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Abstract. The problem of finding generators of the subalgebra of invariants under the
action of a group of automorphisms of a finite-dimensional Lie algebra on its universal
enveloping algebra is reduced to finding homogeneous generators of the same group acting
on the symmetric tensor algebra of the Lie algebra. This process is applied to prove
a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of
invariants in a Lie nilpotent relatively free associative algebra endowed with an action
induced by a representation of a reductive group.

1. Introduction

Let G be a subgroup of the automorphism group of a finite-dimensional Lie
algebra L over a field K of characteristic zero. Then there is a natural induced
action of G on the universal enveloping algebra U(L) via associative K-algebra
automorphisms. First we describe a process by which one can construct generators
of the subalgebra U(L)G of G-invariants in U(L) starting from a homogeneous
generating system of S(L)G, the commutative algebra of invariants in the sym-
metric tensor algebra S(L) of L.

Namely, there is a well-known K-vector space isomorphism ω : S(L) → U(L)
called the canonical bijection in [5, 2.4.6]. The details of the construction of
ω will be given in Section 2, see (3). Note that the map ω is not an algebra
homomorphism. However, we have the following:

Theorem 1. Suppose that {fλ | λ ∈ Λ} is a homogeneous generating system of
the commutative K-algebra S(L)G, where G is a subgroup of the automorphism
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Corresponding Author: Mátyás Domokos, e-mail: domokos.matyas@renyi.hu
Published online , .February  24  2021
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group of the finite-dimensional Lie algebra L. Then {ω(fλ) | λ ∈ Λ} generates the
K-algebra U(L)G.

Theorem 1 will be applied to noncommutative invariant theory in relatively free
associative algebras. In this paper by ‘algebra’ we mean an associative K-algebra
with unity, unless explicitly stated otherwise. The base field K is always assumed
to have characteristic zero. For a finite-dimensional K-vector space V denote by
T (V ) the tensor algebra of V ; that is, T (V ) is the free algebra generated by a basis
of V . Given a variety R of algebras we write F (R, V ) for the relatively free algebra
in R generated by a basis of V . Recall that R consists of all algebras that satisfy a
given set of polynomial identities, so F (R, V ) is the factor algebra of T (V ) modulo
a T-ideal (an ideal stable under all algebra endomorphisms of T (V )). Since we deal
with algebras with unity and K is infinite, R necessarily contains the variety of
commutative algebras, and we have the canonical surjections

T (V ) � F (R, V ) � S(V ).

where S(V ) is the symmetric tensor algebra of V (i.e., the commutative polynomial
algebra generated by a basis of V ). The above algebra surjections are GL(V )-
equivariant. They are homomorphisms of graded algebras, where the algebra T (V )
=
⊕∞

d=0 T
d(V ) is endowed with the standard grading: the dth tensor power T d(V )

of V is the degree d homogenerous component of T (V ). Given a non-zero homo-
geneous element f in any of T (V ), F (R, V ) or S(V ) we shall write deg(f) for
the degree of f . Note that when R is the variety of all algebras we have that
F (R, V ) = T (V ), and when R is the variety of commutative algebras we have
F (R, V ) = S(V ).

Let G be a linear algebraic group and V a finite-dimensional rational G-module;
that is, we are given a group homomorphism ρ : G→ GL(V ) that is a morphism of
affine algebraic varieties (from now on we shall usually omit the attribute ‘rational’
and simply say that V is a G-module). The action of G on V induces an action on
T (V ), F (R, V ), and S(V ) via automorphisms of graded algebras, and the above
surjections are G-equivariant. We are interested in the subalgebra

F (R, V )G = {f ∈ F (R, V ) | g · f = f for all g ∈ G}

of G-invariants. We refer to [8] and [10] for surveys on results concerning subal-
gebras of invariants in relatively free algebras.

For an integer p ≥ 1 denote by Np the variety of Lie nilpotent algebras of Lie
nilpotency index less or equal to p. In other words, Np is the variety of algebras
satisfying the polynomial identity [x1, . . . , xp+1] = 0. Here [x1, x2] = x1x2 − x2x1,
and for i ≥ 3 we have [x1, . . . , xi] = [[x1, . . . , xi−1], xi].

