# ON SOME GENERALIZATIONS OF A CLASS OF DISCRETE FUNCTIONS 

Dimiter Stoichkov Kovachev


#### Abstract

In this paper we examine discrete functions that depend on their variables in a particular way, namely the $H$-functions. The results obtained in this work make the "construction" of these functions possible. $H$-functions are generalized, as well as their matrix representation by Latin hypercubes.


1. Introduction, definitions and notation. Some of the major results regarding $H$-functions were obtained in the works [2, 4, 6].

We will denote the set of all functions of $n$ variables of the $k$-valued logic by

$$
P_{n}^{k}=\left\{f: E_{k}^{n} \rightarrow E_{k} / E_{k}=\{0,1, \ldots, k-1\}, \quad k \geq 2\right\}
$$

It is proved that the matrix form of every $H$-function from $P_{n}^{k}$ is a Latin hypercube and vice versa, every Latin hypercube is the matrix form of an $H$ function from $P_{n}^{k}$. Latin squares and hypercubes have their applications in coding

[^0]theory [5, §13.1], error correcting codes $[5, \S 13.2 \div 13.5]$, information security, decision making, statistics [5, §1.4, §12.1 $\div 12.3$ ], cryptography [ $5, \S 14.1 \div 14.5$ ], conflict-free access to parallel memory systems [5, §16.3], experiment planning, tournament design $[5, \S 1.6, \S 16.5]$, etc.

Definition 1 [3]. The number $R n g(f)$ of different values of the function $f$ is called the range of $f$.

We denote the set of variables of the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $X_{f}$.
Definition 2. Every function obtained from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by replacing the variables of $M, M \subseteq X_{f}, 0 \leq|M| \leq n$, with constants is called a subfunction of $f$ with respect to $M$.

The notation $g \longrightarrow f(g \xrightarrow{M} f)$ means that $g$ is a subfunction of $f$ (with respect to $M$ ).

Definition 3 [3]. If $M$ is the set of variables of the function $f$ and $G=\left\{g: g \xrightarrow{X_{f} \backslash M} f\right\}$ is the set of all subfunctions of $f$ with respect to $X_{f} \backslash M$, then the set $\operatorname{Spr}(M, f)=\bigcup_{g \in G}\{\operatorname{Rng}(g)\}$ is called the spectrum of the set $M$ for the function $f$.

Definition 4 [2]. We say that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an $H$-function if for every variable $x_{i}, 1 \leq i \leq n, n \geq 2$ and for every $n+1$ constants $\alpha_{1}, \ldots, \alpha_{i-1}$, $\alpha^{\prime}, \alpha^{\prime \prime}, \alpha_{i+1}, \ldots, \alpha_{n} \in E_{k}$ with $\alpha^{\prime} \neq \alpha^{\prime \prime}$ we have

$$
f\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha^{\prime}, \alpha_{i+1}, \ldots, \alpha_{n}\right) \neq f\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha^{\prime \prime}, \alpha i+1, \ldots, \alpha_{n}\right)
$$

In [4], it is proven that a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$ is an $H$-function if and only if for every variable $x_{i}, i=1,2, \ldots, n$ the following equality holds: $\operatorname{Spr}\left(x_{i}, f\right)=\{k\}$.

The examined class of $H[m ; q]$-functions is a generalization of the $H$-functions in $P_{n}^{k}$.

Definition 5 [4]. We say that the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{k}$ is an $H[m ; q]$-function if for every set $M$ of $m$ elements, $M \subseteq X_{f}$, of variables of the function $f$ we have $\operatorname{Spr}(M, f)=\{q\}$.

When $m=1$ and $q=k$, the set of $H[1 ; k]$-functions of $P_{n}^{k}$ is equal to the set of $H$-functions of $P_{n}^{k}$.

