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ABSTRACT In this work, a classical problem of the digital sequence design, or more precisely, finding
binary sequences with optimal peak sidelobe level (PSL), is revisited. By combining some of our previous
works, together with some mathematical insights, few hybrid heuristic algorithms were created. During
our experiments, and by using the aforementioned algorithms, we were able to find PSL-optimal binary
sequences for all those lengths, which were previously found during exhaustive searches by various
papers throughout the literature. Then, by using a general-purpose computer, we further demonstrate the
effectiveness of the proposed algorithms by revealing binary sequences with lengths between 106 and 300,
the majority of which possess record-breaking PSL values. Then, by using some well-known algebraic
constructions, we outline few strategies for finding highly competitive binary sequences, which could be
efficiently optimized, in terms of PSL, by the proposed algorithms.

INDEX TERMS Sequences, peak sidelobe level (PSL), digital sequence design, optimization.

I. INTRODUCTION
Digital sequence design plays an important role in various
scientific domains, such as radar technology, telecommu-
nications, active sensing systems, navigation, cryptogra-
phy. One of the desirable characteristic a given binary
sequence should possess is a low peak sidelobe level (PSL).
Some well-known constructions of such sequences includes
the Barker codes [1], Rudin-Shapiro sequences [2], [3],
m-sequences [4], Gold codes [5], Kasami codes [6], Weil
sequences [7], Legendre sequences [8]. Nevertheless, none
of the aforementioned constructions guarantees that the gen-
erated binary sequence will possess the lowest possible (opti-
mal) PSL value. Thus, currently, initiating an exhaustive
search is the only way to reveal an optimal PSL value
for binary sequences of some fixed length. Given a binary
sequence with length n, the PSL-optimal values for n ≤ 40
[9], n ≤ 48 [10], n = 64 [11], n ≤ 68 [12], n ≤ 74 [13], n ≤
80 [14], n ≤ 82 [15] and n ≤ 84 [16] are obtained. However,
the PSL-optimal values of binary sequences with lengths n
greater than 84 are still unknown. This is not surprising, since
the search space of the set of all the binary sequences with
some fixed length n is 2n.

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

Since discovering a PSL-optimal value requires significant
computational power, from practical point of view, the trade-
off between optimality and complexity is justified, i.e. the
usage of an algorithm having significantly lower complexity
compared to the exhaustive search routine, which is capable
of reaching candidates close to the PSL-optimal ones (near-
optimal). The state-of-the-art strategies for near-optimal PSL
binary sequence construction, as well as ISL (intergrated
sidelobe level) sequences construction, include CAN [17],
ITROX [18], MWISL-Diag, MM-PSL [19], DPM [20],
1bCAN [21], shotgun hill climbing (SHC) [22] and optimized
for long binary sequences hill climbing (HC) [23].

The currently known PSL records for 85 ≤ n ≤ 105 are
published in [24], and for 106 ≤ n ≤ 300 in [22], [25]–[28].
Furthermore, some of the aforementioned works published
records for some chosen lengths of n ≥ 300 as well. For
example, in [29] a D-Wave 2 quantum computer was used,
altogether with an adiabatic quantum algorithm, for searching
binary sequences with low PSL up to lengths of 426.

In Section III, we demonstrate that the hybridization of two
distinct PSL-optimizing algorithms could be beneficial to the
overall goal of finding near-optimal PSL binary sequences.
In fact, during our experiments in Sections IV and V, and by
using just a general-purpose processor, we were able to find
PSL-optimal binary sequences for all those lengths, which
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were previously discovered by an exhaustive search only.
Then, by using the latest hybrid strategy, record-breaking
PSL values for almost all binary sequences with lengths in
[106, 300] are revealed. Finally, in Section VI, we investigate
the applicability of the proposed algorithm as an extension to
some well-known algebraic constructions.

II. PRELIMINARIES
We denote as B = (b0, b1, · · · , bn−1) the binary sequence
with length n > 1, such that bi ∈ {−1, 1}, 0 ≤ i ≤ n−1. The
aperiodic autocorrelation function of B is given by

Cu(B) =
n−u−1∑
j=0

bjbj+u, for u ∈ {0, 1, · · · , n− 1}.

We define Cu(B) for u ∈ {1, · · · , n−1} as a sidelobe level.
C0(B) is called the mainlobe. We define the PSL of B as

BPSL = max
0<u<n

|Cu(B)|.

