


Serdica Math. J. 26 (2000), 49-58

ON THE EXPONENTIAL BOUND OF THE CUTOFF

RESOLVENT
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Abstract. A simpler proof of a result of Burq [1] is presented.

Let O ⊂ R
n, n ≥ 2, be a bounded domain with C∞ boundary Γ and

connected complement Ω = R
n \ O. Consider in Ω the operator

∆g := c(x)2
n∑

i,j=1

∂xi
(gij(x)∂xj

),

where c(x), gij(x) ∈ C∞(Ω), c(x) ≥ c0 > 0 and

n∑

i,j=1

gij(x)ξiξj ≥ C|ξ|2, ∀(x, ξ) ∈ T ∗Ω, C > 0.
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We also suppose that c(x) = 1, gij(x) = δij for |x| ≥ ρ0 for some ρ0 ≫ 1. Denote
by G the selfadjoint realization of ∆g in the Hilbert space H = L2(Ω; c(x)−2dx)
with a domain of definition D(G) = {u ∈ H2(Ω), Bu|Γ = 0}, where either B = Id
(Dirichlet boundary conditions) or B = ∂ν (Neumann boundary conditions).
Consider the resolvent R(λ) := (G + λ2)−1 : H → H defined for Imλ < 0, and
introduce the cutoff resolvent Rχ(λ) := χR(λ)χ, where χ ∈ C∞

0 (Rn), χ(x) = 1
for |x| ≤ ρ0 + 1, χ(x) = 0 for |x| ≥ ρ0 + 2. It is well known that Rχ(λ) extends
through the real axis as a meromorphic function the poles of which are called
resonances. Using the Carleman estimates proved by Lebeau-Robbiano ([4] in
the Dirichlet case and [5] in the Neumann one) Burq has proved the following
result

Theorem ([1]). There exist constants C,C1, C2, γ > 0 so that Rχ(λ)
extends holomorphically to the region

{λ ∈ C : Imλ ≤ C1e
−γ|λ|, |Reλ| ≥ C2}

and satisfies there the estimate

(1) ‖Rχ(λ)‖L(H) ≤ Ceγ|λ|.

Furthermore, he applied this theorem to obtain uniform rate of the decay
of the local energy. Denote by u(t) the solution of the equation





(∂2
t − ∆g)u(t) = 0,

Bu|Γ = 0,

u(0) = f1, ∂tu(0) = f2.

Given any compact K ⊂ Ω and any m > 0, set

pm(t)= sup

{ ‖∇xu‖L2(K)+‖∂tu‖L2(K)

‖∇xf1‖Hm(K)+‖f2‖Hm(K)
, (0, 0)6=(f1, f2)∈[C∞(Ω)]2, supp fj ⊂ K

}
.

Burq derived from (1) the following bounds

(2) pm(t) ≤ Cm(log t)−m for t ≥ 2.

Note that another method allowing to derive (2) from (1) is presented in [6,
Section 3].
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The purpose of the present note is to give another proof of how the Car-
leman estimates of Lebeau-Robbiano imply (1). The first observation is that
Theorem follows easily from the bound

(3) ‖Rχ(λ)‖L(H) ≤ C̃eγ|λ|, λ ∈ R, |λ| ≫ 1,

(e.g. see [2, Corollary 3.1]). In fact, it suffices to prove (3) for λ ≫ 1 as the
case λ ≪ −1 can be treated similarly. So, in what follows λ will be real, λ ≫ 1.
Consider the Helmholtz equation





(∆g + λ2)u = v in Ω,

Bu = 0 on Γ,

u − λ− outgoing,

where v ∈ C∞(Ω), supp v ⊂ Ωa0
:= {x ∈ Ω : |x| < a0}, where a0 ≫ 1 is taken so

that the support of the perturbation is contained in Ωa0
. Clearly, (3) is equivalent

to the estimate

(4) ‖u‖L2(Ωa0
) ≤ Ceγλ‖v‖L2(Ω).