One of the results for $H$-functions in [7] is expanded with the proof that a function $f \in P_{n}^{k}$ is an $H[m ; q]$-function if and only if each of its subfunctions that depends on at least $m$ variables is an $H[m ; q]$-function [4].
2. Main results. Let $F_{n}^{k}(\mathbb{K})=\left\{f: \mathbb{K} \rightarrow E_{k}\right\}$, where $\mathbb{K}=K_{1} \times$ $K_{2} \times \cdots \times K_{n}$, and $K_{i}=\left\{0,1, \ldots, k_{i}-1\right\}, k_{i} \geq 2, i=1,2, \ldots, n$ be finite sets. It is obvious that $P_{n}^{k}=F_{n}^{k}\left(E_{k}^{n}\right)$. Let us denote by $P_{n}^{k, q}\left(F_{n}^{k, q}(\mathbb{K})\right)$ the set of all functions belonging to $P_{n}^{k}\left(F_{n}^{k}(\mathbb{K})\right.$ ), which have a range $q$. By $A=\left\|a_{i j}\right\|_{m, n}$ we denote the matrix with $m$ rows and $n$ columns, which is called a 2 -dimensional matrix of $m \times n$ size. By $B=\left\|b_{i_{1} i_{2} \ldots i_{n}}\right\|_{k_{1}, k_{2}, \ldots, k_{n}}$ we denote the $n$-dimensional matrix of size $k_{1} \times k_{2} \times \cdots \times k_{n}$. In the special case when $k_{1}=k_{2}=\cdots=k_{n}=k$, the matrix $C=\left\|c_{i_{1} i_{2} \ldots i_{n}}\right\|_{k_{1}, k_{2}, \ldots, k_{n}}$ is denoted by $C=\left\|c_{i_{1} i_{2} \ldots i_{n}}\right\|_{1}^{k}$ and is called an $n$-dimensional matrix of order $k$.

Each function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from $P_{n}^{k}\left(F_{n}^{k}(\mathbb{K})\right)$ can be represented in matrix form $\left\|a_{i_{1} i_{2} \ldots i_{n}}\right\|_{1}^{k}\left(\left\|a_{i_{1} i_{2} \ldots i_{n}}\right\|_{k_{1}, k_{2}, \ldots, k_{n}}\right)$, where for each element of the corresponding matrix, the equality $a_{i_{1} i_{2} \ldots i_{n}}=f\left(x_{1}=i_{1}-1, x_{2}=i_{2}-1, \ldots, x_{n}=i_{n}-1\right)$ holds.

Definition 6. We will call a Latin $n$-dimensional hyperparallelepiped (hypercube when $k_{1}=k_{2}=\ldots=k_{n}=k$ ) of size $k_{1} \times k_{2} \times \cdots \times k_{n}$ based on the set $E_{k}=\{0,1, \ldots, k-1\}$ every $n$-dimensional matrix $A=\left\|a_{i_{1} i_{2} \ldots i_{n}}\right\|_{k_{1}, k_{2}, \ldots, k_{n}}$ of size $k_{1} \times k_{2} \times \cdots \times k_{n}$, the elements of which belong to $E_{k}$ and for every s, $s=1,2, \ldots, n$, the following relation holds:

$$
\left|\bigcup_{j=1}^{k_{s}}\left\{a_{i_{1} \ldots i_{s-1} j i_{s+1} \ldots i_{n}}\right\}\right|=k_{s} .
$$

A function $f$ is injective if for every $\alpha, \beta$ from $\alpha \neq \beta$ it follows that $f(\alpha) \neq f(\beta)$.

Taking into account Definition 1, Definition 4 and the properties of injective functions, we have:

Proposition 1. A function is an $H$-function if each of its subfunctions of one variable is injective.

The question of the existence of $H$-functions among the set of discrete functions $F_{n}^{k}(\mathbb{K})$ arises naturally.

If $Y$ and $Z$ are finite sets and the function $h: Y \rightarrow Z$ is injective, then $|Y| \leq|Z|$ and $\operatorname{Rng}(h)=|Y|$. In addition, taking into account Proposition 1, we have:

Proposition 2. A necessary condition for the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ $\in F_{n}^{k}(\mathbb{K})$ to be an H-function is $\left|K_{i}\right|=k_{i} \leq k=\left|E_{k}\right|$ for every $i, 1 \leq i \leq n$.