Remark 1. For a (nonunitary) associative algebra nilpotence of index ≤ p means
that the algebra satisfies the polynomial identity x1 · · ·xp = 0. By analogy with
group theory a Lie algebra is nilpotent of index ≤ p, if it satisfies the polynomial
identity [x1, . . . , xp+1] = 0.

Our starting point is the following non-commutative generalization of the Hil-
bert–Nagata theorem (see for example [11, Thm. A, p. 3]):
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Theorem 2. ([6, Thm. 3.1]) Suppose that G is reductive, and R ⊆ Np for some
p ≥ 1. Then F (R, V )G is a finitely generated algebra for any G-module V .

Remark 2. The assumption R ⊆ Np for some p ≥ 1 above is necessary, as the
following converse of Theorem 2 is also shown in [6]: If dimK(V ) ≥ 2 and F (R, V )G

is finitely generated for all reductive subgroups G of GL(V ), then R ⊆ Np for some
p ≥ 1.

The proof of Theorem 2 in [6] is non-constructive, since it uses the Noetherian
property of F (R, V ) for R ⊂ Np (proved in [17]) similarly to the fundamental
paper of Hilbert [13] on the commutative case p = 1, where the Hilbert Basis
Theorem was proved. Hilbert gave a more constructive proof of the commutative
case in [14] (explicit degree bounds for the generators were first proved by Popov
[20], [21], and stronger bounds more recently by Derksen [2]). For constructive
(commutative) invariant theory of reductive groups see also [1], [4].

In the present paper we make Theorem 2 constructive. In algorithms for com-
puting generators of algebras of invariants a crucial role is played by degree bounds.
For example, an a priori degree bound for the generators of the algebra F (R, V )G

implies an algorithm to find explicit generators (by solving systems of linear
equations). From a different perspective, sometimes there is a qualitatively known
process that yields generators of the algebra of invariants, and the aim is to derive
from it a degree bound for a minimal generating system, to have some quantitative
information on the algebra of invariants.

In order to discuss degree bounds we need to introduce some notation. Given a
graded algebra A =

⊕∞
d=0Ad we denote by β(A) the minimal non-negative integer

d such that A is generated by homogeneous elements of degree at most d (and write
β(A) =∞ if there is no such d). Recall that S(V ) =

⊕∞
d=0 S

d(V ) is graded, where
the degree d homogeneous component Sd(V ) is the dth symmetric tensor power of
V . Set

β(G) := sup{β(S(V )G) | V is a finite-dimensional G-module}.

It is a classical theorem of E. Noether [19] that for G finite we have β(G) ≤ |G|.
On the other hand Derksen and Kemper [3, Thm. 2.1] proved that β(G) =∞ for
any infinite group G. So for an infinite group G, finite degree bounds may hold
only for restricted classes of G-modules.

Given a set τ of isomorphism classes of simple G-modules, denote by add(τ)
the class of all G-modules that are finite direct sums of simple modules whose
isomorphism class belongs to τ . This definition is particularly natural when the
group G is reductive, because in that case any G-module decomposes as a direct
sum of simple G-modules. By slight abuse of notation we write V ∈ τ if the
isomorphism class of the G-module V belongs to τ . Moreover, write τ⊗p for the
isomorphism classes of simple summands of all G-modules V1 ⊗ · · · ⊗ Vq, where
Vi ∈ τ and q ≤ p. Set

βτ := sup{β(S(V )G) | V ∈ add(τ)}.

Weyl’s theorem [24] on polarizations implies the following:
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Proposition 3. Let G be a reductive group and let τ be a finite set of isomorphism
classes of simple G-modules. Then the number βτ is finite.