Take a > a0 to be fixed later on and denote S = {x ∈ R
n : |x| = a}. Define

the Neumann operator N(λ) : H1(S) → L2(S) by N(λ)g := λ−1∂ν′w|S , where w
solves the equation





(∆ + λ2)w = 0 in |x| > a,

w = g on S,

w − λ− outgoing.

Here ∆ denotes the free Laplacian and ν ′ denotes the outer unit normal to S. It
is well known that for strictly convex S we have the bound

(5) ‖N(λ)‖L(H1(S),L2(S)) ≤ C

with a constant C > 0 independent of λ (e.g. see [3, Corollary 3.3]). Hereafter,
given a domain K, Hs(K) will denote the Sobolev space equipped with the
semiclassical norm ‖f‖Hs(K) := ‖Λsf‖L2(K), where Λs is a λ− ΨDO on K with

principal symbol (|ξ|2 + 1)s/2.
Clearly, u and v satisfy the equation





(∆g + λ2)u = v in Ωa,

Bu = 0 on Γ,

λ−1∂νu|S +N(λ)f = 0,
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where f = u|S and ν = −ν ′ denotes the inner unit normal to S. By Green’s
formula we have

(6)

−Im 〈N(λ)f, f〉L2(S) = −Im 〈u, c−2v〉L2(Ωa0
)

≤ e−βλ‖u‖2
L2(Ωa0

) + eβλ‖v‖2
L2(Ω),

∀β. Given any X > 0 take a function ρX(t) ∈ C∞
0 (R), 0 ≤ ρX(t) ≤ 1, ρX(t) = 1

for |t| ≤ X, ρX(t) = 0 for |t| ≥ X + 1. Denote by ∆S the Laplace-Beltrami
operator on S. We need the following

Lemma. For every X > 0 there exists γ0 = γ0(X) ≥ 0 so that

(7) −Im 〈N(λ)f, f〉L2(S) ≥ e−γ0λ‖ρX(λ−1
√

−∆S)f‖2
L2(S).

P r o o f. Without loss of generality we may suppose that S is of radius 1.
It is well known that the outgoing Neumann operator can be expressed in terms

of the Hankel functions of second type, H
(2)
ν (z). Let {µj} be the eigenvalues of√

−∆S repeated according to multiplicity. We have the identities

(8) −Im 〈N(λ)f, f〉L2(S) = −
∑

Im

(
h′ν(λ)

hν(λ)

)
α2

j ,

(9) ‖ρX(λ−1
√

−∆S)f‖2
L2(S) =

∑
ρ2

X(λ−1µj)α
2
j ,

where {αj} are such that

‖f‖2
L2(S) =

∑
α2

j ,

and hν(z) = z1/2H
(2)
ν (z), ν =

√
µ2

j + (
n

2
− 1)2, satisfies the equation

(10) h′′ν(z) =

(
ν2 − 1/4

z2
− 1

)
hν(z).

For real z > 0, set ψν(z) = −Im
h′ν(z)

hν(z)
, ην(z) = −Re

h′ν(z)

hν(z)
. In view of (10) we

have

(11) ψ′
ν(z) = Im

((
h′ν(z)

hν(z)

)2

− h′′ν(z)

hν(z)

)
= 2ηνψν .
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This implies
d

dz

{
ψν(νz) exp

(
−2ν

∫ z

z0

ην(νy)dy

)}
= 0,

and hence

(12) ψν(νz) = ψν(νz0) exp

(
2ν

∫ z

z0

ην(νy)dy

)
.

Fix z0 = 2. We are going to show that for ν ≥ ν0 ≫ 1 we have: ∀δ > 0,
∃c = c(δ) ≥ 0 so that

(13) ψν(νz) ≥ e−cν , ∀z ≥ δ,

and

(14) ψν(z) > 0, ∀z > 0.

By Olver’s expansions

ψν(νz0) =

√
z2
0 − 1

z0
+O(ν−1).