If there exists $i, 1 \leq i \leq n$, such that $\left|K_{i}\right|=k_{i}>k=\left|E_{k}\right|$, then the number of $H$-functions of the set $F_{n}^{k}(\mathbb{K})$ is zero. For the functions of $P_{n}^{k}$, from
$K_{i}=E_{k}, 1 \leq i \leq n$, it follows that the necessary condition for the existence of $H$-functions holds.

Theorem 1. If the functions $f_{j}\left(x_{j}\right) \in F_{1}^{k}\left(K_{j}\right)$ are injective, i.e. $f_{j}\left(x_{j}\right) \in$ $F_{1}^{k, k_{j}}\left(K_{j}\right), j=1, \ldots, n$, then the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\right.$ $\left.\ldots+f_{n}\left(x_{n}\right)\right] \bmod k$, is an $H$-function belonging to the set $F_{n}^{k}(\mathbb{K})$.

Proof. Let $x_{i}, 1 \leq i \leq n, n \geq 2$, be an arbitrary variable, $\alpha^{\prime}$ and $\alpha^{\prime \prime}$ $\left(\alpha^{\prime} \neq \alpha^{\prime \prime}\right)$ be two arbitrary constants of the set $K_{i}$, and $\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{n}$ be an arbitrary set of constants such that $\alpha_{s} \in K_{s}, s \in\{1,2, \ldots, n\} \backslash\{i\}$. From $\alpha^{\prime} \neq \alpha^{\prime \prime}$ and $f_{i}\left(x_{i}\right)$ being an injective function, it follows that $f_{i}\left(\alpha^{\prime}\right) \neq f_{i}\left(\alpha^{\prime \prime}\right)$, and therefore $Q+f_{i}\left(\alpha^{\prime}\right) \neq Q+f_{i}\left(\alpha^{\prime \prime}\right)$. The latter inequality, when $Q=f_{1}\left(\alpha_{1}\right)+$ $\cdots+f_{i-1}\left(\alpha_{i-1}\right)+f_{i+1}\left(\alpha_{i+1}\right)+\cdots+f_{n}\left(\alpha_{n}\right)$, allows us to conclude that

$$
f\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha^{\prime}, \alpha_{i+1}, \ldots, \alpha_{n}\right) \neq f\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha^{\prime \prime}, \alpha_{i+1}, \ldots, \alpha_{n}\right)
$$

The variable $x_{i}$ and the constants $\alpha_{1}, \ldots, \alpha_{i-1}, \alpha^{\prime}, \alpha^{\prime \prime}, \alpha_{i+1}, \ldots, \alpha_{n}$ were chosen arbitrarily. Therefore, the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an $H$-function of the set $F_{n}^{k}(\mathbb{K})$.

The following question remains open: Do injective functions $g_{j}\left(x_{j}\right) \in$ $F_{1}^{k}\left(K_{j}\right), j=1, \ldots, n$, exist for every $H$-function $g \in F_{n}^{k}(\mathbb{K})$, such that $g\left(x_{1}, \ldots\right.$, $\left.x_{n}\right)=\left[g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)+\cdots+g_{n}\left(x_{n}\right)\right] \bmod k ?$

From Theorem 1, we arrive at the following corollaries:
Corollary 1. If the condition $2 \leq\left|K_{i}\right|=k_{i} \leq k=\left|E_{k}\right|$ holds for every $i, 1 \leq i \leq n$, then for every $n$ and $k$ there exists an $H$-function which belongs to the set of functions $F_{n}^{k}(\mathbb{K})$.

Corollary 2 [4]. If the functions $f_{j}\left(x_{j}\right) \in P_{1}^{k}$ are bijective, i.e. $f_{j}\left(x_{j}\right) \in$ $P_{1}^{k, k}, j=1,2, \ldots, n$, then the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+\right.$ $\left.f_{n}\left(x_{n}\right)\right] \bmod k$, is an $H$-function belonging to the set $P_{n}^{k}$.

