is a Radon measure.

J. Delsarte [2] introduced the space of the mean-periodic functions deter-
mined by the functional ® as the kernel space of M. For details see also L.
Schwartz [13].

One of the authors (I. Dimovski [3]) had found the linear continuous oper-
ators M : C(R) — C(R), such that the subspace Cp = {f € C(R), ®(f) = 0}
is an invariant subspace of M and M commutes with D in Cy. It happened
that these are the operators of the form

Mf=puf(t)+m=f,

where p =const, m € C(R) and * is the operation

(f *9)(t) = @, { J ST a)d(afdo} .

Quite natural is the question about the relationship between the two
types of commutants. A partial answer is given by the following theorem
(Dimovski and Skérnik [6],(7]):

The space of the mean-periodic functions determined by the functional
® forms an ideal in the convolutional algebra (C(R), ).

Similar results for the Pommiez operator Af(z) = [(f(z) — f(0)]/z are
presented by the authors in [5].

An interesting historical survey about commutants of the differentiation
operator and related operators like the Euler one can be found in the book

[11] of Yu. F. Korobeinik.



2 General commutant

Theorem 1. A linear continuous operator M : C(R;) — C(R,) with
M : C'(Ry) — CYRy) commutes with § = t% in CYRy) iff it admits
a representation of the form

(Mf)(t) = ®-{f(tr)} (1)

with a continuous linear functional ® : C(R;) — C.

Proof: Consider the one-parameter family 77,0 < 7 < oo, of the shift oper-
ators defined by

(T £)(t) = flir), 0<7<o0. (2)
Each of them commutes with § = t% in C'(R). Indeed,

(8T7f)(t) = tf'(tr)r = tr f'(tr) = (6f)(tr) = (TS f)(t).

Lemma 1. A linear operator M : C(R;) — C(Ry) with M : C'(Ry)
— C'Y(R4) commutes with § = t% in CY(Ry) iff M commutes with T™ for
all 7,0 < 7 < 0.

Proof: First a "multiplicative” version of the Taylor formula is needed. Let
f be a polynomial and g be the function defined by

9(z) = f(€*).
Then
f(tr) = g(In(tr)) = g(Int + InT).

Denote z = Int and ¢ = In7, i.e. t = €* and 7 = €f, and apply the usual
Taylor formula for g:

medigo ()
fir) =ga+6) =3 e 3)
Then,
dg(x d e*
gz)= 202 doad) & _ A0 9 _ pipyer —apt) = 500). ()
Further,

g"(z) = (8f)(2),.-.,4™(z) = (8" )(t),- .. (3)



Substituting (4) and (5) in (3) gives the desired "multiplicative” Taylor for-
mula:

(7)) = 1) = Y e ()

It is true for arbitrary polynomial f(t).
Now suppose that M commutes with the Euler operator §,i.e. Md = §M.
Then, for every 7,0 < 7 < co, (6) implies

(e ]

(1)) = M Y = Y Bl -
= (InT .
2_:0 (8™(M f))( n!) = (T"Mf)(t).

In order to prove the opposite implication, suppose MT™ = T™M for
every 7,0 < 7 < 0o, and for arbitrary polynomial f(t¢), and reverse the order
in the last chain of equalities as follows:

S (e S

n=0

L = (M(TTH)(E) =

= (In T)

= (T"(M)(¢) = 2(5"(Mf))(t)

n=0

The sums have to coincide for every 7 and hence the coefficients of (In7)"
are equal for arbitrary n . For n =1 it follows that .

(M(3£))(t) = (6(M f))(2). (7)

Assuming that (7) is true for polynomials, it follows that it is true for arbi-
trary f € C'(Ry4) since f could be approximated by polynomials. The proof
of the lemma is completed.

Proof of Theorem 1:

It is a matter of a direct check to show that the operators of the form (1)
commute with § and here only the proof of the necessity is needed.

If M commutes with 4, then by the lemma

MT"f(t) = T"Mf(t), < 2. 00. (8)
Applying the symmetry property
(T7F)(t) = f(tr) = f(rt) = (T*f)(7) (9)



to the right hand side of (8) gives

(M(T™)(t) = (TX(M f))(7). (10)

Define the linear functional ® as

®{f}:=(Mf)(1).

Then, substituting 1 for ¢ in (10) and taking into account that 7" is the
identity operator, one has

(M(T7£))(1) = (T (M]))(r) = (Mf)(r).

