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Theory and applications of convex VSIO*

F. Guerra-Vazquez{ and M.I. Todorov*

Abstract

This presentation deals with vector semi-infinite optimization prob-
lems which are defined by finitely many objective functions whose vari-
ables belong to a finite-dimensional space and whose feasible sets are de-
fined by infinitely many inequality constraints. The objective is to show
several fields of applications of vector semi-infinite optimization as well as
some theoretical results in convex vector semi-infinite optimization (char-
acterization of solutions, necessary and sufficient optimality conditions).

1 Introduction

This paper deals with vector (multiobjective) semi-infinite optimization prob-
lems which are defined by finitely many objective functions whose variables
belong to a finite-dimensional space and whose feasible sets are defined by in-
finitely many inequality constraints. There is a wide range of applications of
semi-infinite optimization and of vector optimization; both topics, their the-
ory and numerical analysis, became very active research areas in the recent
two decades. We refer to several recent books [5, 12, 13]; in particular to the
standard books [4, 14] on vector optimization.

As a starting point of this work we consider a vector semi-infinite optimiza-
tion (VSIO) problem of the form

VSIO: "min" ($) = (fl(x)v 7fp(x))
st.xe M

where M = {z € R" | g(z,t) <0,t € T}, the set T is a compact infinite subset
of R, f:R" - RP g:R" xT — R.

The objective is to show several fields of applications of vector semi-infinite
optimization as well as some theoretical results in convex vector semi-infinite
optimization (characterization of solutions, necessary and sufficient optimality
conditions). In Section 2 we will show several fields of applications which can
be modeled as a problem of type VSIO. In Section 3 we will present some recent
results of the authors concerning the theory of convex VSIO.
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2 Applications
2.1 Robotics

As far as we know up to now, there are publications concerning standard (only
one objective function) semi-infinite optimization in robotics and, on the other
hand, some applications of standard (finitely many constrains) vector optimiza-
tion models applied to robotics. It means it is time to consider vector semi-
infinite optimization models in robotics, which will be an useful and interesting
field of applications.

Concerning standard semi-infinite optimization in robotics we mention [9,
11, 16] and for standard vector optimization models applied to robotics, see e.g.
[1, 2, 15].

In [9] design centering is used to determine lower bounds for the volumen of a
complicated container set by inscribing ellipsoids in the maneuverabilty problem
of a robot from [8].

In first instance, the problem of steering a robot in an optimal way is typ-
ically an optimal control problem. Restricting state and/or control functions
to finite dimensional spaces, the number of variables becomes finite. However,
restrictions on the movement typically are required in a whole time-interval or
for all points of the robot, leading to semi-infinite programming problems. In
[11] such models are discussed for the problem of optimally re-parametrizing
given paths and the maneuverability problem.

How robot trajectory planning can be formulated as a semi-infinite opti-
mization problem is shown in [16], where two of the robotics trajectory planning
problems are formulated, namely, Model 1, where constants bounds on velocity,
acceleration and jerk on each joint are considered, and Model 2, where constants
bounds on each robot torque are imposed.

Some applications that consider vector optimization models in robotics have
been done. For instance, such approach is proposed in [1, 2] in order to enhance
the design of service robots. The proposed procedure has been applied to a
robotic arm for service tasks, where several objective functions are considered,
namely, robot reach, position workspace volume, orientation work space volume,
path planning, lightweight design, stiffness, safety. Also, an application of vector
optimization in order to estimate a solution to the multi-robot dynamic task
allocation problem is presented in [15].