An m-sequenceM = (x0, x1, · · · , x2m−2) of length 2m− 1
is defined by:

xi = (−1)Tr(βα
i), for 0 ≤ i < 2m − 1,

where α is a primitive element of the field F2m , β ∈ F2m , and
Tr is denoting the trace function from F2m to F2.
Given an odd prime p, a Legendre sequence L with length

p is defined by:

Li =

{
1, if i is a quadratic residue mod p
−1, otherwise.

We denote as B ← ρ the binary sequence obtained from
B, by left-rotating it ρ times. By definition, B ← |B| ≡ B.
Furthermore, if bi is the element of B on position i, we will
denote as b←ρi the element of B← ρ on position i.

Let us denote Cn−i−1(B) by Ĉi(B). Since this is just a
rearrangement of the sidelobes of B, it follows that:

BPSL = max
0<u<n

|Cu(B)| = max
0≤u<n−1

|Ĉu(B)|.

III. PSL PROBLEM REVISITED
Throughout this section, a brief overview of the existing
PSL-optimizing algorithms was made. In [23] a comparison
of the state-of-the-art algorithms, in terms of algorithm effi-
ciency (the ratio of the beneficial work performed by the
algorithm to the total energy invested) and actual effective-
ness (the quality of the achieved results) was made. The best
results were achieved by SHC [22] algorithm, regarding the
binary sequences with length less than 300, andHC [23], for
all the remaining lengths. However, the approximated binary
sequence’s length, fromwhich HC starts outperforming SHC,
is fuzzy and yet to be determined.

In Table 1 a comparison between the most significant
components of SHC and HC was made. In summary, both
heuristic algorithms are not deterministic, i.e. starting from
two identical states rarely results in two identical ending

states. The search operator used in both SHC and HC is
the single flip operator. Thus, each modification is a simple
composition of single flips. One major difference between
the two algorithms is their complexity. Indeed, in HC the
time complexity of the flip operation is linear, which is a
significant advantage compared to the quadratic one to be
found in SHC. Another major difference between HC and
SHC is the probability of missing (fails to detect) a better
binary sequence, which is just 1 flip away from the current
position.

As observed in [23], the PSL-optimization process of very
long binary sequences is a time-consuming routine, despite
the algorithm’s linear time and memory complexities. Thus,
HC avoids restarts, i.e. re-initializing the starting state with
a pseudo-random binary sequence. However, re-initialization
appears to be significantly beneficial when dealing with
PSL-optimization of binary sequences with relatively small
lengths, such as the SHC algorithm.

By considering the observations made above, we have
revisited the SHC algorithm:
• The quadratic flip operator was interchanged with the
linear flip operator

• The probing strategy (searching for better candidates)
was interchanged with the more efficient probing strat-
egy introduced in HC

For convenience, the flip operator from [23] is given in
Algorithm 1. The function Flip takes three parameters as
input:
• f - bit position to be flipped
• 9 - binary sequence as an array
• �9 - the sidelobes of 9 as an array
The complete pseudo-code of the kernel of the revisited

SHC algorithm is summarized in Algorithm 2. For brevity,
the following notations were used:
• n - the binary sequence’s length
• T - the threshold value of the instance
• F - a fixed fitness function
• V , V ∗ - respectively the current best and the overall best
fitness value

• c - the counter. The algorithm quits if the counter c
reaches the threshold T

• Z+n - the set of all positive integer numbers strictly less
than n

• L, G - binary variables: L (local) is activated if V is
improved, whileG (global) is activated ifV ∗ is improved

• Bn - the set of all n-dimensional binary sequences with
elements from {−1, 1}

• Q - the quaking function as defined in [23]. For example,
if the input triplet of Q is x,L, SL, the function flips
x random bits in L, and at the same time, in-memory
updating the sidelobe array SL

IV. FITNESS FUNCTIONS
In this section, considering the significant changes made
in the SHC algorithm, the fitness function parameters are

VOLUME 9, 2021 112401



M. Dimitrov et al.: Hybrid Constructions of Binary Sequences With Low Autocorrelation Sidelobes

Algorithm 1 The In-Memory Flip Introduced in [23]
1: procedure Flip(f , 9,�9 )
2: n = |9|
3: δmin← min(n−f−1,f )
4: δmax ← max(n−f ,f )
5: if f ≤ n−1

2 then
6: for q ∈ [0, δmax − δmin − 1) do
7: �9 [δmin + q] −= 29[f ]9[n− q− 1]
8: end for
9: else

