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Abstract: Memory devices based on floating-gate transistor have recently become dominant technol-
ogy for non-volatile storage devices like USB flash drives, memory cards, solid-state disks, etc. In
contrast to many communication channels, the errors observed in flash memory device use are not
random but of special, mainly asymmetric, type. Integer codes which have proved their efficiency in
many cases with asymmetric errors can be applied successfully to flash memory devices, too. This
paper presents a new construction and integer codes over a ring of integers modulo A = 2n + 1
capable of correcting single errors of type (1, 2), (±1,±2), or (1, 2, 3) that are typical for flash memory
devices. The construction is based on the use of cyclotomic cosets of 2 modulo A. The parity-check
matrices of the codes are listed for n ≤ 10.

Keywords: integer codes; flash memory; asymmetric errors

1. Introduction

The NAND (NOT AND) logic type memory devices based on floating-gate transistor
have recently become dominant technology for non-volatile storage devices like USB flash
drives, memory cards, solid-state disk, etc. This technology has advantages regarding
storage density, cost, power consumption and erase and write times but bytes cannot be
addressed independently. The hierarchical structure of NAND flash is as follows: A series
of NAND cells is connected in strings which are organized in pages, pages are organized in
blocks and so on. This architecture requires reading and writing to be done only in pages.
Moreover, before writing any data in a page of a block this block must be erased. Hence
erasing is block-wise.

Data processing in NAND flash memories is realized by changing the voltage at
inputs. The corresponding physical processes in the cells can generates errors in the work
of the memory. Recently used technology for 3D NAND memory of vertically stacked cells
additionally increases the probability of errors. Therefore, NAND flash memory requires
error control coding. In many commercial flash memory devices classical error correcting
codes are implemented, e.g., Hamming codes, BCH codes, Reed–Solomon codes. However,
these codes are designed for channels where the errors with the same weight are equally
probable, which is not true for flash memories.

Abstractly, flash memory can be considered as a device comprising blocks of “cells”
that can take on a given number of different states (levels). The process of writing involves
an increasing level of the cell or erasing the entire block before increasing the level of a cell
in that block. Errors can be a wrong increase of the level or more rarely a decrease during
the process of storage.

A mathematical model that describes well the processes in flash memory is the follow-
ing. Let the cells have A states, that is, store log2(A) bits. Then we can consider pages and
blocks as vectors over the ring ZA of integers modulo A. Then errors can be considered
as changes of the values of vectors’ entries. The aforesaid shows that usually changes of
the entries of the vectors are in an upward direction but with limited-magnitude values.
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Moreover, decreasing mainly with 1 is observed. Hence we can say that dominant errors
are symmetric of type ±1 and (2, 3, . . . l) for a small l. This fact gives rise to the need to
invent and study asymmetric limited-magnitude error correcting codes over ZA (known
also as integer codes).

Asymmetric limited-magnitude error-correcting codes were proposed by Varshamov
and Tenengolz [1,2] and in a more general form by Ahlswede et al. [3]. Another general
method for constructionof asymmetric limited-magnitude error-correcting codes is pro-
vided by Cassuto et al. [4]. In 2011, T. Klove and B. Bose [5] proposed systematic codes
that correct single limited-magnitude systematic asymmetric errors and achieve a higher
rate than the ones given in [4]. They also showed how their code construction can be
slightly modified to give codes correcting symmetric errors of limited magnitude. Later
T. Klove et al. [6] extended their results and gave a necessary and sufficient condition for
the existence of a code over GF(p) correcting a single asymmetric error.

In this paper we propose a constructions of codes over Z2n+1 correcting single asym-
metric errors of type (1, 2), (±1,±2) or (1, 2, 3). The argument A = 2n + 1 is chosen due
to the fact that it is the closest to, while greater than, a power of two. The choice of A
is essential since the use of the unsuitable size of the alphabet can generate problems in
implementation of encoding and decoding procedures. Moreover, as we shall see later, the
proposed codes are perfect.