2.2 Simultaneous Chebyshev best approximation (see e.g.
[10])

Necessary conditions for efficient solutions in simultaneous Chebyshev best ap-
proximation, derived from an abstract characterization theory of efficiency, are

obtained in [3]. Let {wgk)(a)}jil ,k=1,2,...,p (p > 1), be p families of real-

valued continuous functions on the interval [a, b]. Let w(()k)(a), k=1,2,...,p,
be p given real valued continuos functions on [a, b]. For k = 1,2, ..., p define the
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following functions

) a)— Zmiwﬁk)(a)
i=1

The simultaneous Chebyshev best approximation problem is to find
z = (z1,... ,xn)T € R™ that will solve the non-differentiable multiobjective
optimization problem

"min” (f1(z),..., fp(z)) subject to x € Q C R™, (1)

where () stands for the feasible set of the problem. The epigraph reformulation
of (1) yields the equivalent problem

n min n

<qu k=1,....p,
(x,9)€EQXRP = P

v =D wi”
i=1

which can be written as the following differentiable multiobjective semi-infinite
optimization problem

(qlv"'vqp) s. t. ‘

F) o) — S 2B o) <
"ming gegxre ' (q1y-- 5 @) St 0 (a) I;;jll’ﬂ/’zp(a)_%

for all « € [a, b],
007 (@) + iz (@) < ai,
k=1,...,p,
for all « € [a, b].

2.3 Robust linear vector optimization (see e.g. [6])

Let

Py:"min" f(z) = (da,...cz) st ajz>bii=1,..4q,

be a linear vector optimization problem with uncertain data.

Firstly, we assume that the uncertainty is confined to the cost vectors, i.e.,
the constraints remain fixed. Let ¢; range on certain set C; C R™, i =1,....p
The robust perspective corresponds to a pessimistic decision maker, for which
the cost vector of deciding z € R™ such that ajx > b;,i = 1,..., ¢, will be worst
possible, i.e., (max, ec, ¢}, ..., max. cc, c;,:c) . Then, the robust counterpart of
Py is the linear VSIO problem,

P "min"  f(x,2) = (21,..., 2p)
s.t. zj > ciwe; € Chj=1,...,p
alx >bii=1,..,q,
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whose decision space is R"*? (so, the initial problem is embedded into a higher
dimensional decision space and the number of constraints turns out to be infi-
nite). If {C;,j =1,...,p}, is a family of compact sets, then P; is a particular
case of VSIP.

Secondly, let us assume that the uncertain data in Py are the coefficient
vectors (a;,b;),i = 1,...,q. Let us assume that each vector (a;,b;) ranges on a
given set S; C R"*! i =1,...,q, whereas ¢ remains fixed. The robust approach
tries to guarantee the feasibility of the selected decision under any conceivable
circumstance. Thus, we must solve the linear VSIO problem

q
Py:'"min" f(x) = (=, ...c)z) st. dz>b,(a,b) € U S,
i=1

whose decision space coincides with the initial one. If Si,...,.S; are compact,
then P, is a particular case of VSIP.

Finally, we assume that all the data in Py are uncertain. Combining the
previous arguments we get the following robust counterpart of Py :

Py: "min"  f(z,2) = (21,..., %)
s.t. zj > x5 € Cyj=1,..,p,

If the sets C1, ..., Cp, S1, ..., 84 are compact, then Pj is a particular case of VSIP.

2.4 Convex vector optimization (see [6], [7])

Consider the vector optimization problem
Py : "min" h(z) = (k1 (z),....hp (x)) st. g(x,t) <0,teT,

where the functions h;, i = 1,...,p and g(-,t) are proper, lower semicontinuous,
and convex from R" to RU {+oc}, whereas the cardinality of T is irrelevant. It
is possible to reformulate Py as a linear VSIO problem by means of the Fenchel
conjugates of the involved functions.