Proof. Let V1, . . . , Vq be simple G-modules representing the isomorphism classes

in τ . Let V be an arbitrary G-module in add(τ). Then V ∼=
q∑
i=1

miVi, where the

mi are non-negative integers and miVi stands for the direct sum of mi copies of
Vi. Weyl’s theorem on polarizations (the special case h = 1 of Theorem 9 below)
implies that

β(S(V )G) ≤ β
(
S
( q∑
i=1

min{mi, dim(Vi)}Vi
)G)
≤ β

(
S
( q∑
i=1

dim(Vi)Vi

)G)
. (1)

(The second inequality above follows from the fact that if A is a submodule of the
G-module B, then there is a G-equivariant graded K-algebra surjection S(B) →
S(A) mapping some of the variables to zero.) Since (1) holds for any V ∈ add(τ),
we conclude the equality

βτ = β
(
S
( q∑
i=1

dim(Vi)Vi

)G)
.

The assumption on G guarantees that the number on the right-hand side above is
finite. �

Turning to a variety R of associative algebras, we write

βτ,R := sup{β(F (R, V )G) | V ∈ add(τ)},

where β(F (R, V )G) is the supremum of the degrees of the elements in a minimal
homogeneous generating system of the algebra F (R, V )G. Having established this
notation we are in position to state the following corollary of the results of the
present paper:

Theorem 4. Suppose that the group G is reductive and the variety R is contained
in Np for some p ≥ 1. Let τ be a finite set of isomorphism classes of simple G-
modules. Then we have the inequality

βτ,R ≤ pβτ⊗p .

In fact the results of this paper give more: for any (not necessarily reductive)
group G ≤ GL(V ) the construction of an explicit generating system of F (R, V )G

(where R is contained in Np for some p ≥ 1) is reduced to finding a generating
system of a commutative algebra of G-invariants S(W )G for a G-module W asso-
ciated canonically to V . For the precise statement see Theorem 7.

The paper is organized as follows. In Section 2 we prove Theorem 1, which is
then applied in Section 3 to prove Theorem 7. Finally, Theorem 4 is obtained as a
consequence of Theorem 7.
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Since the technique of polarization in commutative invariant theory is funda-
mental for Proposition 3, in Section 4 we investigate to what extent it works in our
noncommutative setup. Theorem 9 is a noncommutative generalization of Weyl’s
theorem on polarization; however, it applies for a class of varieties different from
those appearing in Theorem 2, Theorem 4, or Theorem 7. Section 4 is logically
independent from the previous sections.

Acknowledgements. We are very grateful to the referees for their suggestions.
In particular, it was the referee’s insight that our results – originally dealing only
with relatively free algebras – should be treated as a consequence of a statement
on universal enveloping algebras.

2. Universal enveloping algebras

Returning to the setup of the first paragraph of the Introduction, denote by
πU(L) : T (L) → U(L) the defining surjection onto U(L) from the tensor algebra

T (L) =
⊕∞

d=0 T
d(L) (cf. [5, 2.1.1]), and denote by πS(L) : T (L) → S(L) the

natural surjection onto the symmetric tensor algebra. For d = 1, 2, . . . , define the
linear map

ιd : Sd(L)→ T d(L), `d 7→ `⊗ · · · ⊗ ` (` ∈ L) (2)

(or more explicitly, ιd(`1 · · · `d) 7→ 1
d!

∑
σ∈Symd

`σ(1) ⊗ · · · ⊗ `σ(d)). Write ι0 for the

identity map of S0(V ) = K = T 0(V ).

Introduce the notation U(L)d := πU(L)

(⊕d
j=0 T

j(V )
)
, d = 0, 1, 2, . . . . Then

U(L)0 ⊆ U(L)1 ⊆ U(L)2 ⊆ · · ·

is the canonical filtration of U(L) =
⋃∞
d=0 U(L)d (cf. [5, 2.3.1]). Moreover, consider

the linear map

ωd : Sd(L)→ U(L) given by ωd := πU(L) ◦ ιd.