The left hand side is the value of the functional ® for the function g(¢)
= (T7f)(t), and hence

(Mf)(r) = @{(T" f)(o)} = 2A(T° f)(7)}

Using (2) and (9), this is in fact the desired representation (1) of the com-
mutant of § with 7 for ¢, and with the dumb variable o instead of 7. This
completes the proof.

The abundance of the operators, commuting with § in C'(R4) given by
Theorem 1 is in sharp contrast to the set of linear operators commuting with
§ in C(A), where A is a segment [a,b] C Ry. Then the only such operators
are the trivial ones:

Mf(t) = ef(t), ¢ = const.

d
Such a result for the differentiation operator oh is shown by C. Kahane

T
(10]. The corresponding result for the Euler operator § will be stated in the
following theorem:

Theorem 2. Let [a,b] C R;. Then a continuous linear operator M :

Cla,b] = Cla,b], such that M : C'[a,b] = C'[a,b], commutes with the
Euler operator § in C'[a,b] if and only if it is an operator of the form

with a constant c.



Proof: Let [a,b] be an arbitrary segment of Ry and let M§ = éM in C'[a, b).
Consider the substitution ¢t = e” as the transformation

~

Sf(t) = f(e) =: f(). (11)

Obviously S : C[a,b] = C[lna,lnbd] and S : C'[a,b] - C'[Ina,lnb]. Then,

denoting D := —, one has as in (4)

dt
S6f(t) = f'(e*) = DSf(¢). (12)

[t is supposed that
M3f(t) = SMf(t).

Applying S on the left and using (12) yields
SM&f(t) = SSMf(t) = DSMf(t). (13)
Denoting by M the operator
M=SMS™. (14)
it is easily seen from (13) and (12) that
MDf(z) = DM f(x). (15)

This means that the conditions of Kahane’s theorem ([10]) are fulfilled for
the operator M in C[lna,Inb] and the result is that

Mf(a:) = c~(z), ¢ = const,
which in view of (11) and (14) gives also the desired

Mf(t) = cf(t), ¢ = const.

3 A general convolution related to the Euler
operator

. . e d : .
Basic for the theory of the differentiation operator — considered in a space

C'(A) of continuous functions on an interval A is the operation

o0 = [ 47 -olaloio}, (16)
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where @ is a linear functional on C'(A). Its properties are studied in details
in [4]. The operation (16) is bilinear, commutative, and associative in C(A).
It generalizes the classical Duhamel convolution

(f *9)(t) = / f(t = )g(r)dr (17)

when the functional @ in (16) is ®(f) = f(0).

d
In [3] it is shown that any operator of the commutant of p in C(A)

with an invariant hyperplane Co(A) = {f € C(A), ®(f) = 0} has the form
Mf(t) = puf(t) + (m * f)(t) with g = const and m € C(A).

In order to extend this result to the Euler operator an analogue of the
operation (16) is needed. In the literature only the analogue

sro0= [ 1(2)o) T

of the Duhamel convolution (17) is known (see [9]).
Definition 1. The analytic function

E()\) = &,(r) (18)
is satd to be the Fuler indicatriz of the functional ®.

It is also convenient to denote for the rest of the paper

A A
99A(t) o Et(/\) e (I)Tt(“l"\). (19)

Here a “multiplicative variant” of (16) is proposed:

Theorem 3. Let ® be a continuous non-zero linear functional on C'(R,).

Thew the opergiion
sra0=o{ [ 1(5) s} (20

is a separately continuous, bilinear, commutative, and associative operation

in C(Ry4) such that
O(f xg)=0. : (21)



Proof: According to Riesz-Markov theorem ([8], Theorem 4.10.1)

B8
b{f} = / £(r)da(r)

with A = [a, 8] C R4 and a Radon measure o(t). Hence (20) is a separately
continuous operation in C'(A).

The bilinearity and the commutativity of the operation (20) are almost
evident, while the associativity of (20) is by no means obvious and needs a
proof.