Clearly, this together with (12) imply (14). To prove (13) we will first consider
the case when z ≥ 2. Again by Olver’s expansions

ην(νz) =
4z2 − 3

2z(z2 − 1)
ν−1 +O(ν−2),

uniformly for z ≥ 2, and hence ην(νz) > 0. This together with (12) yield

ψν(νz) ≥ ψν(νz0) ≥ Const > 0,

which proves (13) in this case. Furthermore, still by Olver’s expansions we have
ην(νz) = O(1) uniformly in δ ≤ z ≤ 2. Hence, by (12), for δ ≤ z ≤ 2,

ψν(νz) ≥ ψν(νz0) exp

(
−2ν

∫ 2

δ
|ην(νy)|dy

)

≥ ψν(νz0) exp (−Cν) , C > 0,

which implies (13) in this case.
Let now 1/2 < ν ≤ ν0. Using the well known asymptotics of the Hankel

functions as z → +∞, ν > 1/2 fixed, we get

(15) ψν(z) = 1 +O(z−1), 1/2 < ν ≤ ν0.
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Since ν = O(λ) on supp ρX , it is easy to see that (7) follows from (8) and (9)
combinned with (13), (14) and (15).

Let χ ∈ C∞
0 (Rn), χ = 1 for |x| ≤ a0 + 2, χ = 0 for |x| ≥ a0 + 3. Applying

the Carleman estimates of Lebeau-Robbiano [4], [5] to the function χu leads to

(16)

∫

Ωa0+2

(
|u|2 + |λ−1∇u|2

)
dx

≤ e2γ1λ

∫

a0+2≤|x|≤a0+3

(
|u|2 + |λ−1∇u|2

)
dx+ e2γ1λ‖v‖2

L2(Ω),

with some γ1 > 0. To eliminate the first term in the RHS of (16) we will use the
Carleman estimates up to S. Set P = −λ−2∆ − 1. If ϕ ∈ C∞(Ωa), then Pϕ :=
eλϕPe−λϕ is again a λ− ΨDO with principal symbol pϕ(x, ξ) = p(x, ξ + i∇xϕ),
p being the principal symbol of P considered as a λ−ΨDO. We will construct a
real-valued C∞ function ϕ defined in a neighbourhood of a0 ≤ |x| ≤ a such that
∇ϕ 6= 0 on a0 ≤ |x| ≤ a, ϕ = −1 on |x| = a0, ϕ ≥ γ1 + 1 on a0 + 2 ≤ |x| ≤ a0 + 3
and satisfying the condition

(17) pϕ(x, ξ) = 0 ⇒ {Re pϕ, Im pϕ} > 0.

We will be looking for ϕ in the form ϕ(r), r = |x|. It is easy to see that (17) is
equivalent to

(18) ϕ′

(
ϕ′′ϕ′ +

1 + ϕ′2

r

)
> 0 for a0 ≤ r ≤ a.

Given any constant C > 2(a0 + 3), it is easy to check that the function

ϕ′(r) =

√
C

r
− 1 satisfies (18) with a = C/2. Define ϕ(r) as follows

ϕ(r) = −1 +

∫ r

a0

√
Ct−1 − 1 dt.

Clearly, if we take C ≥ C1(a0, γ1) we can arrange ϕ(a0 + 2) ≥ γ1 + 1 and hence
ϕ(r) ≥ γ1 + 1 for a0 + 2 ≤ r ≤ a. Fix C = max{2(a0 + 3), C1(a0, γ1)} and
a = C/2. Since ϕ(a0) = −1, there exist a0 < a1 < a2 < a0 + 1 so that ϕ(r) < 0
for a1 ≤ r ≤ a2. Choose a function χ1 ∈ C∞(Rn), χ1 = 0 for |x| ≤ a1, χ1 = 1 for
|x| ≥ a2. We would like to apply the Carleman estimates up to S to the function
χ1u. Set w = eλϕχ1u. We are going to prove the estimate

(19)
‖w‖H1(a0≤|x|≤a) + ‖w|S‖H1(S)