10: for q ∈ [0, δmax − δmin) do
11: �9 [δmin + q] −= 29[f ]9[q]
12: end for
13: end if
14: if f ≤ n−1

2 then
15: for q ∈ [0, n− δmax) do
16: �9 [δmax + q− 1] −= 29[f ] (9[2f − q]+9[q])
17: end for
18: else
19: for q ∈ [0, n− δmax − 1) do
20: �9 [δmax + q] −=
21: 29[f ] (9[δmax − δmin + q]+9[n− q− 1])
22: end for
23: end if
24: 9[f ] ∗= −1
25: end procedure

TABLE 1. A comparison between SHC and HC.

carefully analyzed, re-evaluated, and updated. Given a binary
sequence 9, both algorithms (SHC and HC) are sharing the
same fitness function F , s.t:

F(9) =
∑
x∈�9

|x|4 =
∑
x∈�9

x4

During our previous experiments, we reached to the con-
clusion that interchanging the power 4 with larger or smaller
value, is respectively too intolerant or too tolerant to the
largest elements in �9 . However, since significant changes
to the kernel of SHC were made, this observation is to be
re-evaluated by series of experiments. More precisely, given
a fixed threshold T, and the fitness function

∑
x∈�9 |x|

α ,
a comparison between the efficiency of different α values is
measured.

In Table 2 the results regarding binary sequences with
length 100 are given. Each row of the table corresponds to
a different experiment. For a more informative measurement
of the overall efficiency of the experiments, another variable
VO was introduced. It measures the median value of all the

Algorithm 2 The SHC Revisited Kernel
1: procedure SHC(n,T)
2: pick 9 ∈ Bn
3: V ∗, V , G, L, c← F(�9 ), 0, True, False, 0
4: while c < T do
5: c += 1
6: if G then
7: pick r ∈ Z+n
8: for i ∈ [0, n) do
9: flip((r + i)%n, 9,�9)
10: if V ∗ > F(�9 ) then
11: V ∗, L← F(�9 ), True
12: break
13: else
14: flip((r + i)%n, 9,�9)
15: end if
16: end for
17: if L then
18: G, L← True, False
19: continue
20: else
21: G← False
22: end if
23: else
24: pick r ∈ Z+4
25: Q(1 + r, 9, �9 )
26: G, L← True, False
27: end if
28: end while
29: end procedure

best values V ∗. More formally, if ti denotes the thread i of
a given experiment E with R restarts, and if the best results
achieved by ti is denoted as V ∗i , then

VO
=

∑
i∈E V

∗
i

R
At first, the numerical experiments suggest α = 3

as a near-optimal value for achieving best results. Indeed,
given a binary sequence with length 100, and (α,R,T) =
(3, 102, 104), the value ofVO is smaller compared to the other
experiments’ values. This observation is more clearly visible
throughout the experiments with binary sequences having
length 256 summarized in Table 3 and binary sequences
with length 500 (see Table 4 and the triplet (α,R,T) =
(3, 102, 104) with VO

= 11.51). However, this tendency of
α = 3 supremacy over integer values of α is not observable
throughout larger values of n. As summarized in Table 5,
the triplet (α,R,T) = (4, 102, 104) yields better charac-
teristics than (α,R,T) = (3, 102, 104). In fact, the quality
of the binary sequences yielded by the triplet (α,R,T) =
(4, 102, 103), having VO equal to 24.81, is almost the same as
those binary sequences generated by the triplet (α,R,T) =
(3, 102, 104) with VO

= 24.98. Since the first threshold
value (103) is ten times smaller than the second one (104),
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TABLE 2. Efficiency and comparison of various triplets
(
α,T,100

)
.

TABLE 3. Efficiency and comparison of various triplets
(
α,T,256

)
.

and given the negligible difference of the binary sequences’
quality (0.17), this correlation is particularly beneficial and
could be further exploited to reduce the overall time needed
for the binary sequences optimization routines.

During the final two experiments, considering the bigger
sizes of the binary sequences, the threshold value is fixed
to 103. However, the data gathered throughout the previous
experiments suggested that if we have a triplet (n,R,T1)
measured with VO

1 , then, given T1 ≥ 103 and some threshold
value T2 � T1, such that the triplet (n,R,T2) is measured
with VO

2 , then VO
2 < VO

1 .
In Tables 6 and 7, triplets of the form (α, 102, 103) were

analyzed, corresponding to binary sequences with respective
lengths of 2048 and 4096. It appears that the longer the binary

TABLE 4. Efficiency and comparison of various triplets
(
α,T,500

)
.