Let f(t) = t* and g(t) = t“. Then

1ot = o { [ UL Lo [frtan) -

_ Tut”“‘ - T”“‘} i E(p)t" — E(u)t“.
’ v—p v—p

Using this expression, it follows that

({t#} + {t}) = {£7} = {t"} » ({t"} = {t"}) (22)
because both sides of (22) have one and the same symmetric form
EWBG) o BGIBG) . Ew)BW)
(h=v)u=3) = (v=s)wv—p)  (x—p)(—v)

with respect to y,v, and ». Then, (22) differentiated m, n, and k times with
respect to u, v, and s correspondingly, gives

t#

({t*(In )™} +{t*(In t)"}) * {t*(In t)*} = {t“(In )™ }=({t“(In £)"} + {t*(In t)*}).
Next, passing to the limits 4 — +0,v — +0 and 3 — +0, one gets
({(nt)™} * {(Int)"}) * {(In1)*} = {(Int)"} * ({(In2)"} * {(In 1)*}).
But the bilinearity of (20) implies for arbitrary polynomials P,Q and R
({P(nt)} * {Q(Int)}) * {R(Int)} = {P(Int)} * ({Q(Int)} * {R(Int)}).

To finish the proof, note that if ¢ € R4, then Int covers the whole real line R.
Then Weierstrass’ theorem allows any function in C'(R ) to be approximated
almost uniformly by polynomials of Int,t > 0, i.e. by a sequence uniformly
convergent to the function on each segment [a,b] C R,. Due to the continuity
of the functional ® the desired equality holds for every f,g,h € C(R})

(frg)xh=1Ff*(gxh).
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The second statement (21) of the theorem can fe checked as follows: The

function : 4
(Fy o
e = [ (%) o)

is antisymmetric with respect to ¢t and 7, i.e. h(t,7) = —h(,t), and, hence
e{f+g} = ®{(f*9)(t)} = 22, {h(t,T)} =

= ®®,{~h(r,1)} = ~ @&, {h(r, 1)}
= —0,0,{h(r,0)} = 0, {h(t,T)} = —B{f x g}. (23)

Here the Fubini property of the functional ® is used , i.e. the possibility of
interchanging of ®, and ®,. At the end, ¢t and 7 are also interchanged, since
they are ”dumb” variables in the expression. Thus the last chain of equalities

gives 20{f * g} = 0 and ®{f % g} = 0 holds.

4 The commutant of 4 in an invariant hyper-
plane

In this section another commutant of § will be described. Here it is sup-
posed that the operators M : C(R;) — C(Ry) preserve C*(Ry), i.e. M :
C'(Ry) — CYRy), and additionally they preserve invariant also a hyper-
plane

Co :={f € C(Ry): ®{f} =0}, (24)

ie. M :Cp — Cp, where ® : C(R;) — C is an arbitrary non-zero linear
functional.

The main result of this section is the explicit representation M f = uf
+ m * f of any linear continuous operator M : C(R;) — C(Ry) with M :

d
Ce — Cp and commutting with § = ta in U3 =Cy NEHRL)

To this end some auxilliary results will be considered.

Lemma 2. A linear operator M : C(Ry) — C(Ry) with M : C'(Ry)
— CY(Ry) and M : Cy(R,) = Co(Ry), commutes with the Euler operator §
in Cy(Ry) iff M commutes with Ly in C(Ry), where Ly is the right inverse
in C(R,) of the perturbed Euler operator §, = 6 — A, satisfying the boundary
condition ®(L, f) = 0.

Proof: First an explicit expression for L, will be found. Let A be such that
E(A) # 0. Then



o A dr = TN do
()= - (= o g . o
Laf(1) /l <T> fir)= E(A)d’r{/l (5) /m)—n} (25)

: . : . . dy
Indeed, the general solution of the linear differential equation I,T/ — Ay
(

o .

o T) . . . .

=) W = ' e+ it dr | with an arbitrary constant ¢. Then, using

. y o 3 g
J1

the condition ®{y} = 0, one obtains the value

o l?t('\/\)(b'* {/1 (ET}>\ f(")%;} |

Now suppose that ML, = LyM in C(Ry) and f € Cy(Ry). To prove
that

h = (A\[J\ - (S,\ 1”)] —- 07
consider
Lyh = LyxMyf — LyxoM f = M(Lx6y)f — (L )M f)=Mf—-Mf =0.
But Lyh = 0 implies §\Lyh =0, i.e. h = 0. Hence M\ f = § M f.

Conversely, let Md\f = §\M f for every f € C{(Ry).-1f g € C(R,), then
there is a function f € C‘},(RQ, for which f = Lyg. After the substitution
[=L\gin M f = Mé,f, one gets

S\(MLyg) = Mé\Lrg = Mg.
Since ¢{Lyg} = 0, then ®{ML,g} = 0. But the solution of the equation
d\y = Mg with the condition ®{y} = 0 by definition is y = Ly(Mg), which

implies

MLyg= L\Mg

in C'(R,), which completes the proof.
Lemma 3. The operator L, given by (25) is a convolution operator of the
form
1A
N — ¥ f. 26
S =paxf {E(,\)} J (26)

Proof: The equality (26) can be checked directly using (21) and the repre-
sentation ]Tl = .]‘1‘ — flT.
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Theorem 4. The commutant of 6 in the invariant hyperplane Cq coincides
with the commutant of any of the operators Ly in C'(R,).