≤ O(λ1/2)‖Pϕw‖L2(a0≤|x|≤a) +O(1)‖Opλ(η)w|S‖L2(S),
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where η(x′, ξ′) ∈ C∞
0 (T ∗S), η = 1 for r0(x

′, ξ′) ≤ 3, η = 0 for r0(x
′, ξ′) ≥ 4,

r0(x
′, ξ′) denotes the principal symbol of −∆S. Before proceeding to the proof

of (19) we will complete the proof of (4). Since Pϕw = −λ−2eλϕ[∆, χ1]u and
w|S = eϕ(a)λf , (19) implies

∫

a2≤|x|≤a

(
|u|2 + |λ−1∇u|2

)
e2λϕdx ≤

∫

a1≤|x|≤a2

(
|u|2 + |λ−1∇u|2

)
e2λϕdx

(20) +O(1)e2λϕ(a)‖Opλ(η)f‖2
L2(S) − e2λϕ(a)‖f‖2

L2(S).

Since γ1 < ϕ on a0 + 2 ≤ |x| ≤ a0 + 3, the first term in the RHS of (16) is
estimated from above by the LHS of (20) times a factor e−δ1λ, δ1 > 0. On the
other hand, since ϕ < 0 on a1 ≤ |x| ≤ a2, the first term in the RHS of (20) is
estimated from above by the LHS of (16) times a factor e−δ2λ, δ2 > 0. Therefore,
we have

(21) e−2γ2λ‖u‖2
L2(Ωa0+2)

+ ‖f‖2
L2(S) ≤ e2γ3λ‖v‖2

L2(Ω) +O(1)‖Opλ(η)f‖2
L2(S),

with some constants γ2 and γ3. On the other hand, taking η(x′, ξ′) =
ρX(

√
r0(x′, ξ′)), applying (7) with X =

√
3 and combining with (6) give

(22) ‖Opλ(η)f‖2
L2(S) ≤ o(1)‖f‖2

L2(S) + e−(β−γ0)λ‖u‖2
L2(Ωa0

) + e(β+γ0)λ‖v‖2
L2(Ω),

∀β. Clearly, taking β > 2γ2 + γ0, (4) follows from (21) and (22).

P r o o f o f (19). Since ∂νϕ|S = −1, the boundary conditions on S become
λ−1∂νw|S = −(N(λ) + 1)f1, where f1 := w|S . By the Carleman estimates of
Lebeau-Robbiano [4], in view of (5), we have

(23) ‖w‖H1(a0≤|x|≤a) ≤ O(λ1/2)‖Pϕw‖L2(a0≤|x|≤a) +O(1)‖f1‖H1(S).

It is easy to see that (19) would follow from (23) and the estimate

(24)
‖Opλ(1 − η)f1‖H1(S)

≤ O(λ1/2)‖Pϕw‖L2(a0≤|x|≤a) + o(1)‖w‖H1(a0≤|x|≤a) + o(1)‖f1‖H1(S).

To prove (24) we will use that 1 − η is supported in the elliptic region of the
corresponding boundary value problem. Clearly, it suffices to prove (24) locally
and then conclude by a partition of the unity on S. Given a x0 ∈ S take a small
neighbourhood in R

n, V , of x0, and denote U = V ∩S, V+ = V ∩{|x| < a}. Take in
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V+ the so called normal to the boundary local coordinates x = (x′, xn) ∈ U×[0, δ],
0 < δ ≪ 1. In these coordinates the principal symbols of P and Pϕ write as follows

p = ξ2n + r(x, ξ′) − 1 = ξ2n + r0(x, ξ
′) − 1 +O(xn|ξ′|2),

Re pϕ = ξ2n + r(x, ξ′) − 1 − (ϕ′
xn

)2 = ξ2n + r0(x, ξ
′) − 2 +O(xn(|ξ′|2 + 1)),

Im pϕ = 2ϕ′
xn
ξn = −2ξn(1 +O(xn)),

where r0(x
′, ξ′) is the principal symbol of −∆S written in the coordinates (x′, ξ′) ∈