TABLE 5. Efficiency and comparison of various triplets
(
α,T,1024

)
.

TABLE 6. Efficiency and comparison of various triplets
(
α,T,2048

)
.

TABLE 7. Efficiency and comparison of various triplets
(
α,T,2048

)
.

sequences is (n), the larger the aggression of the optimization
routine should be (α). Indeed, in the case of n = 2048,
the best value of VO

= 36.74 is calculated by using α = 5,
while in the case of binary sequences with lengths n = 4096,
the best value of VO

= 54.16 is yielded by using α = 6.

V. PRACTICAL APPLICATIONS AND RESULTS
The observations made throughout the experiments in
Section IV, as well as the more efficient algorithm
constructed in Section III, motivated us to revisit the
PSL-optimization problem.

A. FINDING PSL-OPTIMAL BINARY SEQUENCES
HEURISTICALLY
As previously discussed, binary sequences with lengths up
to 84 and PSL-optimal values have been already discovered
by using various exhaustive search strategies. This data is
particularly beneficial for measuring the efficiency of a given
PSL-optimizing algorithm. In other words, given a search
space with binary sequences with some fixed length n ≤ 84,
and some PSL-optimizing algorithm A with a reasonable
threshold value, the best results achieved by A could be
compared with the already known optimal PSL values.
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During our experiments, we have used a single
general-purpose computer with a 6-cored central processing
unit architecture, capable of running 12 threads simulta-
neously. Surprisingly, by using the SHC revisited kernel,
as well as a fixed value of α = 2, we were able to reach
binary sequences with optimal PSL values for each length
in [1, 82]. Given the linear time and memory complexities
of the algorithm, for the majority of those lengths, the
PSL-optimal binary sequences were reached for less than a
minute. However, for some border cases, the needed time
was few hours. The best results yielded by our experiments
are summarized in Table 8. A remark should be made, that
we have included just one PSL-optimal binary sequence for a
given length. However, for almost each fixed length, the algo-
rithm was able to find more than one binary sequence having
an optimal PSL value. The binary sequences are given in a
hexadecimal format, by omitting the leading zeroes. In the
last column of Table 8, beside the corresponding optimal PSL
value of the hexadecimal binary sequence given in column 2,
the symbol−

n

was used to illustrate some approximation of the
time needed for Algorithm 2 to reach a PSL-optimal binary
sequence:

• −

n

≈ minute
• −

n

−

n

≈ hour
• −

n

−

n

−

n

≈ day

For all other cases, the algorithmwas able to reach the optimal
PSL for less than a minute, and in some cases, for less than
a second.

B. FINDING PSL-NEAR-OPTIMAL BINARY SEQUENCES
HEURISTICALLY
In [16] it was shown that there are no binary sequences with
lengths 83 or 84 with PSL 4 (or less). For completeness,
in Table 9, two binary sequences (with lengths 83 and 84)
reached by Algorithm 2 are given. Both possess an optimal
PSL value and were reached for less than a minute.

The near-optimal PSL values for binary sequences with
lengths from 85 to 105 are found in [24]. However, there
is no further information regarding the particular optimiza-
tion technique that was applied. The authors just stated
that ‘The searches involved a combination of several global
optimization methods’. Hence, it is difficult to recreate the
experiment or, for example, apply the aforementioned mix
of unknown optimization techniques to binary sequences
with different (greater) lengths. Nevertheless, by using Algo-
rithm 2, we were able to reach the same PSL values for
all the binary sequences with lengths from 85 to 105 (see
Table 10). It should be mentioned that the binary sequences
from Table 10) are different from those that were previously
published in the literature.

C. FINDING BINARY SEQUENCES WITH
RECORD-BREAKING PSL VALUES HEURISTICALLY
The results achieved throughout the experiments described
in Sections V-A and V-B demonstrated the efficiency of

TABLE 8. Reached optimal solutions.
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TABLE 9. Reached optimal solutions - continued.

TABLE 10. Reached near-optimal solutions.