Corollary 3. For every $n$ and $k, n \geq 1, k \geq 2$, there exists an $H$-function belonging to the set $P_{n}^{k}$, i.e., there exists an $n$-dimensional Latin hypercube of order $k$.

Theorem 1 allows us to "construct" $H$-functions of the set $F_{n}^{k}(\mathbb{K})$. We will show this in the following example.

Example 1. Let us "construct" the $H$-function $f$ of the set $F_{3}^{4}(\mathbb{K})$, where

$$
\mathbb{K}=K_{1} \times K_{2} \times K_{3}, \quad K_{1}=K_{2}=\{0,1,2\}, \quad K_{3}=E_{4}=\{0,1,2,3\}
$$

Let $f\left(x_{1}, x_{2}, x_{3}\right)=\left[f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)\right] \bmod 4$, where

$$
f_{1}=\left(\begin{array}{lll}
0 & 1 & 2 \\
3 & 0 & 1
\end{array}\right), \quad f_{2}=\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 3
\end{array}\right) \quad \text { and } \quad f_{3}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 3 & 0 & 2
\end{array}\right)
$$

be injective functions defined in the sets $K_{1}, K_{2}, K_{3}$, respectively, and taking values in $E_{4}$.

Consequently we get:

$$
\begin{array}{lll}
f(0,0,0)=\left[f_{1}(0)+f_{2}(0)+f_{3}(0)\right] & \bmod 4=[3+2+1] & \bmod 4=2 ; \\
f(0,0,1)=\left[f_{1}(0)+f_{2}(0)+f_{3}(1)\right] & \bmod 4=[3+2+3] & \bmod 4=0
\end{array}
$$

and so on, placing the results in Table 1 to arrive at the table representation of the function $f\left(x_{1}, x_{2}, x_{3}\right)$.

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $f\left(x_{1}, x_{2}, x_{3}\right)$ | $a_{i j l}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $f\left(x_{1}, x_{2}, x_{3}\right)$ | $a_{i j l}$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $f\left(x_{1}, x_{2}, x_{3}\right)$ | $a_{i j l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\mathbf{2}$ | $a_{111}$ | 1 | 0 | 0 | $\mathbf{3}$ | $a_{211}$ | 2 | 0 | 0 | $\mathbf{0}$ | $a_{311}$ |
| 0 | 0 | 1 | $\mathbf{0}$ | $a_{112}$ | 1 | 0 | 1 | $\mathbf{1}$ | $a_{212}$ | 2 | 0 | 1 | $\mathbf{2}$ | $a_{312}$ |
| 0 | 0 | 2 | $\mathbf{1}$ | $a_{113}$ | 1 | 0 | 2 | $\mathbf{2}$ | $a_{213}$ | 2 | 0 | 2 | $\mathbf{3}$ | $a_{313}$ |
| 0 | 0 | 3 | $\mathbf{3}$ | $a_{114}$ | 1 | 0 | 3 | $\mathbf{0}$ | $a_{214}$ | 2 | 0 | 3 | $\mathbf{1}$ | $a_{314}$ |
| 0 | 1 | 0 | $\mathbf{1}$ | $a_{121}$ | 1 | 1 | 0 | $\mathbf{2}$ | $a_{221}$ | 2 | 1 | 0 | $\mathbf{3}$ | $a_{321}$ |
| 0 | 1 | 1 | $\mathbf{3}$ | $a_{122}$ | 1 | 1 | 1 | $\mathbf{0}$ | $a_{222}$ | 2 | 1 | 1 | $\mathbf{1}$ | $a_{322}$ |
| 0 | 1 | 2 | $\mathbf{0}$ | $a_{123}$ | 1 | 1 | 2 | $\mathbf{1}$ | $a_{223}$ | 2 | 1 | 2 | $\mathbf{2}$ | $a_{323}$ |
| 0 | 1 | 3 | $\mathbf{2}$ | $a_{124}$ | 1 | 1 | 3 | $\mathbf{3}$ | $a_{224}$ | 2 | 1 | 3 | $\mathbf{0}$ | $a_{324}$ |
| 0 | 2 | 0 | $\mathbf{3}$ | $a_{131}$ | 1 | 2 | 0 | $\mathbf{0}$ | $a_{231}$ | 2 | 2 | 0 | $\mathbf{1}$ | $a_{331}$ |
| 0 | 2 | 1 | $\mathbf{1}$ | $a_{132}$ | 1 | 2 | 1 | $\mathbf{2}$ | $a_{232}$ | 2 | 2 | 1 | $\mathbf{3}$ | $a_{332}$ |
| 0 | 2 | 2 | $\mathbf{2}$ | $a_{133}$ | 1 | 2 | 2 | $\mathbf{3}$ | $a_{233}$ | 2 | 2 | 2 | $\mathbf{0}$ | $a_{333}$ |
| 0 | 2 | 3 | $\mathbf{0}$ | $a_{134}$ | 1 | 2 | 3 | $\mathbf{1}$ | $a_{234}$ | 2 | 2 | 3 | $\mathbf{2}$ | $a_{334}$ |