The next parts of the paper are organized as follows. A summary of existing results
and necessary notations and definitions which are used in this paper are given in Section 2.
In Section 3 new constructions of integer codes for flash memory are proposed. Conclud-
ing remarks and some open problems are presented and discussed in Section 4. In the
Appendix, more detailed information about constructed codes is presented.

2. Preliminaries

Codes over finite alphabets of integers for correcting asymmetric errors are constructed
in [1,2]. With the name “integer codes”, such codes are applied to magnetic recording and
frame synchronization in [7]. For that, time integer codes have been studied for various
purposes and used in many applications. Coding for flash multilevel memory is an area
they can be successfully applied to.

Let us recall basic definitions.

Definition 1. Let ZA be the ring of integers modulo A. An integer code of length n with parity-
check matrix H ∈ Zm×n

A is said to be a subset of Zn
A, defined by

C(H)={c ∈ Zn
A | cHT = 0 }

where all zeros vector 0 ∈ Zm
A. (We will write only C if there is no possibility for ambiguity.)

We shall say that C is [n, n−m]A integer code. This notation is widely used for linear
code with block length n and dimension n−m but in this paper it only means that H has m
rows, n columns and entries from ZA. We remind the reader that if A is not a prime then C
is not a linear subspace. It is a submodule whose properties, although very close to ones of
linear subspaces, are different. In partial, the size of C may differ from An−m. However the
differences do not impact correcting properties of considered codes. The aforesaid notation
is used only for convenience with no reference to the dimension of the code.

In contrast to conventional codes, integer codes are intended to correct specific types
of errors. By choosing a proper parity-check matrix one can construct a code correcting
specific types of errors like as given below.

Definition 2. Let lj and ki be positive integers, j = 1, . . . , m, i = 1, . . . , s. The code C(H) is said
to be a single (±k1,±k2, . . . ,±ks, l1, l2, . . . , lm) error correctable if it can correct any error vector
with only one nonzero entry with value lj or ±ki.
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In order for C(H) to be single (±k1,±k2, . . . ,±ks, l1, l2, . . . , lm) error correctable the
corresponding error vectors must have pairwise disjoint syndromes eHT . However, there
are (2s + m)n possible single (±k1,±k2, . . . ,±ks, l1, l2, . . . , lm) error vectors e. Hence, we
obtain a lower bound for the size A of the alphabet

A ≥ (2s + m)n + 1.

Definition 3. A single (±k1,±k2, . . . ,±ks, l1, l2, . . . , lm) error correctable code C(H) of block
length n over ZA is called perfect if A = (2s + m)n + 1. If the size A of the alphabet is the minimal
possible for which a single (±k1,±k2, . . . ,±ks, l1, l2, . . . , lm) error correctable code C(H) of block
length n over ZA exists, we say that C is optimal.

For many parameters, perfect codes do not exist. In these cases the goal is to construct
an optimal code.

3. New Construction of Integer Codes Correcting Single Error of Type
(1, 2), (±1,±2), or (1, 2, 3)

To construct a single error correctable code it is sufficient to find a parity-check matrix
with one row, i.e.,

H = (h1, h2, . . . , hn), hi ∈ ZA

and

C(H)={c ∈ Zn
A |

n

∑
i=1

cihi = 0 }

Such codes have only one parity-check symbol, i.e., the best possible rate (n− 1)/n.
The syndrome corresponding to a single error e in position i is ehi. Therefore such a code
can correct a single error e if all ehi are distinct.

Theorem 1. Let A = 2n + 1 and As = {s2i (mod A) | i = 0, 1, . . .} be the cyclotomic
coset of 2 modulo A with leader s. Let A0

s = {s22i (mod A) | i = 0, 1, . . .}, A1
s = {s22i+1

(mod A) | i = 0, 1, . . .}. Then |As| is even with |As| = 2n for (s, A) = 1 and both the integer
codes with H = (A0

1) and H = (A1
1) are single (1, 2) asymmetric error correctable.