Proof: Let M : C(Ry) — C(R4) be a linear operator commuting with
Ly for some A € C, i.e. MLy, = LyM. First, it will be proved that ('y is an
invariant hyperplane for M. Indeed, let g be a function from C('(R,) and f
be the solution of the problem

§f-Arf=g, 2{f}=0. (27)

Then
LyMg=MLyg=Mf (28)

and hence

Mg=(5— M.

Using (27) this can be written as
MG —=N)f=(0—-AMf

or, equivalently,

(M3)f = (oM)f.
[t remains to show that ®{M f} = 0. This follows using (28) and the rep-
resentation (26) of Ly as a convolutional operator, along with the property
®{p* q} = 0 for arbitrary p,q € C(R}) of the convolution (20).

Conversely, let M : C'(R;) — C(R4) have the hyperplane (g as an
invariant subspace and let Md§ = M in C(},. One has to prove that ML,
= L\M for A € C with E(X) #0.

Let f € C'(R}) be arbitrary and denote h = (M Ly — LyM)f. Then

(0—MNh=@—-AML\f-Mf = MO —=NLyxf—Mf=0
and also
(D{/L} == (D{/‘[L\f} = (D{[/\[Wj} =4

according to our assumptions. Since A is not an eigenvalue, i.e. F(\) # 0,
then h =0, or

MLyf=L\Mf{.
The proof is completed.
Definition 2. A linear operator M : C'(R;) — C'(Ry) is said to be a multi-
plier of the convolutional algebra C(R,),+) when for arbitrary f,g
€ C(Ry) it holds
M(f+g)=(Mf)*g.

I



Theorem 5. A linear operator M : C(R,) — C(Ry) with M : C"'(R,)
— CYRy) is a multiplier of the convolution algebra (C(R,),*) iff it has a
representation of the form

M(t) = uf(t) + (m+ £)(2), (20)
where p = const and m € C'(Ry).

Proof: The sufficiency is obvious. In order to prove the necessity, the nota-
tions from (18) and (19) will be used for convenience.

Let M : C(Ry) — C'(Ry) be an arbitrary multiplier of (C'(R,),*). Ap-
plying (26), one has

MLy f = M(oy* f) = (M@y) * f = oy« Mf = LyM/, (30)

ie. MLyf = LyMf. Also, denoting ey = My,, one has ey, € ('"'(R, ), and
(30) gives
La\Mf =ey* f.

[t remains to apply the operator 6, = § — A and the definition of L, as the
right inverse operator of §, to obtain

Mf = d\(ex=* f).
The right hand side can be represented in a different way using the identity
Ia(u*v) = (6\u)*v+ ®(u)v (31)

which can be checked directly. Then

(M f)(t) = [(8xex) = F1(t) + P(er) f(2),

which is the representation (29) with p = ®(ey) = ®#{Mp\} and m(t)
= (drex)(t) = [xMp,)(¢t). Thus, the necessity is proved.
A

Theorem 6. The function p\(t) = —— s a cyclic element of the operator

E(\)
L

Proof: Let f € C'(R4) be arbitrarily chosen. It is needed to prove that there
is a sequence of functions of the form

n

fult) = Y enhon(t), n=12,...

k=0

12



converging to f(¢) uniformly on any segment [a,b] of R,.
First, it is easy to show by induction that

Lﬁ%\(i) = t"pi(Int), (32)

k
where pg is a polynomial of degree k, i.e. pi(Int) = Z as(Int)”.

s=0

Indeed, if & = 1, then by (26) and (20)

bot = {5} {sm | = {/ () ”iﬂ'} :

= gt [ 2o [tdrbn, 2]
E2(3) r 7 E2(A) E2(X)

Next, the inductive step will be made. Suppose that
L5 ou(t) = t'pror (Int).
Then

l”\

J(/\)} + Ly oa(t) =
1 i\ \ do

= E—(/W(DT{,/T (;) o /)k_l(lna)-—a—}
Ly y [

. E(\)t b, T pe—1(lno)dine p .