Note that ωd(S
d(L)) is a K-vector space direct complement of U(L)d−1 in U(L)d

(see [5, 2.4.4. Prop.]). The direct sum

ω :=

∞⊕
d=0

ωd : S(L) =

∞⊕
d=0

Sd(V )→ U(L) (3)

is a K-vector space isomorphism called the canonical bijection in [5, 2.4.6]. Further-
more, we have the following:

Proposition 5. The canonical bijection ω : S(L) → U(L) is an isomorphism of
Aut(L)-modules, where Aut(L) denotes the automorphism group of the Lie algebra
L. In particular, for any subgroup G of Aut(L), the canonical bijection restricts to
a K-vector space isomorphism

ω|S(L)G : S(L)G → U(L)G.
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Proof. The universal properties of T (L) and U(L) imply that the action of Aut(L)
on L extends uniquely to an action via K-algebra automorphisms on T (L) and
U(L), and the algebra homomorphism πU(L) is Aut(L)-equivariant. The map ιd :

Sd(L)→ T d(L) is even GL(L)-equivariant, and clearly Aut(L) ≤ GL(L). Therefore
the composition ωd = πU(L) ◦ ιd is Aut(L)-equivariant for all d, implying in turn
that ω is Aut(L)-equivariant. Consequently, the K-linear isomorphism ω : S(L)→
U(L) is in fact an isomorphism of G-modules for any subgroup G in Aut(L), and
thus ω restricts to a linear isomorphism between the subspaces S(V )G → U(L)G

of G-invariants. �

As ω is not an algebra homomorphism in general, further considerations are
needed to prove Theorem 1. Write ηd : U(L)d → U(L)d/U(L)d−1 for the natural
surjection (with the convention U(L)−1 = 0), πU(L),d for the restriction of πU(L)

to T d(L), and πS(L),d for the restriction of πS(L) to T d(L). The linear maps
ηd, πU(L),d, πS(L),d are all Aut(L)-equivariant. Since ker(ηd◦πU(L),d) ⊇ ker(πS(L),d)
(see [5, 2.1.5. Lem.]), there exists a unique Aut(L)-module homomorphism

µd : Sd(L)→ U(L)d/U(L)d−1 with µd ◦ πS(L),d = ηd ◦ πU(L),d.

Clearly ηd ◦ πU(L),d ◦ ιd ◦ πS(L),d = ηd ◦ πU(L),d (see for example [5, 2.1.5. Lem.]),
hence in fact µd = ηd ◦ π(U)d ◦ ιd = ηd ◦ ωd. Moreover, µd is a K-vector space
isomorphism by the Poincaré–Birkhoff–Witt Theorem (or by [5, 2.4.4. Prop.]):

T d(L)
πU(L),d //

πS(L),d

��

U(L)d

ηd

��
Sd(L)

µd∼= U(L)d/U(L)d−1

.

So µd is an isomorphism of Aut(L)-modules, and restricting to G-invariants (where
G is a subgroup of Aut(L)) we obtain the following commutative diagram:

T d(L)G
πU(L),d //

πS(L),d

��

U(L)Gd

ηd

��
Sd(L)G

µd∼= (U(L)d/U(L)d−1)G

. (4)

Proof of Theorem 1. Since the space Sd(L)G is mapped by µd isomorphically onto
(U(L)d/U(L)d−1)G, commutativity of the diagram (4) implies

U(L)Gd /U(L)Gd−1 = ηd(U(L)Gd ) = (U(L)d/U(L)d−1)G. (5)

Now let {fλ | λ ∈ Λ} be a homogeneous system of generators of S(L)G. The
maps ιd : Sd(L) → T d(L) defined by (2) are GL(L)-equivariant, hence they are
G-equivariant as well. In particular,

f̂λ := ιdeg(fλ)(fλ) ∈ T d(L)G (λ ∈ Λ).
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Denote by M the subalgebra of T (L) generated by {f̂λ | λ ∈ Λ}. By construc-
tion, M is generated by homogeneous G-invariants, so M =

⊕∞
d=0Md is a graded

subalgebra of T (L)G. Moreover, E := πU(L)(M) is the subalgebra of U(L)G

generated by {ω(fλ) | λ ∈ Λ}. We have to show that E ⊇ U(L)G. The algebra

E =
⋃∞
d=0Ed is filtered, where Ed := πU(L)

(⊕d
j=0Md

)
, d = 0, 1, 2, . . . . By

induction on d we show Ed ⊇ U(L)Gd . For d = 0 there is nothing to prove. Suppose
d > 0, and Ed−1 = U(L)Gd−1. By (4) and (5) we have the commutative diagram

Md

πU(L),d //

πS(L),d

��

Ed

ηd

��
Sd(L)G

µd∼= U(L)Gd /U(L)Gd−1

.