Proof. 2n ≡ −1 (mod A) gives 22n ≡ 1 (mod A). Hence the order m of 2 modulo A is a
divisor of 2n. The assumption m | n leads to 2n ≡ 1 (mod A), which is a contradiction.
Thus m = 2k, where k|n. Therefore the number of elements |A1| of A1 is even. The same
holds for one of any cyclotomic coset As = {s2i (mod A) | i = 0, 1, . . .} with (s, A) = 1.

Now we shall show that the cardinality of A1 is exactly 2n. If k < n then A = 2n + 1 ≥
22k + 1 > 22k − 1 which contradicts A dividing 22k − 1. Hence k = n. For (s, A) = 1 also
|As| = 2n holds since s22k ≡ s iff 22k ≡ 1 (mod A).

The integer code with parity-check matrix H = (A0
1) has length n and only one parity-

check equation, i.e., rate (n− 1)/n. The syndrome corresponding to a single error with
value 1 is an element of A0

1. If the value is 2 the syndrome belongs to 2A0
1 = A1

1 (mod A).
Hence the syndromes are distinct.

Corollary 1. Under the notations of Theorem 1, let s1, s2, . . . , st be all different leaders of cyclotomic
cosets of 2 modulo A. Then

H = (A0
s1

A0
s2
· · · A0

st)

is a parity-check matrix of a single (1, 2) asymmetric error correctable [2n−1, 2n−1− 1] code over A.

Example 1. Let A = 24 + 1 = 17, i.e., n = 4. In this case

A1 = {1, 2, 4, 8, 16, 15, 13, 9} and A3 = {3, 6, 12, 7, 14, 11, 5, 10}
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are all nonzero cyclotomic cosets. Then

A0
1 = {1, 4, 16, 13} ≡ {1, 4,−1− 4}, A1

1 = {2, 8, 15, 9} ≡ {2, 8,−2,−8};

A0
3 = {3, 12, 14, 5} ≡ {3, 12,−3,−12}, A1

3 = {6, 7, 11, 10} ≡ {6, 7,−6,−7}

The code with a parity-check matrix

H = {1, 4, 16, 13, 3, 12, 14, 5}

is a single (1, 2) asymmetric error correctable code and is perfect.
Such codes are also ones with parity-check matrices

H = (A0
1 A1

3), H = (A1
1 A1

3), H = (A1
1 A0

3).

If A00
1 = {1, 4} and A00

3 = {3, 12} it is easy to check that the code with

H = (A00
1 , A00

3 ) = (1, 4, 3, 12)

is single (±1,±2) error correctable. Such codes are also ones with

H = (2, 8, 3, 12), H = (2, 8, 6, 7), H = (1, 4, 6, 7).

The codes with matrices H = (A0
1), (A1

1), (A0
3), or (A1

3) are a single (1, 2, 3) asymmetric
error correctable.

Corollary 2. If n > 2 the code with H = (A0
1) is a single (1, 2, 3) asymmetric error correctable.

Proof. Assume 3 ∈ A1. Then 3 ≡ 2n+k (mod A) for 1 ≤ k ≤ n − 1; thus, 3 ≡ −2k

(mod A). This means that A divides 2k + 3, which is impossible for n > 2, since A =
2n + 1 ≥ 2k + 2n−1 + 1 > 2k + 3. Therefore, 3 is a leader of a cyclomic coset, namely A3.
Now arguments similar to ones used in Example 1 complete the proof.

Theorem 2. Under the notations of Theorem 1 let A00
s be the set of first b(|A0

s |)/2c elements of
A0

s . If |As| ≥ 8 then A00
s is a parity-check matrix of a single (±1,±2) error correctable code.