Table 1
Every discrete function $h=\left(\begin{array}{cccc}0 & 1 & \ldots & k-1 \\ b_{1} & b_{2} & \ldots & b_{k}\end{array}\right)$, where $b_{i} \in E_{k}, i=$ $1, \ldots, k$, can be written in the analytic form $y=h(x)$ by interpolating polynomial [1] or by the following determinant form
$\left|\begin{array}{ccccccc}1 & x & x^{2} & \ldots & x^{k-2} & x^{k-1} & y \\ 1 & 0 & 0 & \cdots & 0 & 0 & b_{1} \\ 1 & 1 & 1 & \cdots & 1 & 1 & b_{2} \\ \cdots \cdots \cdots \cdots & \cdots & \\ 1 & k-1 & (k-1)^{2} & \cdots & (k-1)^{k-2} & (k-1)^{k-1} & b_{k}\end{array}\right|=0$.

Each of the functions $f_{1}, f_{2}, f_{3}$ could be expressed analytically by using the Newton form of the interpolating polynomial, and for the function $f\left(x_{1}, x_{2}, x_{3}\right)$ we have the following analytic form:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)= \\
& {\left[2\left(x_{1}\right)^{2}-x_{1}+3+\frac{3\left(x_{2}\right)^{2}-5 x_{2}+4}{2}+\frac{10\left(x_{3}\right)^{3}-45\left(x_{3}\right)^{2}+47 x_{3}+6}{6}\right] \bmod 4 .}
\end{aligned}
$$

Theorem 2. The function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F_{n}^{k}(\mathbb{K})$ is an $H$-function if and only if for each of its variables $x_{i}, i=1,2, \ldots, n$, the following equality holds: $\operatorname{Spr}\left(x_{i}, f\right)=\left\{k_{i}\right\}$.

Proof. (Necessity) Let $f \in F_{n}^{k}(\mathbb{K})$ be an $H$-function and $x_{i}, i \in\{1,2, \ldots$, $n\}$ be an arbitrary variable of $f$. Then each of its subfunctions $g, g \xrightarrow{X_{f} \backslash x_{i}} f$ is injective, i.e. $\operatorname{Rng}(g)=k_{i}$ and therefore $\operatorname{Spr}\left(x_{i}, f\right)=\left\{k_{i}\right\}$ holds for $i=$ $1,2, \ldots, n$.
(Sufficiency) Let $\operatorname{Spr}\left(x_{i}, f\right)=\left\{k_{i}\right\}$ hold for every variable $x_{i}, i \in\{1,2, \ldots$, $n\}$.