The restriction of πS(L) to M is a homomorphism of graded algebras M →
S(L)G. By construction of M the generators of S(L)G are contained in πS(L)(M).
It follows that πS(L)(M) = S(L)G, and since πS(L) preserves the grading, we have

πS(L),d(Md) = Sd(L)G for all d. It follows that

ηd(Ed) ⊇ ηd(πU(L)(Md)) = µd(πS(L),d(Md)) = µd(S
d(L)G) = U(L)Gd /U(L)Gd−1,

or, in other words, U(L)Gd = Ed + U(L)Gd−1. On the other hand, Ed ⊇ Ed−1, and

by the induction hypothesis Ed−1 ⊇ U(L)Gd−1, so U(L)Gd = Ed + U(L)Gd−1 = Ed.

We conclude E =
⋃∞
d=0Ed =

⋃∞
d=0 U(L)Gd = U(L)G. �

In the above proof we pointed out that the natural surjection ηd : U(L)d →
U(L)d/U(L)d−1 maps U(L)Gd onto (U(L)d/U(L)d−1)G (see (5)). For later use we
state a general lemma guaranteeing that a surjective map restricts to a surjection
between the corresponding subspaces of invariants.

Given a reductive group H, recall that by a rational H-module we mean a not
necessarily finite-dimensional vector space X together with an action of H via
linear transformations, such that any x ∈ X is contained in a finite-dimensional
subspace Y of X which is stable under the action of H, i.e., H · Y = Y , and the
group homomorphism H → GL(Y ) giving the action of H on Y is a morphism
of affine algebraic varieties. We shall denote by XH the subspace of H-invariants
in X.

Lemma 6. Let H be a reductive group and ϕ : X → Z a surjective homomorphism
of rational H-modules. Then for any subgroup G of H we have ZG = ϕ(XG).

Proof. Since H acts completely reducibly on X, the H-submodule ker(ϕ) has an H-
module direct complement Y in X, so X = ker(ϕ)⊕Y . The restriction ϕ|Y : Y → Z
is an H-module isomorphism, hence it is a G-module isomorphism as well, thus it
restricts to a K-vector space isomorphism Y G → ZG. Clearly Y G ⊆ XG, so we
derive ϕ(XG) ⊇ ϕ(Y G) = ZG. The reverse inclusion ϕ(XG) ⊆ ZG holds for any
G-module homomorphism. �
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3. Lie nilpotent relatively free algebras

Fix an integer p ≥ 1, a variety R contained in Np, and a finite-dimensional
rational G-module V (where G is an arbitrary linear algebraic group). Without
loss of generality we may assume that G ≤ GL(V ) (i.e., V is a faithful G-module).
Set F := F (R, V ). Consider the subspaces in T (V ) given by

V [d] := SpanK{[v1, . . . , vd] | v1, . . . , vd ∈ V }

for d = 1, 2, . . . , and V [1] := V . As a consequence of the Jacobi identity we have

[V [d], V [e]] ⊆ V [d+e]. (6)

The subspace V [d] is a GL(V )-submodule in the dth tensor power V ⊗d of V . Set

V [≤p] :=

p⊕
d=1

V [d],

and let T := T (V [≤p]) be the tensor algebra generated by V [≤p]. Denote by εi the
ith standard basis vector εi := (0, . . . , 0, 1, 0, . . . , 0) ∈ Np0 (the coordinate 1 is in
the ith position). The algebra T has an Np0-grading

T =
⊕
α∈Np0

Tα, Tεi = V [i] ⊆ V [≤p] for i = 1, . . . , p. (7)

Note that GL(V ) acts on T via Np0-graded algebra automorphisms. The symmetric
tensor algebra S := S(V [≤p]) is endowed with the analogous Np0-grading, so the
natural surjection πS(L) : T → S is a GL(V )-equivariant homomorphism of Np0-
graded algebras.