T ∗U . Hence, the restriction of pϕ = 0 on T ∗S is given by r0 = 2. In what
follows ‖ · ‖s and ‖ · ‖s,+ will denote the norms in Hs(Rn−1) and Hs(Rn−1 ×R

+),
respectively, while 〈·, ·〉 and 〈·, ·〉+ will denote the scalar products in L2(Rn−1)

and L2(Rn−1 ×R
+), respectively. By Ls,k

cl we will denote the space of λ−ΨDO’s
with symbols a ∼ λk

∑
λ−jaj with aj independent of λ satisfying

|∂α
x ∂

β
ξ aj| ≤ Cαβ(1 + |ξ|)s−j−|β|.

We will also denote Dj := (iλ)−1∂xj
, D = (D′,Dn). Let φ(t) ∈ C∞

0 (R), φ = 1
for |t| ≤ δ/2, φ = 0 for |t| ≥ δ. Let also ζ(x′) ∈ C∞

0 (U), ζ = 1 in a small
neighbourhood of x0 ∈ U . Set

g = Opλ((1 − η)|ξ′|)φ(xn)ζ(x′)w, h := g|xn=0 = Opλ((1 − η)|ξ′|)ζ(x′)f1.

We have

iDng|xn=0 = −(N(λ) + 1)h+ [N(λ),Opλ((1 − η)|ξ′|)ζ(x′)]f1.

Since N(λ) has a parametrix of class L1,0
cl on supp(1 − η) with principal symbol

−
√
r0 − 1, we have that the commutator above (which will be denoted by A) is

of class L1,−1
cl . Let P ∗

ϕ be the formal adjoint to Pϕ and denote Q1 =
Pϕ + P ∗

ϕ

2
,

Q2 =
Pϕ − P ∗

ϕ

2i
with principal symbols Re pϕ and Im pϕ, respectively. Using the

identities
∫ ∞

0
D2

ng · gdxn =

∫ ∞

0
|Dng|2dxn + iλ−1Dng|xn=0 · g|xn=0,

Im 〈Q2g, g〉+ = −λ−1‖h‖2
0 + e(g),

where
|e(g)| ≤ o(1)‖g‖2

1,+,
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it is easy to get

Re 〈(Q1 −D2
n)g, g〉+ + ‖Dng‖2

0,+ = Re 〈Pϕg, g〉+ + λ−1Re 〈N(λ)h+Af1, h〉+ e(g)

(25) ≤ ε−1

∫ ∞

0
‖Pϕg(·, xn)‖2

−1dxn + ε‖g‖2
1,+ +O(λ−2)‖f1‖2

H1(S),

∀ε > 0. On the other hand, the principal symbol of Q1 −D2
n is ≥ C|ξ′|2, C > 0,

on supp(1 − η), 0 ≤ xn ≤ δ, 0 < δ ≪ 1. Therefore, by Gärding’s inequality we
get

0 < C ′‖g‖2
1,+ ≤ ε−1

∫ ∞

0
‖Pϕg(·, xn)‖2

−1dxn + ε‖g‖2
1,+ +O(λ−2)‖f1‖2

H1(S),

and hence

(26) ‖g‖2
1,+ ≤ O(1)

∫ ∞

0
‖Pϕg(·, xn)‖2

−1dxn +O(λ−2)‖f1‖2
H1(S).

On the other hand,

‖h‖2
0 = −

∫ ∞

0

d

dxn
‖g(·, xn)‖2

0dxn

= −2λ

∫ ∞

0
Re 〈g(·, xn), iDng(·, xn)〉dxn ≤ O(λ)‖g‖2

1,+,

which combinned with (26) gives

‖h‖0 ≤ O(λ1/2)

(∫ ∞

0
‖Pϕg(·, xn)‖2

−1dxn

)1/2

+O(λ−1/2)‖f1‖H1(S)

≤ O(λ1/2)‖Pϕw‖0,+ +O(λ−1/2)‖w‖1,+ +O(λ−1/2)‖f1‖H1(S),

which in turn implies (24) by making a partition of the unity on S.
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