The effective domain of f: R" — RU{+oo} is dom f = {z € R" : f(z) <
+oo}. The conjugate function of f, f*:R"™ — RU {£oo}, is defined by

fr(v) = sup{(v,z) = f(z) : 2 € dom f}.
It is well-known that, if f is a proper lower semicontinuous convex function,

then f* enjoys the same properties and its conjugate, denoted by f** : R" —
R U {#o0} and defined by

[ (@) = sup{{v, ) — f*(v) : v € dom [},

coincides with f.
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From the assumptions on Py we get two consequences:
1st, each objective function is the supremum of affine functions because
hi(z)=hi*(z)= sup {2'u—hi(w)}i=1,..p.
u€dom h}
2nd, since all the constraints in Py can be expressed as g,(z) < 0 (g(z) :=
g(w,t)), and g{* = g;, we have

9:(z) <0 <= g/*(z) <0
— 2'u— g/ (u) <0 Vu € domgy
— vz < gf(u) Yu € domg; .
Thus Py is equivalent to the linear VSIO problem, whose decision space is
RntP .

Py "min"  f(z,2) = (21,..., 2p)
st.  —z+vx<hi(u), wucdomhl,i=1,..p, .
Wz < g (w), (1) € domg? x T,

2.5 Portfolio management (see e.g. [6], [7])

We can invest a capital M in n shares. For ¢ € {1,...,n}, we denote by z; the

amount to be invested in the ¢—th share, and by r; its rate of return. Obvious
n

constraints are Y, x; = M and z; > 0,7 = 1,....,n. We express these, and
i=1

possibly other linear constraints, in a compact way as a,x > b;,i = 1,...,q. In

the (unrealistic) absence of uncertainty, the problem to be solved is the linear

optimization one

Py :max v’z s.t. alx > b;,i=1,...,q.

Unfortunately, r is in practice an uncertain vector. The uncertain problem
Py can be modeled in a variety of ways, taking into account that the decision
maker intends to maximize its return at a minimum risk. If the probability
distribution of r is unknown, the first objective for a pessimistic decision maker
consists of maximizing inf,cp r'z (or, equivalently, minimizing sup,.cp (—r'z)),
where R C R™ denotes the set of conceivable values of 7. Concerning the risk, it is
usually identified with the variance of the portfolio x, i.e., the uncertain number
z'Vx, where V denotes the (positive definite) matrix of variances-covariances of
r. So, the second objective consists of minimizing the quadratic convex function
h (z) := 2’Vz. Consequently, we have a biobjective convex optimization problem
that can be reformulated as a linear VSIO problem as in the latter subsection.
Indeed, since h* (u) = iu’ V~lu for all u € R”, the equivalent problem is P,
whose decision space is (21, z2,2) € R*2:

Pii tmin' f(52) = (o1, 2)
st. r'z+z21>0,reR,
—u'z + 29 > —iu’V‘lu,u eR™,
air >bii=1,..,q,
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2.6 Functional approximation (see [6], [7])

Let h,v1, ..., v, be Riemann integrable functions on T = [«, 8], a < 3. Consider
the problem consisting of computing a "good" approximation to A from above
by means of linear combinations of vy, ..., v, but it is not obvious how to measure
the approximation error. If we choose the L., and the L; norms, the problem
consists of the simultaneous minimization of the L., and the L errors. If we
consider a linear combination Y ;- v;(t)z; such that h(t) < Y7, v;(t)x;, for
all t € T (a feasible decision of the approximation problem), the corresponding
Lo and the L; errors are

n
h — E X;U;
i=1

= ItneaTx {ZZ_; x;0; (1) — h(t)}

and
h =" wvilly = [0 [0, vi(6)e; — h(1)] dt
=3, (ff Ui(t)dt) T — ff h(t)dt,

respectively. So, we have to solve

P "min"  f (2, 2n41) = <$n+172?:1 (ff Ui(t)dt) xl)
st o vi(t)z > h(t),t €T,
Tng1 > h(t) = Y0 vi(t)a; > —xpq, tET.

The approximating function Y.;_, v;(t)z; can be forced to satisfy conditions
such as the requirement to be non-decreasing or convex on 7', that can be

expressed through the linear systems {37 | “@iz; > 0,¢t € T} and
{ZLI d;tgla:i >0,t € T} (assuming that vy,...,v, € C1(T) and vy,...,v, €

C2%(T), respectively).
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