The tautological linear embedding of V [≤p] into T (V ) extends to a GL(V )-
equivariant algebra surjection π : T → T (V ). Composing this with the natural
surjection ν : T (V )→ F (R, V ) we obtain

πF := ν ◦ π : T → F. (8)

A homogeneous element in T may not be mapped to a homogeneous element of
T (V ) by π (or of F by πF ). However, the multihomogeneous component Tα ⊂ T
is mapped under π (respectively πF ) into the homogeneous component of T (V )
(respectively F ) of degree

∑p
i=1 iαi.

For α ∈ Np0 write |α| :=
∑p
i=1 αi. Denote by ια : Sα → Tα the linear map

given by

ια(v1 · · · v|α|) =
1

|α|!
∑

σ∈Sym|α|

vσ(1) ⊗ · · · ⊗ vσ(|α|)

(where Symd stands for the symmetric group on {1, . . . , d} and v1, . . . , v|α| ∈
V [≤p]). Obviously ια is GL(V )-equivariant (as it is even GL(V [≤p])-equivariant),
and hence ια is G-equivariant (just like πS(L)). Thus ια(SGα ) ⊆ TGα . Moreover,
πS(L) ◦ ια is the identity map on Sα, consequently πS(L)(ια(SGα )) = SGα . In parti-
cular, πS(L)(T

G
α ) = SGα .
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Theorem 7. Let R be a variety contained in Np for some p ≥ 1. Let V be a G-
module, and S, T , F the algebras defined above. Take a multihomogeneous (with
respect to the Np0-grading (7)) K-algebra generating system {fλ | λ ∈ Λ} of SG,
denote by αλ the multidegree of fλ, and set

f̂λ := ιαλ(fλ) ∈ TGαλ (λ ∈ Λ).

Then the K-algebra FG is generated by the homogeneous elements {πF (f̂λ) | λ ∈
Λ}. Furthermore,

deg(πF (f̂λ)) =

p∑
i=1

iαλ,i.

Remark 3. The algebra SG is known to be finitely generated (in addition to the
case when G is reductive) also when G is a maximal unipotent subgroup of a
reductive group (see [12] or [11, Thm. 9.4]), and consequently when G is a Borel
subgroup of a reductive group. In these cases Theorem 7 reduces the construction
of a finite generating system of FG to the construction of a finite generating system
in the commutative algebra of invariants SG.

Proof of Theorem 7. The subspace
⊕∞

d=1 V
[d] of T (V ) is a Lie subalgebra (in fact

it is the free Lie algebra generated by dimK(V ) elements). It contains the Lie ideal⊕
d>p V

[d], and the corresponding factor Lie algebra Lp(V ) is the relatively free
nilpotent Lie algebra of nilpotency index p generated by dimK(V ) elements. We
identify the underlying vector space of Lp(V ) with

⊕p
d=1 V

[d] in the obvious way.
Then T is identified with T (Lp(V )) and S is identified with S(Lp(V )). Applying
Theorem 1 for the Lie algebra Lp(V ) and the group G ≤ GL(V ) (note that GL(V )
is naturally a subgroup of the automorphism group Aut(Lp(V )) of the Lie algebra
Lp(V )) we obtain that

{πU(Lp(V ))(f̂λ) | λ ∈ Λ} (9)

is a generating system of U(Lp(V ))G. By relative freeness of Lp(V ) in the variety
Np, the identity map V → V extends to a (surjective) Lie algebra homomorphism
from Lp(V ) onto the Lie subalgebra of F generated by V . Now the universal
property of the universal enveloping algebra implies that this Lie algebra homomor-
phism extends to an associative algebra homomorphism γ : U(Lp(V )) → F .
The image of γ contains the K-algebra generating system V ⊂ F , hence γ is
surjective onto F . It is also GL(V )-equivariant, therefore by Lemma 6 we have
γ(U(Lp(V ))G) = FG. It follows that the generating system (9) of U(Lp(V ))G is
mapped by γ to a generating system of FG. On the other hand, by construction
πF and γ ◦ πU(Lp(V )) agree on the subspace V [≤p] = Lp(V ) of T generating T as a
K-algebra, hence

πF = γ ◦ πU(Lp(V )) : T = T (Lp(V ))→ F.