Algorithm 2. Thus, we have further launched the algorithm on
binary sequences with lengths up to 300. The results are given
in Tables 11-16. The binary sequences with record-breaking
PSL values are further highlighted with the symbol H (black
triangle pointing down). Almost all of the results known in the
literature were improved. More precisely, we have improved
179 out of 195 cases. Curiously, for some lengths, we have
even revealed binary sequences with record-breaking PSL
values, having a distance of two to the previously known PSL
record value.Wewill mark those improvements with a double
black triangle symbol. An example of such length is 229.

In [29], the best results achieved by the D-Wave 2 quantum
computer for binary sequences with length 128 is PSL 8,
while Algorithm 2 could reach PSL 6 (see Table 11). For
longer lengths, for example, binary sequences with lengths
256, the best PSL achieved by the D-Wave 2 quantum com-
puter was 12, while during our experiments we reached PSL
values of 10. In fact, we reached PSL values of 10 for
binary sequences up to 271 (see Table 14). For complete-
ness, since the D-Wave 2 quantum computer is tested on
binary sequences with length 426, we have further launched
Algorithm 2 on the same length. Surprisingly, the algorithm
was able to find binary sequences with PSL values of 17 (the
best value achieved by the quantum computer) for less than
a second. In fact, it reached PSL values of 16, and even 15,
for less than a second as well. However, PSL value of 14
(see Table 17) was noticeable harder to reach (199 seconds).

During this optimization routine, and driven by the results
provided in Table 4 (since 500 is close to 426), we have
updated the α value to 3.
Recently, in [28] a multi-thread evolutionary search algo-

rithm was proposed. By using Algorithm 2 we were able to
improve almost all of the best PSL values from the afore-
mentioned paper - usually for less than a second. For exam-
ple, the best PSL value for binary sequences with length
3000 achieved in [28] is 51.We have launchedAlgorithm 2 on
binary sequences with the exact same length. It should be
emphasized (see Tables 6 and 7), that the α parameter should
be increased to 6. Record-breaking PSL values of 44 and
43 were reached for respectively 111 and 371 seconds.
In Table 17 an example of such binary sequence (2nd row) is
given. The last column of the table provides a more quantita-
tive measure of the record:Hx denotes that the corresponding
binary sequences possess a record-breaking PSL equal to
P− x, where P was the previously known record.

VI. HYBRID APPROACHES FOR PSL-OPTIMIZING
PROBLEM FOR LONG BINARY SEQUENCES
The reasoning behind announcing one binary sequence as
long, or short, is ambiguous. Measuring the largeness of a
given binary sequence is probablymore related to the capabil-
ities of the used algorithm than the actual length itself. From a
practical point of view, some algorithms, or their implementa-
tions, would not even start the optimization (or construction)
process, since their computational capabilities (or hardware
restrictions) would not be able to process the desired length.
For example, as discussed in [29], the usage of a 512-qubit
D-Wave 2 quantum computer limits the code length that can
be handled, to at most 426, due to a combination of over-
head operations and qubits unavailability. Moreover, it was
estimated that a 2048-qubit D-Wave computer could handle
binary sequences with lengths up to 2000. Hence, the exact
fixed value differentiating short from long binary sequences
is still unclear.

In Table 18 some detailed time measurements of binary
sequences with lengths 2g − 1, for g ∈ N , g ∈ [13, 17]
are given. The binary sequences are specially chosen to
exactly match the lengths of the well-known m-sequences,
generated by some primitive polynomial of degree g over
GF(2) denoted by M (see [30]) and the binary sequences
generated by Algorithm 2 denoted by A. The α parameter
was fixed to 4. The last column (A) denotes the time needed
for Algorithm 2 to reach the corresponding PSL (s, m, h, and
D denote respectively seconds, minutes, hours, and days).
Evidently, the longer the m-sequence, the harder for Algo-
rithm 2 to find a binary sequence with a better PSL value
is. For example, Algorithm 2 required approximately 3 days
to find a binary sequence of length 131071 with lower PSL
than the optimal m-sequence having the same size. Given a
PSL-optimizing algorithm A we will reference the length n
of a binary sequence as A -long if the expected time from A ,
starting from a pseudo-randomly generated binary sequence
with length n, to reach a binary sequence with PSL p, s.t.
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TABLE 11. Binary sequences with near-optimal PSL - part I. TABLE 12. Binary sequences with near-optimal PSL - part II.
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TABLE 13. Binary sequences with near-optimal PSL - part III. TABLE 14. Binary sequences with near-optimal PSL - part IV.
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TABLE 15. Binary sequences with near-optimal PSL - part V. TABLE 16. Binary sequences with near-optimal PSL - part V.

p ≤ b
√
nc, and by using single general-purpose processor,

ismore than 1 day. Otherwise, wewill reference it asA -short.
Throughout the radar literature statements that the asymptotic
PSL of m-sequences grows no faster than order

√
n were

frequently made. However, as shown in [31], this assump-
tion was not supported by theory or by data. Nevertheless,
it appears that the PSL-optimal m-sequences are very close to
√
n (see [32]). Thus, the threshold value of b

√
nc is based on

the expectation that the optimal PSL value for a given binary
sequences with length n is less than d

√
ne.