The integration of py_, gives a polynomial ¢; of In t of degree k£ and the above
chain of equalities can be continued as

Loa(t)

|
I
t~
>
e 3
&~
>
—
S
Pt
Py
o~
S—
S
fl
,_/;_\

Il

1

[’ﬁ‘ro,\(") = E(/\)tA‘DT {T‘\[qk(ln t) — qk(lnfj]} =
LR T ‘br{r*qmm}}
= I: 8y qr(Int) BN 7

where the expression in the square brackets is obviously a polynomial py of
Int of degree k, as desired.

Now let f € ('(Ry) be arbitrarily chosen. Consider the function f(t)
f(t)

=3 which is again in C'(R,). Making the substitution t = ¢*, 2 = Int,

the new function g(x) = fN(l) is in C'(—00,00). By Weierstrass’ theorem, ¢

13



can be approximated almost uniformly on (—oc,oc) by a sequence of poly-
nomials {r,(z)}°2,,ra(z) = Y 1y bz, le. the convergence is uniform on
any segment [a,b] C (Ry). Returning to the old variable, f(t) can be ap-
proximated by the sequence of polynomials {r,(Int) = ST¢_ bu(Int)*}=,
Finally, multiplying by ¢ and using (32), the desired approximation of f(t)
on (R, ) follows from the representation

n

fn(t) = [ ’n lllt ankt hl, = Z ‘nkt‘\l)k(l“,) = >: (‘uk/-‘;‘rj\(/)-

k=0 k=0 k=0

The new coeflicients ¢, can be calculated from the old ones b,,. Thus, ¢\
is a cyclic element of Ly in C'(R,).

Theorem 7. A linear operator M : C(R;) — C(Ry), such that M
CYRy) = CYR,), and with an invariant hyperplane Cy = {f € C(Ry) :
®{f} = 0} commutes with § in C§ if and only if it has a representation of
the form

(MA)E) = pf () + (m * D)(0) (33)
with a constant p € C and m € C(Ry).

Proot: Since ®{f « g} = 0 for f,g € C(Ry) (see (10)), then each operator of
the form (33) has Cg as an invariant subspace. It commutes with ¢ in C'j.

[ndeed, if f € Cy, then (31) gives
§(m s f) = m+ 6 + Of fhm
and, using (33),
SMJ = udf +m+ (5f) + ®{fim = pudf +mx (8f) = M,

The sufficiency is proved.

In order to prove the necessity of (33), according to Lemma 2, ML,
= L\M for A\ € C with E(X) # 0. As it is shown in the book [4] (Theorem
[.3.11, p.33) , the commutant of L coincides with the ring of the multipliers
of the convolution algebra (C(Ry),#) since Ly has a cyclic element. By

A

E(X)

Theorem 6 such a cyclic element is the function p\(t) = for which Ly f

=y * f. The proof is completed.

Remark. The constant g and the function m € C'(R,) in (29) are uniquely
determined. Indeed, assume that pf +m* f = p f + my = f. Take [ such
that ®(f) # 0. Then, (23) implies u®(f) = p, ®(f), and hence y = py. From
m * [ = my * f for arbitrary f € C(R,) it follows that (m — m,)« f = 0,
and hence m = m,.



5 Mean-periodic functions for the Euler op-

crator

Definition 3. A function f € C(Ry) is said to be mean-periodic for the
Fuler operator with respect to the linear functional ® if

O {f(tr)} =0
identically in Ry,

[t is clear that the mean-periodic functions with respect to & form the
kernel space of the operator

Mf(t) = o {f(tr)}

commuting with the Euler operator § in C'(R,).
Now a connection between the mean-periodic functions and the convolu-
tional algebra (C'(R,), *) will be shown.

Theorem 8. The mean-periodic functions for the FEuler operator 6 with
respect to any non-zero functional ® : C'(Ry) — C form an ideal in the
convolutional algebra(C (R ), *).