Thus πF (f̂λ) = γ(πU(Lp(V ))(f̂λ)), and these elements generate FG as λ varies
over Λ. �
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MÁTYÁS DOMOKOS, VESSELIN DRENSKY

Proof of Theorem 4. Let V be a G-module in add(τ). Now G is reductive, so we
may take a finite minimal multihomogeneous (with respect to the Np0-grading (7))
generating system {fλ | λ ∈ Λ} of S(V [≤p])G. Consider the generating system

{πF (f̂λ) | λ ∈ Λ} of F (R, V )G given by Theorem 7. Note that {fλ | λ ∈ Λ} is
a minimal homogeneous generating system of SG with respect to the standard
grading, where V [≤p] is the degree 1 homogeneous component of S. Since G is
reductive, all G-modules are completely reducible. Moreover, V [q] is a GL(V )-
module (hence G-module) direct summand in V ⊗q. It follows that V [≤p] belongs
to add(τ⊗p), implying that deg(fλ) =

∑p
i=1 αλ,i ≤ βτ⊗p for each λ ∈ Λ (recall

that the multidegree of fλ is αλ = (αλ,1, . . . , αλ,p), and deg(fλ) here stands for
the degree of fλ with respect to the standard grading on S, for which the generators
have degree 1). So we have

deg(πF (f̂λ)) =

p∑
i=1

iαλ,i ≤ p
p∑
i=1

αλ,i = p deg(fλ) ≤ pβτ⊗p .

In other words, F (R, V )G is generated by elements of degree at most pβτ⊗p . This
holds for any G-module V ∈ add(τ), therefore the desired inequality βτ,R ≤ pβτ⊗p
holds. �

Remark 4. In the proof of Theorem 4 we used that all simple G-submodules of V [q]

are contained in V ⊗q, because V [q] is a GL(V )-submodule of V ⊗q. We mention
that it was proved by Klyachko [16] that for q 6= 4, 6, all simple GL(V )-submodules
of V ⊗q different from the qth exterior or symmetric powers of V are contained in
V [q].

Following [7] for a finite group G we set

β(G,R) = sup{β(F (R, V )G | V is a G-module}.

Corollary 8. For a finite group G we have

β(G,Np) ≤ pβ(G).

Remark 5. The results of [7] provide an upper bound for β(G,Np) of different
nature.

4. A noncommutative generalization of Weyl’s theorem

In this section we assume that the variety R is generated (in the sense of
universal algebra) by a finitely generated algebra. Kemer [15] proved that then R
satisfies a Capelli identity. This means that there exists a positive integer h = h(R)
such that all algebras in R satisfy the polynomial identity∑

π∈Symh+1

(−1)πxπ(1)y1xπ(2)y2 · · · yhxπ(h+1) = 0. (10)
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Our focus is on the case when V = U +mW , where

mW = W + · · ·+W

is the direct sum of m copies of a G-module W , and U is a G-module. We shall
identify mW with W ⊗Km, which is naturally a GL(W )×GL(Km)-module (here
Km stands for the space of column vectors of length m over K). Also V = U+mW
is naturally a GL(U) ×GL(W ) ×GL(Km)-module. Moreover, for l ≤ m we shall
identify Kl with the subspace of Km consisting of column vectors whose last
m− l coordinates are zero. Accordingly lW is identified with the subspace of mW
consisting of m-tuples of elements of W with the zero vector as the last m − l
component. In this way F (R, U + lW ) becomes a subalgebra of F (R, U +mW ).

Theorem 9. Let G be a group, let U and W be G-modules, n = dim(W ), and
let B be a set of generators of the algebra F (R, U + nhW )G, where h = h(R) as
above. Then for any m ≥ nh the algebra F (R, U +mW )G is generated by

{g · f | g ∈ GL(Km), f ∈ B}.

Recall that the relatively free algebra F (R, V ) is graded such that the subspace
V is the degree 1 homogeneous component.

Corollary 10. In the scenario of Theorem 9 for all positive integers m we have
the inequality

β(F (R, U +mW )G) ≤ β(F (R, U + nhW )G).