This would mean that every subfunction $h, h \xrightarrow{X_{f} \backslash x_{i}} f$, has a range equal to $k_{i}$, and therefore, $h$ is injective. The variable $x_{i}$ was chosen arbitrarily, so it follows that every subfunction of one variable of the function $f$ is injective. Therefore $f$ is an $H$-function.

Theorem 3. Every $H$-function of $F_{n}^{k}(\mathbb{K})$ can be represented in matrix form as an $n$-dimensional Latin hyperparallelepiped of size $k_{1} \times k_{2} \times \cdots \times k_{n}$ based on $E_{k}$.

Proof. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an arbitrary $H$-function of $F_{n}^{k}(\mathbb{K})$, let $s$ be an arbitrary number, $s \in\{1,2, \ldots, n\}$, and let $\left(c_{1}, \ldots, c_{s-1}, c_{s+1}, \ldots, c_{n}\right)$ be an arbitrary set of constants, such that $c_{i} \in K_{i}, i \in\{1,2, \ldots, n\} \backslash\{s\}$. If $B$ is the matrix form of the function $f$, then for each element of the matrix $B$, the following equation holds: $b_{j_{1} j_{2} \ldots j_{n}}=f\left(x_{1}=j_{1}-1, x_{2}=j_{2}-1, \ldots, x_{n}=j_{n}-1\right) \in E_{k}$.

From $x_{t}=j_{t}-1=c_{t}$ it follows that $j_{t}=c_{t}+1, t \in\{1,2, \ldots, n\} \backslash\{s\}$.
Since $f$ is an $H$-function of $F_{n}^{k}(\mathbb{K})$, it follows that $f\left(c_{1}, \ldots, c_{s-1}, \mathbf{0}, c_{s+1}\right.$, $\left.\ldots, c_{n}\right), f\left(c_{1}, \ldots, c_{s-1}, \mathbf{1}, c_{s+1}, \ldots, c_{n}\right), \ldots, f\left(c_{1}, \ldots, c_{s-1}, \boldsymbol{k}_{s}-1, c_{s+1}, \ldots, c_{n}\right)$ assume different values and hence, $\left|\bigcup_{r=0}^{k_{s}-1}\left\{f\left(c_{1}, \ldots, c_{s-1}, \boldsymbol{r}, c_{s+1}, \ldots, c_{n}\right)\right\}\right|=$

$$
\left|\bigcup_{r=1}^{k_{s}}\left\{b_{j_{1} \ldots j_{s-1} r} r j_{s+1} \ldots j_{n}\right\}\right|=k_{s} .
$$

The function $f$, the number $s$ and the set of constants $\left(c_{1}, \ldots, c_{s-1}, c_{s+1}\right.$, $\ldots, c_{n}$ ) were chosen arbitrarily. Consequently, the matrix $B$ is a Latin $n$-dimensional hyperparallelepiped of size $k_{1} \times k_{2} \times \cdots \times k_{n}$ based on $E_{k}$.

In Table 1 of Example 1, the $H$-function $f$ of the set $F_{3}^{4}(\mathbb{K})$ has been "constructed" and represented in tabular and matrix form $\left\|a_{i j l}\right\|_{3,3,4}$, by using a Latin 3-dimensional hyperparallelepiped of size $3 \times 3 \times 4$.

Taking into account Definition 1 and Theorem 3, we have:
Proposition 3. If $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an arbitrary $H$-function of $F_{n}^{k}(\mathbb{K})$ and the matrix $A_{f}$ is its matrix form, then by fixing any $n-1$ indices of the matrix $A_{f}$ we get a 1-dimensional matrix, which does not contain repeating elements.

Directly from Theorem 1 and Theorem 3 we get:
Corollary 4. Every matrix $A=\left\|a_{i_{1} i_{2} \ldots i_{n}}\right\|_{k_{1}, k_{2}, \ldots, k_{n}}$, for which $a_{i_{1} i_{2} \ldots i_{n}}=$ $\left(\sum_{j=1}^{n} f_{j}\left(i_{j}-1\right)\right) \bmod k$, where $f_{j} \in F_{1}^{k, k_{j}}\left(K_{j}\right), j=1,2, \ldots, n$, is an $n$-dimensional Latin hyperparallelepiped of size $k_{1} \times k_{2} \times \cdots \times k_{n}$ based on $E_{k}$.