From now on, we denote Algorithm 2 as A with fixed α
value to 4 if not specified otherwise. During our experiments
and by using A , we have reached the conclusion that all
binary sequences with lengths n, s.t. n > 105 are A -long.
In this section, we have investigated some hybrid construc-
tions which could be applied in those cases when the binary
sequences are A -long.

A. USING A AS AN M-SEQUENCES EXTENSION
In this section, the following procedure is proposed:
• Choose a primitive polynomial f over F2m
• Fix an initial element a over F2m
• Convert f to a linear-feedback shift register L
• Expand the L to a binary sequence L, |L| = 2m − 1.
• Launch A with L as an input

The primitive polynomials over F2m could be calculated in
advance. Furthermore, the PSL of L, where L is seeded by
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TABLE 17. Example of long binary sequences with significantly better PSL
values.

some initial element a over F2m , could be specially chosen to
have the minimum possible value. This is easily achievable
by using the following theorems (the proofs could be found
in [32]):
Theorem 1: Given a binary sequence B = b0b1 · · · bn−1

with length n, the following property holds:

Ĉi(B← 1)− Ĉi(B) = b0 (bi+1 − bn−i−1)

Theorem 2: Given a binary sequence B = b0b1 · · · bn−1
with length n, the difference Ĉi(B← ρ)− Ĉi(B← (ρ − 1))
is equal to b(ρ−1) mod n(b(i+ρ) mod n − b(n−i+ρ−2) mod n).
The aforementioned procedure could be better illustrated

by an example. If we fix m = 17, we could pick the primitive
polynomial f = x17 + x14 + x12 + x10 + x9 + x + 1 over
F217 . Before converting f to a linear-feedback shift register
L , we should fix the starting state of L . Throughout this
example, a is fixed to the initial state of L :

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]

Then, L is expanded to L. By using single instruc-
tion, multiple data (SIMD) capable device and starting
with L, we could efficiently enumerate all 217 different
binary sequences generated by all possible starting states,
to find the one generating the minimum PSL value. More
formally, a value ρmax , s.t. ∀ρ : (L ← ρmax)PSL ≤

(L ← ρ)PSL . Considering f and the fixed value of a, in this
specific case the value of ρmax is 15150, or more precisely,
(L ← ρmax)PSL = 363.
Experiments with initializing A (α = 6) with L ← ρmax ,

instead of pseudo-randomly generated binary sequences,

TABLE 18. Time required to find better PSL values compared to known
results from m-sequences exhaustive search.

weremade.Wewere able to repeatedly reach record-breaking
binary sequences of length 131071 having PSL equal to 359.
The time required was less than 2 minutes, which was a sig-
nificant improvement over the time required for A (starting
from pseudo-randomly generated sequences) to reach binary
sequences with PSL close to 359: approximately 3 days.
Leaving A to work for another 46 minutes it even reached
binary sequences of length 131071 with PSL 356.

The proposed procedure, as demonstrated, is highly
efficient and is capable to reach binary sequences with
A -long lengths and record-breaking PSL values for few
minutes. Unfortunately, it is applicable on binary sequences
with lengths of the form 2n − 1 only. However, throughout
the next section, we provide another procedure that is able to
generate binary sequences with length p and record-breaking
PSL values, where p is a prime number.

B. USING A AS AN LEGENDRE-SEQUENCES EXTENSION
In this section, the following procedure is proposed:
• Choose a prime number p
• Generate the sequence L =

[
t1, t2, · · · , tp

]
• For i, s.t. i ∈ N , 1 ≤ i ≤ p, and in case i is a quadratic
residue mod p, replace ti with 1. Otherwise, replace ti
with −1.

• Launch A with L as an input
As the numerical experiments suggested in [32], it is highly

unlikely that a Legendre sequence with length p, for p >

235723, or any rotation of it, would yield a PSL value less
than
√
p. Having this in mind, experiments with initializing
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TABLE 19. Time required for A to reach smaller PSL values, when
launched from a rotated Legendre sequence with length 235747 and
rotation value 60547.