Remark 6. In the special case when R is the variety of commutative algebras we
have h(R) = 1, and hence Theorem 9 in this special case recovers Weyl’s theorem
on polarization, which is a main theme in [24].

In order to prove Theorem 9 we need to recall some facts about polynomial
representations of the general linear group. A partition λ of d (we write λ ` d) is a
finite non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative integers (with the
convention that zeros can be freely appended to or removed from the end) such
that

∑
i λi = d. Write ht(λ) for the number of non-zero components of λ. Denote

by Sλ(.) the Schur functor (see for example [22]), so for a finite-dimensional K-
vector space E and a partition λ with ht(λ) ≤ dim(E), we have that Sλ(E) is a
simple polynomial GL(E)-module.

Lemma 11. If the simple GL(E)-module Sµ(E) occurs as a direct summand in
Sλ(U + nE), where n is a positive integer and GL(E) acts trivially on the finite-
dimensional K-vector space U , then ht(µ) ≤ n · ht(λ).

Proof. Suppose that Sµ(E) occurs as a direct summand in Sλ(V ), where V =
U + nE. It follows from Pieri’s rules (see [18]) that

Sλ(V ) is a direct summand in

ht(λ)⊗
i=1

S(λi)(V ), (11)
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where for the partition (d) with only one non-zero part, S(d)(V ) is the dth sym-

metric tensor power of V . Therefore Sµ(E) is a direct summand in
⊗ht(λ)

i=1 S(λi)(U+
nE). Any simple GL(E)-module summand of S(λi)(U + nE) is isomorphic to

Sν
i

(E) for some partition νi = (νi1, . . . , ν
i
n) with ht(νi) ≤ n by the Cauchy identity

(see [22]). Therefore again by (11), Sµ(E) is a direct summand in Sν
1

(E) ⊗ · · ·
· · · ⊗ Sνht(λ)

(E), hence Sµ(E) is a direct summand in

ht(λ)⊗
i=1

n⊗
j=1

S(νij)(E).

We conclude by Pieri’s rules that ht(µ) is bounded by the number nht(λ) of tensor
factors in the above expression. �

Proof of Theorem 9. Set V = U + mW = U + W ⊗Km. Since F (R, V ) satisfies
the Capelli identity (10), by a theorem of Regev [23] (see also [9, Thm. 2.3.4]) no
Sλ(V ) with ht(λ) > h = h(R) occurs as a summand of F (R, V ). So the degree d
homogeneous component of F (R, V ) has the GL(V )-module decomposition

F (R, V )d ∼=
∑
λ`d

ht(λ)≤h

mλSλ(V )

with some non-negative integers mλ. Setting E = Km and n = dim(W ), Lemma 11
shows that as a GL(E)-module, F (R, U +W ⊗ E)d decomposes as

F (R, U + nE)d ∼=
∑
µ`d

ht(µ)≤nh

rµSµ(E) (12)

with some non-negative integers rµ. Since the actions of G and GL(E) commute,
the algebra F (R, U +W ⊗E)G is a GL(E)-submodule in F (R, U +W ⊗E). Thus
each simple GL(E)-module direct summand of F (R, U + W ⊗ E)G is isomorphic
to Sµ(E) for some partition µ with ht(µ) ≤ nh. Such a summand is generated
by a highest weight vector w, having the property that for an element g =
diag(z1, . . . , zm) ∈ GL(Km) = GL(E) we have g · w = (zµ1

1 · · · zµmm )w. Since
µnh+1 = · · · = µm = 0, we conclude that w belongs to the subalgebra F (R, U+W⊗
Knh) = F (R, U+nhW ) of F (R, U+W⊗E). Thus F (R, U+W⊗E)G is contained
in the GL(E)-submodule of F (R, U +W ⊗E) generated by F (R, U +W ⊗Knh)G.
Now {g ·f | g ∈ GL(Km), f ∈ B} spans a GL(E)-submodule, hence it generates a
GL(E)-stable subalgebra of F (R, U +W ⊗ E)G. By construction this subalgebra
contains F (R, U +W ⊗Knh)G, so it contains F (R, U +W ⊗ E)G. �
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