Proof. As modulo A = 2n + 1 has the structure

As = {s, 2s, . . . , 2k−1s,−s,−2s, . . . ,−2k−1s}, k|n, |As| = 2k.

k = 2l + 1 A0
s = {s, 4s, . . . , 22ls,−2s,−23s, . . . ,−22l−1s} A1

s = −A0
s

k = 2l + 2 A0
s = {s, 4s, . . . , 22l ,−s,−22s, . . . ,−22ls} A0

s = −A0
s .

A00
s consists of first l elements of A0

s for k odd and first l + 1 elements when k is even.
The condition |As| ≥ 8 guarantees that |A00

s | ≥ 2 (the minimal possible size of H is 1× 2).
Hence the multiplication by (−1) maps A00

s into the negative part of A1
s when k is odd and

into the negative part of A0
s for even k. Multiplying by 2 maps it into the positive part of

A1
s , while multiplying by −2 maps it into the negative part of A0

s , or A1
s for k odd or even,

respectively. Therefore syndromes are distinct.

Corollary 3. Using notation and conditions of Theorem 2 the code with

H = (A00
s1

A00
s2
· · · A00

st )

is a single (±1,±2) error correctable code over A when |Asi | ≥ 4 and si are distinct leaders.

Remark 1. Since t ≥ 2 we can allow |A00
si
| = 1, i.e., |Asi | = 4.
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In Example 1 A is a prime and A1 and A3 are all nontrivial cyclotomic cosets both
of length 2n = 8. However in general the structure is more complex. We continue with a
simple example.

Example 2. Let A = 25 + 1 = 33 = 3× 11. The cyclotomic cosets are

A1 = {1, 2, 4, 8, 16, 32, 31, 29, 25, 17}, A3 = {3, 6, 12, 24, 15, 30, 27, 21, 9, 18},

A5 = {5, 10, 20, 7, 14, 28, 23, 13, 26, 19}, A11 = {11, 22}.

Three of them are with length 2n = 10 and one with length 2. Note that 3 is not coprime
with 33 but |A3| = 10. The reason is that 22 ≡ 1 (mod 3); thus, 11× 22 ≡ 11 (mod 33), while
concerning the order of 2 modulo the prime 11 is 10; thus, 3× 210 ≡ 3 (mod 33) and 10 is the
minimal of such a positive integer.

We can construct a single (1, 2) asymmetric error correctable code of length 16 over 33 taking

H = {1, 4, 16, 31, 25, 3, 12, 15, 27, 9, 5, 20, 14, 23, 26, 11}.

Since
A00

1 = {1, 4}; A00
3 = {3, 12}; A00

5 = {5, 20}.

the code with parity-check matrix

H = (1, 4, 3, 12, 5, 20)

is (±1,±2) error correctable.
We can obtain also a single (1, 2, 3) asymmetric error correctable code of length 10 by

taking matrix
H = {A0

1, A1
5} = {1, 4, 16, 31, 25, 10, 7, 28, 13, 19}.

We use A1
5 instead of A0

5 because 3A0
5 = 3A0

1. The reason is that A0
5 ≡ A0

1 (mod 11).

Here are several properties of the numbers of the form 2n + 1 that can be useful. Their
proofs are straightforward and we omit them.

P1. If n has odd divisor d then 2
n
d + 1 divides 2n + 1. In partial if n is odd 3|(2n + 1).

P2. Let n = 2am, where m is odd positive integer. Then

A = 2n + 1 = 22am + 1 = (22a
+ 1)B = FaB,

where Fa = 22a
+ 1 is Fermat number. Fa is a prime for a = 0, 1, 2, 3, 4 (no other

such primes are known) but even F4 = 65,537 is too large for a divisor of practically
interesting value of A.

P3. If A = 2n + 1 = (2k + 1)B then AB has length 2k. If there is a cyclotomic coset of
length 2k then 2k + 1 divides A.

Example 3. Let A = 26 + 1 = 65 = 5 × 13. The cyclotomic classes of 2 modulo 65 are
A1, A3, A5, A7, A11 with cardinality 12 each and

A13 = {13, 26, 52, 39}.