A (α = 8) with a rotation of Legendre sequence with length
235747 were made (the next prime number after 235723).
Again, by using SIMD-capable devices, we have extracted
the PSL-optimal rotation among all possible rotations of
a Legendre sequence with length 235747. More precisely,
on rotation 60547, a binary sequence with PSL equal to
508 was yielded. Surprisingly, A was able to significantly
optimize this binary sequence. As shown in Table 19, for less
than 25 minutes, using only 1 thread of a Xeon-2640 CPU
with a base frequency of 2.50 GHz, a binary sequence with
PSL equal to 408 was found.

Since
√
235747 ≈ 485.54, it follows that 408 is signif-

icantly smaller than the expected value of 485.54. In fact,
for leaving A for a total of 2.21 hours, a binary sequence
with length 235747 and PSL 400, or 108H, was reached:
an example of such binary sequence is provided within the
complimentary files.

VII. CONCLUSION
In this work, hybrid strategies for constructing binary
sequences with optimal and near-optimal PSL values are sug-
gested. By using the observationsmade throughout this paper,
we were able to reveal binary sequences of almost any length
with better PSL values than those known to the literature.
As demonstrated, the proposed algorithms are applicable to
binary sequences of any length. Our numerical experiments
suggest that the optimal PSL of binary sequences with length
n is significantly below

√
n.

REFERENCES
[1] R. H. Barker and W. Jackson, Group Synchronization of Binary Digital

Systems in Communication Theory. NewYork, NY, USA: Academic, 1953,
pp. 273–287.

[2] W. Rudin, ‘‘Some theorems on Fourier coefficients,’’ Proc. Amer. Math.
Soc., vol. 10, no. 6, pp. 855–859, 1959.

[3] H. S. Shapiro, ‘‘Extremal problems for polynomials and power series,’’
Ph.D. dissertation, Dept. Math., Massachusetts Inst. Technol., Cambridge,
MA, USA, 1952.

[4] S.W. Golomb and A. Klapper, Shift Register Sequences. Laguna Hills, CA,
USA: Aegean Park Press, 1967.

[5] R. Gold, ‘‘Optimal binary sequences for spread spectrum multiplexing
(Corresp.),’’ IEEE Trans. Inf. Theory, vol. IT-13, no. 4, pp. 619–621,
Oct. 1967.

[6] T. Kasami, ‘‘Weight distribution formula for some class of cyclic codes,’’
Coordinated Sci. Lab., Urbana, IL, USA, Tech. Rep., R-285, 1966.

[7] J. J. Rushanan, ‘‘Weil sequences: A family of binary sequences with good
correlation properties,’’ in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2006,
pp. 1648–1652.

[8] A. Pott, Finite Geometry Character Theory. Berlin, Germany:
Springer-Verlag, 2006.

[9] J. Lindner, ‘‘Binary sequences up to length 40 with best possible autocor-
relation function,’’ Electron. Lett., vol. 11, no. 21, p. 507, 1975.

[10] J. M. Baden and M. N. Cohen, ‘‘Optimal peak sidelobe filters for
biphase pulse compression,’’ in Proc. IEEE Int. Conf. Radar, May 1990,
pp. 249–252.

[11] G. Coxson and J. Russo, ‘‘Efficient exhaustive search for optimal-peak-
sidelobe binary codes,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 1,
pp. 302–308, Jan. 2005.

[12] A. Leukhin and E. Potehin, ‘‘Binary sequences with minimum peak side-
lobe level up to length 68,’’ 2012, arXiv:1212.4930. [Online]. Available:
http://arxiv.org/abs/1212.4930

[13] A. N. Leukhin and E. N. Potekhin, ‘‘Optimal peak sidelobe level sequences
up to length 74,’’ in Proc. Eur. Radar Conf., Oct. 2013, pp. 495–498.

[14] A. N. Leukhin and E. N. Potekhin, ‘‘Exhaustive search for optimal mini-
mum peak sidelobe binary sequences up to length 80,’’ in Proc. Int. Conf.
Sequences Their Appl. Cham, Switzerland: Springer, 2014, pp. 157–169.

[15] A. N. Leukhin and E. N. Potekhin, ‘‘A bernasconi model for constructing
ground-state spin systems and optimal binary sequences,’’ J. Phys., Conf.
Ser., vol. 613, May 2015, Art. no. 012006.