Proof: One need to prove only that the convolutional product (f * ¢)(¢)
of a mean-periodic function f and an arbitrary function ¢ € C(R}) is a
mean-periodic function, too, i.e. it is given that ® {f(t7)} = 0 and then
O {(f *g)(tr)} = 0 is to be shown. By (20)

T (it dr
(f*g)(tr) = <Da{/ f (%) .(1('1)7/"]}

24 a)em) = e { [ 1(52) a2} -

’ d . T (iro d
o[ A2 o] o ([ ()] o

Interchanging 7 and o in the first term of (34) and using the Fubini commu-
tational property of the functionals yields

and

) l v b7 1
G b, {/ / <ﬂ> l(](,’)([_ll_} =0, 0, {/ f <,T_7_> y(”)(_l_l} —
Jo n 1 Jr n n
Tt ' Tt i
= ¢, 0, {— / f (E> 9("1)(}2} =-®, 0, {/ f (lﬁ) ._(1('/)(*'-)}>
Jo n Yl Jo n U,
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thus obtaining

, T [tro dn o
O, D, fl—1gln)—? =0. (35)
Jo n n

The second term in (34) also vanishes

T / ll v J
O, b, {/ f (%) !1(.’/)(“,‘;1} = O, {/ b, {/ </%ﬁ> } f/(//)-»%’} -0

since f is mean-periodic and hence

SHEI

Finally, (34), (35), and (36) give the desired result ®, {(f *g)(tT)} = 0.

6 Application to the Euler differential equa-
tion

Now Theorem 8 will be applied to find necessary and sufficient conditions in
order an Euler differential equation

P(&)y(t) = f(1), 0<t<ao, (37)

to have a unique mean-periodic solution with respect to a non-zero lin-

ear functional ® in C'(R;). Here § = t— is the Euler operator and P(u)

dt
=a(p—p)(p — p2) ... (0 — pg) is a polynomial.

Theorem 9. In order the Euler differential equation (37) to have a unique
mean-pertodic solution with respect to a non-zero linear functional & in
C(Ry), it is necessary and sufficient no rools of the equation P(A) = 0
to be roots of the Euler indicatriz E(N) = &, (7).

Proof: Consider the Euler differential equation (37). It is clear that in order
y to be a mean-periodic solution, the right hand side, i.e. the function f(t),
should be mean-periodic, too. Formally, let M f(t) = &, {f(iT)}. Applying

. o - ( .
M to (37) and using the commutativity of 6 = n and M yields
al

P(§)My(t) = M f(t).

Then from My = 0 it follows that Mf = 0, i.e. the requirement [ to
be mean-periodic is a necessary condition for existing of a mean-periodic
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solution y. It can be shown that it is also a sufficient condition, but in
general the solution may not be unique. Indeed, if a root u of the equation
P(A) = 0 1is a root of the Euler indicatrix £(A), then the function /* is a
solution of the homogeneous equation P(0)u = 0, and hence the uniqueness
of the solution holds no more.

Now it will be shown that if neither of the roots g, s, ..., e of the
equation P(A) = 0 is a root of the Euler indicatrix £(\) = &, {7}, then
there exists a unique mean-periodic solution of the Fuler equation P(8)y = f.
provided f is a mean-periodic function with respect to ®.

Assuming that y is a mean-periodic solution of (37), an explicit expression
for y will be obtained. Let P be a polynomial of degree k

P(p) = a(p —pa)(p = p2) - (1 — pe).
Irom the assumption that y is a mean-periodic solution it follows that
(D{y}:‘l’{Jg}:...:‘D{(Sk_ly} =[], (38)
Indeed, the mean-periodicity of y means that

o, {y(tr)} = 0.

Applying the operator § to this identity with respect to ¢, Theorem 1 gives
& {("y)(tr)} =0, n=12... k1.

[t remains to put ¢ = 1 in order to obtain the boundary conditions (38).
Next, the unique solution of (37) is

l ) )
TEE T )} (39

Indeed, the equation (37) can be represented as

(8 = (6 = pz) - (8 = e)y(0)] = ~ £ 1)

Denoting the square brackets by u(t) yields

) L
ouy — puy = —f,
a

for uy with ®{u;} = 0, as it follows from (38). This equation has the unique

: 1 o \ .
solution u, = =L, f with L,, defined as in Lemma 2. Next solve
a

Suy — platty = Uy, G{u,} =0,



for ua(t) = (6 — pa)... (8 — p)y(t) with the unique solution uy = L, u,.
Continuing in the same manner one gets the unique solution (39) of the
initial equation (37). Now it is easy to verify that (39) is indeed a mean
periodic solution. It can be written in the form of convolutional product
using Lemma 3:

L o
U= ;[’uk,‘#k—l "'LM-/(” =
L . ;
— (—I_LPM *Pupy ¥ kO, )k / =R / (l())
with ¢ 1= —p,, * @, *...x@, . It remains to use Theorem 8 to assert that

the mean-periodicity of f implies the mean-periodicity of y.
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