Therefore the code with a parity-check matrix

H = (A0
1, A0

3, A0
5, A0

7, A0
11, A0

13)

is a single (1, 2) error correctable code with length 32.
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The code with a parity-check matrix

H = (1, 4, 16, 3, 12, 48, 5, 20, 15, 7, 28, 47, 11, 44, 46, 13)

is a single (±1,±2) error correctable [16, 15] code.
The code with

H = (A0
1, A0

7, 13) = (1, 4, 16, 64, 61, 49, 7, 28, 47, 58, 37, 18, 13)

is a single (1, 2, 3) error correctable code with block length 13 since 3A0
1 ⊂ A3, 3A0

7 ⊂ A11 and
2× 13 6= 3× 13 ∈ A13.

Construction of single (1, 2, 3) error correctable codes.
Construction of such codes strongly depends on the value of A = 2n + 1 and we

cannot formulate statement more general than the one in Corollary 2 but can formulate
some principles to be followed when one searches such codes. The matrix H = (A0

1) is the
start point for construction. Next we have to enlarge the code by adding some A0

i or A1
i ,

taking into account the following simple observations

• If Aj = 3Ai then Aj has to be excluded.
• For n odd 3 divides A and the situation 3Aj = 3Ai can happen. In this case if A0

i is
included in H then Aj \ 3A0

i (which is A0
j or A1

j ) can be included. For n even (3, A) = 1
and the considered situation is impossible.

Table 1 presents parameters of the single error correctable codes constructed by our
method over A = 2n + 1 for 3 ≤ n ≤ 10 (the cases n = 1, 2 are trivial). The parity-check
matrices are given in Examples 1–3 and in Appendix A.

Table 1. Single (1, 2), (±1,±2), or (1, 2, 3) errors correctable codes over A = 2n + 1.

n A (1, 2) (±1,±2) (1, 2, 3)

3 9 [4,3] no [2,1]
4 17 [8,7] [4,3] [4,3]
5 33 [16,15] [6,5] [10,9]
6 65 [32,31] [16,15] [13,12]
7 129 [64,63] [27,26] [35,34]
8 257 [128,127] [64,63] [48,47]
9 513 [256,255] [113,112] [64,63]

10 1025 [512,511] [256,255] [211,210]

4. Discussion

In this paper we consider only codes over ZA, A = 2n + 1, with one parity-check
equation that is sufficient for correction of a single error. There are constructions using
matrices with more rows but they require more parity-check symbols; thus, they have a
lower rate. Herein we construct codes only with a maximal rate.

Encoding is a computation of only one linear expression. Decoding can be done
by using a syndrome error table. Both operations are very fast and simple for modern
digital devices.

All codes correcting single (1, 2) error are perfect. The same holds for codes correcting
(±1,±2) error but only when n is even.

Parity-check matrices for n > 10 are too large to be presented in the paper although the
fast development of technologies makes such parameters interesting for practice. However,
the described construction algorithm is simple to realize and interested readers can easily
construct and implement such codes.

Our further investigations aim to develop construction of codes over
A = 2n + 1 correcting two or more errors of the considered type. Examples of dou-
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ble error correctable codes can be found, for example, in [8,9], but they are not applicable
to flash memories.
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Appendix A. Parity-Check Matrices of the Constructed Codes

Appendix A.1. The Case n = 3

In this case A = 23 + 1 = 9. The cyclotomic cosets of 2 modulo 9 are A1 = {1, 2, 4, 8, 7, 5};
A3 = {3, 6}. The constructed single error correctable codes are

(1, 2) : [4, 3] H = (1, 4, 7, 3)

(±1,±2) : no no

(1, 2, 3) : [2, 1] H = (1, 8)