[16] A. N. Leukhin, N. V. Parsaev, V. I. Bezrodnyi, and N. A. Kokovihina,
‘‘The exhaustive search for optimum minimum peak sidelobe binary
sequences,’’ Bull. Russian Acad. Sci., Phys., vol. 81, no. 5, pp. 575–578,
May 2017.

[17] H. He, P. Stoica, and J. Li, ‘‘Designing unimodular sequence sets with good
correlations-including an application to MIMO radar,’’ IEEE Trans. Signal
Process., vol. 57, no. 11, pp. 4391–4405, Jun. 2009.

[18] M. Soltanalian and P. Stoica, ‘‘Computational design of sequences with
good correlation properties,’’ IEEE Trans. Signal Process., vol. 60, no. 5,
pp. 2180–2193, May 2012.

[19] J. Song, P. Babu, and D. P. Palomar, ‘‘Sequence design to minimize
the weighted integrated and peak sidelobe levels,’’ IEEE Trans. Signal
Process., vol. 64, no. 8, pp. 2051–2064, Apr. 2016.

[20] M. A. Kerahroodi, A. Aubry, A. D. Maio, M. M. Naghsh, and
M. Modarres-Hashemi, ‘‘A coordinate-descent framework to design low
PSL/ISL sequences,’’ IEEE Trans. Signal Process., vol. 65, no. 22,
pp. 5942–5956, Nov. 2017.

[21] R. Lin, M. Soltanalian, B. Tang, and J. Li, ‘‘Efficient design of binary
sequences with low autocorrelation sidelobes,’’ IEEE Trans. Signal Pro-
cess., vol. 67, no. 24, pp. 6397–6410, Dec. 2019.

[22] M. Dimitrov, T. Baitcheva, and N. Nikolov, ‘‘Efficient generation of low
autocorrelation binary sequences,’’ IEEE Signal Process. Lett., vol. 27,
pp. 341–345, 2020.

[23] M. Dimitrov, T. Baitcheva, and N. Nikolov, ‘‘On the generation of long
binary sequences with record-breaking PSL values,’’ IEEE Signal Process.
Lett., vol. 27, pp. 1904–1908, 2020.

[24] C. J. Nunn and G. E. Coxson, ‘‘Best-known autocorrelation peak sidelobe
levels for binary codes of length 71 to 105,’’ IEEE Trans. Aerosp. Electron.
Syst., vol. 44, no. 1, pp. 392–395, Jan. 2008.

[25] A. Dzvonkovskaya and H. Rohling, ‘‘Long binary phase codes with good
autocorrelation properties,’’ in Proc. Int. Radar Symp., May 2008, pp. 1–4.

[26] K. L. Du, W. H. Wu, and W. H. Mow, ‘‘Determination of long binary
sequences having low autocorrelation functions,’’ U.S. Patent 8 493 245,
Jul. 23, 2013.

[27] W. H. Mow, K.-L. Du, and W. H. Wu, ‘‘New evolutionary search for
long low autocorrelation binary sequences,’’ IEEE Trans. Aerosp. Electron.
Syst., vol. 51, no. 1, pp. 290–303, Jan. 2015.

[28] G. E. Coxson, J. C. Russo, and A. Luther, ‘‘Long low-PSL binary codes
by multi-thread evolutionary search,’’ in Proc. IEEE Int. Radar Conf.
(RADAR), Apr. 2020, pp. 256–261.

[29] G. E. Coxson, C. R. Hill, and J. C. Russo, ‘‘Adiabatic quantum comput-
ing for finding low-peak-sidelobe codes,’’ in Proc. IEEE High Perform.
Extreme Comput. Conf. (HPEC), Sep. 2014, pp. 1–6.

[30] D. Dmitriev and J. Jedwab, ‘‘Bounds on the growth rate of the peak
sidelobe level of binary sequences,’’ Adv. Math. Commun., vol. 1, no. 4,
p. 461, 2007.

[31] J. Jedwab and K. Yoshida, ‘‘The peak sidelobe level of families of binary
sequences,’’ IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2247–2254,
May 2006.

[32] M. Dimitrov, ‘‘On the aperiodic autocorrelations of rotated binary
sequences,’’ IEEE Commun. Lett., vol. 25, no. 5, pp. 1427–1430,
May 2021.

112410 VOLUME 9, 2021