The function $h_{2}(x)=(a x+b) \bmod k$, where $a$ and $b$ are natural numbers, $(a, k)=1$, is injective (moreover, it is bijective). Applying Corollary 4, we get:

Corollary 5. Every matrix $B=\left\|b_{j_{1} j_{2} \ldots j_{n}}\right\|_{k_{1}, k_{2}, \ldots, k_{n}}$, for which $b_{j_{1} j_{2} \ldots j_{n}}=$ $\left(a_{1} j_{1}+a_{2} j_{2}+\cdots+a_{n} j_{n}+c\right) \bmod k$, where $c$ is a natural number, $\left(a_{i}, k\right)=1$, $i=1,2, \ldots, n$, is a Latin $n$-dimensional hyperparallelepiped of size $k_{1} \times k_{2} \times \cdots \times k_{n}$ based on $E_{k}$.
3. Conclusions. The author is not aware of any published papers which investigate the $H$-functions from the set $F_{n}^{k}(\mathbb{K})$. The present paper shows the relationship between $H$-functions, spectrum of a variable with respect to a function, and Latin hyperparallelepipeds.

Since $P_{n}^{k}=F_{n}^{k}\left(E_{k}^{n}\right)$, i.e. the set of functions $P_{n}^{k}$ is a partial case of the set $F_{n}^{k}(\mathbb{K})$, then the results arrived at in this paper are also valid in $P_{n}^{k}$.

In Theorem 6 [2] it is proven that if the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}^{3}$ is an $H$-function, then it is a linear function. From Theorem 1 and Example 1 we conclude that for all $n \geq 1$ and $k \geq 3$ there exist $H$-functions from $F_{n}^{k}(\mathbb{K})$, and therefore also from $P_{n}^{k}$, which are not linear and can be represented in analytic form.
he paper "On a Class of Discrete Functions" published in Acta Cybernetica [4] examines the functions from $P_{n}^{k}$ : the $H$-functions are generalized and the class of $H[m ; q]$-functions (Definition 5) is investigated.

## REFERENCES

[1] Bozhorov E. Higher Mathematics, State Publishing House TECHNICA, Sofia, Bulgaria, 1975.
[2] Chimev K. On a way some functions of $P_{k}$ depend on their arguments. Annuaire Des Ecoles Techniques Superieures, Mathematique, Vol. IV, livre 1, 1967, 5-12.
[3] Kovachev D. On the Number of Discrete Functions with a Given Range. In: General Algebra and Applications, Proceedings of the 59th Workshop on General Algebra (Eds K. Denecke, H.-J. Vogel), Potsdam, 2000, 125-134.
[4] Kovachev D. On a Class of Discrete Functions. Acta Cybernetica 17, No 3, (2006), 513-519.
[5] Laywine Ch., G. Mullen. Discrete Mathematics Using Latin Squares, John Wiley \& Sons, New York, 1998.
[6] Mirchev I., B. Yurukov. Some Properties of $H$-functions. Acta Cybernetica 12, No 2 (1995), 137-143.
[7] Mirchev I. Otdelimi i dominirashti mnojestva ot promenlivi na funkciite disertacija [Separable and Dominating Sets of Variables of the functions dissertation], Sofia University - Math, 1990, (in Bulgarian).

Department of Computer Science
South-West University "N. Rilski"
2700 Blagoevgrad, P.O.79, Bulgaria
Received October 16, 2008
e-mail: dkovach@swu.bg
Final Accepted January 8, 2009


[^0]:    ACM Computing Classification System (1998): G.2.0.
    Key words: $k$-valued logic, $H$-function, subfunction, range, spectrum, Latin hypercubes and hyperparallelepipeds.