Appendix A.2. The Case n = 7

Then A = 27 + 1 = 129 = 3× 43. The cyclotomic cosets of 2 modulo 129 are 10: one of
length 2, namely A43 = {43, 86} and 9 of length 14 whose leaders are 1, 3, 5, 7, 9, 11, 13, 19, 21.
The subcosets with even powers of 2 are

A0
1 = {1, 4, 16, 64, 127, 121, 97} A0

3 = {3, 12, 48, 63, 123, 105, 33}

A0
5 = {5, 20, 80, 62, 119, 89, 98} A0

7 = {7, 28, 112, 61, 115, 73, 34}

A0
9 = {9, 36, 15, 60, 111, 57, 99} A0

11 = {11, 44, 47, 59, 107, 41, 35}

A0
13 = {13, 52, 79, 58, 103, 25, 100} A0

19 = {19, 76, 46, 55, 91, 106, 37}

A0
21 = {21, 84, 78, 54, 87, 90, 102}

A00
i consists of the first 3 elements of A0

i .
The constructed single error correctable codes are

(1, 2) : [64, 63] H = (A0
1, A0

3, A0
5, A0

7, A0
9, A0

11, A0
13, A0

19, A0
21, 43)

(±1,±2) : [27, 26] H = (A00
1 , A00

3 , A00
5 , A00

7 , A00
9 , A00

11, A00
13, A00

19, A00
21)

(1, 2, 3) : [35, 34] H = (A0
1, A0

5, A0
7, A1

11, A0
13)



Mathematics 2021, 9, 1269 8 of 9

Appendix A.3. The Case n = 8

Now A = F3 = 28 + 1 = 257 is a prime. Then all 16 cyclotomic cosets of 2 modulo 257
have length 2n = 16. The leaders of the cosets are the numbers

L = {1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 37, 43, 45}.

The constructed single error correctable codes are

(1, 2) : [128, 127] H = (∪i∈L A0
i )

(±1,±2) : [64, 63] H = (∪i∈L A00
i )

(1, 2, 3) : [48, 47] H = (A0
1, A0

5, A0
7, A0

9, A0
13, A0

19)

Appendix A.4. The Case n = 9

A = 2n + 1 = 513 = 3.9.19. There are two divisors of type 2k + 1, namely 3 = 21 + 1
and 9 = 23 + 1. Hence there is a coset of length 2 and one of length 6. They are with leaders
A/3 and A/9 :

A171 = {171, 342}; A57 = {57, 114, 228, 456, 399, 285}

All other 28 cosets are of length 18. Their leaders are

L = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 35, 37, 39, 41, 43, 45, 51, 53, 55, 75, 77, 83, 85}

For i ∈ L we have |A0
i | = 9 and |A00

i | = 4.The constructed single error correctable
codes are

(1, 2) : [256, 255] H = (∪i∈L A0
i , A0

57, 171)

(±1,±2) : [113, 112] H = (∪i∈L A00
i , 57)

(1, 2, 3) : [64, 63] H = (A0
1, A0

5, A0
7, A0

9, A0
13, A0

17, A0
25, 57)

Appendix A.5. The Case n = 10

A = 2n + 1 = 1025 = 52 × 41. There is one coset of length four, namely

A205 = {205, 410, 820, 615}

All other 51 cosets are of length 20. Their leaders are

L = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59,

69, 71, 73, 75, 77, 83, 85, 87, 89, 91, 93, 101, 103, 105, 107, 109, 147, 149, 155, 171, 173, 179}

For i ∈ L we have |A0
i | = 10 and |A00

i | = 5.The constructed single error correctable
codes are

(1, 2) : [512, 511] H = (∪i∈L A0
i , 205, 820)

(±1,±2) : [256, 255] H = (∪i∈L A00
i , 205)

(1, 2, 3) : [211, 210] H = (∪i∈T A0
i , 205)

where

T = {1, 5, 7, 9, 11, 13, 17, 19, 23, 29, 35, 37, 45, 47, 49, 59, 73, 77, 89, 93, 109}
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