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ABSTRACT. An embedding X C G of a topological space X into a topo-
logical group G is called functorial if every homeomorphism of X extends
to a continuous group homomorphism of G. It is shown that the interval
[0, 1] admits no functorial embedding into a finite-dimensional or metrizable
topological group.

Let A, B be subcategories of the category of all topological spaces and
their continuous maps. A covariant functor F' : A — B is called an embedding
functor provided there exists a class of embeddings ix : X — FX, X € |A]|,
satisfying the naturality conditions: for every morphism f : X — Y in A the
equality F'(f)oix = iy o f holds [2]. In this note we are interested in a special
case of this notion when the class of objects of a category A contains only one
topological space X and the set of all morphisms of X coincides with the set
of all autohomeomorphisms of X, and the category B is a subcategory of (the
underlying spaces of) topological groups and their continuous homomorphisms.

Thus, we come to the following version of the above notion. An embed-
ding X C G of a topological space X into a topological group G is called a
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functorial embedding if every homeomorphism f of X extends to a continuous
group homomorphism G(f) of G and the correspondence f — G(f) preserves the
composition.

Clearly, the natural embedding of a Tychonoff space X into its free (to-
tally bounded) topological group F(X) is a functorial embedding.

In [2] D. Shakhmatov proved that every zero-dimensional metrizable com-
pact space X admits a functorial embedding into a zero-dimensional compact
metrizable topological group Zg(x,22)7 where C(X,Zs) is the (countable) set of
all continuous maps of X into the two-element group Zs.

On the other hand, using some rather sophisticated arguments, he proved
that the closed interval [0, 1] admits no functorial embedding into a finite-dimen-
sional metrizable topological group.

In this note we generalize this result in two directions.

Theorem. If[0,1] C G is a functorial embedding of the closed interval
into a topological group G, then G is infinite-dimensional and non-metrizable.

Proof. Supposse that [0,1] C G is a functorial embedding into a topo-
logical group. First we show that the group G is infinite-dimensional. Denote by
grp(A) the group hull of a subset A C [0, 1].

Claim A. For every closed subset A C [0,1] we have grp(A)N[0,1] = A.

Indeed, let f : [0,1] — [0,1] be a homeomorphism whose set of fixed
points (i.e., the set {z € [0,1] | f(z) = x}) coincides with A. Let G(f) be a
continuous group homomorphism of G extending the homeomorphism f. Then
the set H = {g € G | G(f)(g9) = g} is a subgroup of G with A C grp(4) C H
and A=1[0,1]NH D grp(A)N[0,1] O A.

Claim B. Let 0 <t < 1 and let K C grp([0,t]) be a compactum.
Then for any s € (t,1] the set grp([0, s]) contains a topological copy of the space
K x [0,1].

Indeed, consider the multiplication map m : K X [t,s] — G. Show
that this map is an embedding. Suppose, on the contrary, that m(gi,h1) =
m(ga, ha). Without loss of generality, we may assume that h; < hy. But then
ho = g;lglhl € grp([0, h1]) which contradicts to Claim A.

To see that the group G is infinite-dimensional, observe that, by Claim
B, the set grp([0,1/2]) contains an arc. Thus, the set [0,1 — 272] contains a
topological copy of the space [0,1]%, and, similarly, the set [0,1 — 27"]) contains
a topological copy of the space [0,1]". Hence, G is infinite dimensional.
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To prove the second part of Theorem, suppose on the contrary that the
group G is metrizable. Fix any left-invariant metric p on G and for every element
g € G let |lg|]| = p(g,e), where e is the unit of the group G. Without loss of
generality, p(0,1) = 1, where 0 and 1 are the end-points of [0,1] C G. To get a
contradiction, we shall construct two sequences (a, )5 ;, (by)22; C G such that
e (ap)P2, converges to e, while (b,)5 ; does not;

e h(ay) = by, n € N, for some continuous group homomorphism h of G.

In the construction of the sequences (ay), (b,) we shall use the standard
Cantor set C' C [0,1]. It is well khown that C' is homeomorphic to the Cantor
cube {0,1}" via the homeomorphism f : {0,1}" — C,

o = 2z,
fi@n)p =Y S
n=1

for ()22, € {0,1}". For every integer n > 0 consider the subsets
{0,1}" = {(x;) € {0,1}" : 2; = 0 for i > n},

{0,1}% = {(z;) € {0,1}" : z; = 1 for i > n}

in {0,1}". Let C;; = f({0,1}), C;f = f({0,1}1) and C, = C,; UC;T.
For every subset S = {s1,...,8,} C [0, 1], where s; < --- < sy, let
I(S) = s 'sas3 ... st

By induction on n, construct increasing functions o, : C, — [0,1],
B : Cp, — [0,1], n > 0, such that letting a,, = II(a,,(Cy)) and b, = II(5,(Cy,))
for n > 0 we have

(1) ao(Co) = Bo(Co) =A{0,1}, [lbo|| = p(0,1) = 1;

(2) ap41|Cp = and B y1|Cr = Br;

(3) [a,a+ 27" Na,(C;F) # O for every a € a,(C,,);

(4) [b,b+ 277 1 fu(CiF) # O for every b € B,(C )

(5) flan]l < 277

(6) [lball > [[bn-1]l = 5 > § + gater-

The conditions (1)—(4) imply the existence of two increasing homeomor-
phisms «, §:[0,1] — [0, 1] such that a|C), = oy, and §|C,, = [, for every n € N.
Let h: G — G be a continuous group homomorphism extending the homeomor-
phissm Boa~!:[0,1] — [0,1]. It is easy to see that h(a,) = b, for every n. Since
the sequence (a,) converges to the unity e € G, the sequence (b,,) converges to e
too, a contradiction with (6).
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Remark 1. It is intersting to compare our Theorem with the classical
results of M. I. Graev [3] on extending metrics from a space X omto the free
group F(X). It is known that for every Lipschitz map f : X — X the induced
group homomorphism F(f) : F(X) — F(X) is Lipschitz with respect to the
Graev metric on F'(X).

Theorem implies that the free group F(I) over the interval I = [0,1]
admits no metrizable group topology such that the natural inclucion I C F(I) is
a functorial embedding.

It is known [1] that every non-metrizable topological group G which is a
k.-space contains a closed topological copy of the Frechet-Urysohn fan, that is
the quotient space

So x N/{0} x N,

where Sy = {0} U {1 : n € N} is the convergent sequence.

Problem. Suppose I C G is a functorial embedding of the interval into
a topological group G. Does G contain a topological copy of the Fréechet-Urysohn
fan? Does the group hull grp(I) of I in G contain a closed topological copy of
Fréchet-Urysohn fan?

Remark 2. Note that Theorem gives a negative answer to the Question
8 from [2].
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