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1. Introduction

Recently, fractional differential equations have attracted considerable attention be-
cause of their extensive use in various problems in science and engineering (see the mono-
graphs [1–3] and the references therein). There are various types of fractional derivatives
known in the literature. The main advantage of fractional derivatives is that they can
describe the property of heredity and memory of many materials. The stability property
in solutions of any type of differential equation is one of the most practically applicable
qualitative properties. The application of a fractional derivative leads to the particular
initial conditions to the studied equations. Some of them are totally different than the
classical initial conditions for ordinary differential equations, such as Riemann–Liouville
(RL) fractional differential equations. It requires a change in the definitions of the initial
condition. In this paper, following the ideas developed in the classical book [2], we define
in the appropriate way the initial value problem for RL fractional differential equations.

There are various types of stability that describe different properties of the solutions.
One of them is the Lipschitz stability, introduced in [4] and later studied for nonlinear
differential equations [5,6], for functional differential equations [7,8], for impulsive func-
tional differential equations [9], for Caputo fractional differential equations [10], for partial
differential equations [11,12], and applied to some models such as neural networks [13],
electrical impedance tomography [14], and the radiate transport problem [15].

In this paper, we study a nonlinear system of RL fractional differential equations
(RLFrDE). The solution of the studied FrDE has a singularity at the initial point 0 (see
Example 1). Therefore, the stability properties of the solutions could not be defined for
t ≥ 0 (such as it is done in Definition 2.3 [16]). In connection with this phenomenon,
in this paper, the stability properties for the RLFrDE have to be studied on appropriate
intervals excluding the initial time point. The stability and uniform stability for RLFrDE is
appropriately defined and studied recently in [17]. According to our knowledge, Lipschitz
stability is not studied for RLFrDE. In this paper, we generalize this type of stability of the
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zero solution of the initial value problem (IVP) for a nonlinear system of RLFrDE called
Lipschitz stability in time. This type of stability is connected with the singularity of the
solution at the initial time point. In connection with this, we consider an interval excluding
this initial time point. We use Lyapunov functions and two types of their derivatives
among the studied fractional equation. Several sufficient conditions for Lipschitz stability
in time are obtained by the application of both derivatives. Some examples illustrate the
results and use the application of both fractional derivatives of Lyapunov functions.

In this paper, we consider the following system of nonlinear Riemann–Liouville
fractional differential equations (FrDE) of fractional order q ∈ (0, 1)

RL
0 Dq

t x(t) = f (t, x(t)) for t > 0, (1)

with initial condition

lim
t→0+

[t1−qx(t)] =
x0

Γ(q)
, (2)

where x ∈ Rn and RL
0 Dq

t x(t) is the Riemann–Liouville fractional derivative.
The main contributions of the paper could be summarized as follows:

- The Lipschitz stability in time of zero solution of a system of nonlinear RL fractional
differential equations is defined;

- Two types of derivatives of Lyapunov functions among the RL fractional differential
equations are applied;

- Comparison results by Lyapunov functions, a scalar RL fractional equation, and both
types of derivatives of Lyapunov functions are proved;

- Several sufficient conditions for Lipschitz stability in time are obtained by the applica-
tion of both types of derivatives of Lyapunov functions. These conditions are deeply
connected with the type of initial condition as an RL fractional integral.

2. Preliminaries

We will provide the definition of the main fractional derivatives of order q ∈ (0, 1)
(see, for example, Refs. [1–3]).

- Riemann–Liouville (RL) fractional derivative:

RL
0 Dq

t m(t) =
1

Γ(1− q)
d
dt

t∫
0

(t− s)−qm(s)ds, t ≥ 0,

where Γ(.) denotes the Gamma function.
- The Grünwald–Letnikov fractional derivative is given by

GL
0 Dq

t m(t) = lim
h→0

1
hq

[ t
h ]

∑
r=0

(−1)r
qCr m(t− rh), t ≥ 0 ,

and the Grünwald–Letnikov fractional Dini derivative by

GL
0 Dq

+m(t) = lim sup
h→0+

1
hq

[ t
h ]

∑
r=0

(−1)r
qCrm(t− rh), t ≥ 0, (3)

where qCr =
q(q−1)...(q−r+1)

r! and [ t−t0
h ] denote the integer part of the fraction t−t0

h .

Remark 1. If m ∈ C([0, T],R), then RL
0 Dq

t m(t) = GL
0 Dq

t m(t) = GL
0 Dq

+m(t) hold (see Theorem
2.25 [2]).
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The above defined fractional derivatives for scalar functions are generalized to the
vector case by taking fractional derivatives component-wise.

Proposition 1. (Lemma 2.3 [18]) Let m ∈ C1−q([0, T),R). Suppose that for an arbitrary t1 ∈ (0, T),
we have m(t1) = 0 and m(t) < 0 for 0 ≤ t < t1. Then, it follows that RL

0 Dq
t m(t)|t=t1 ≥ 0.

Remark 2. From Remark 1, it follows that in Proposition 1, the fractional derivative could be
replaced by GL

0 Dq
t m(t)|t=t1 .

We will define the initial condition of RL fractional differential equations based on the
following result:

Proposition 2. ([2]) Let q ∈ (0, 1) and b > 0, m : [0, b]→ R be a Lebesgue measurable function.

(a) If there exists a.e. a limit limt→0+[t1−qm(t)] = c ∈ R, then there also exists a limit

0 I1−q
t m(t)|t=0 := lim

t→0+

1
Γ(1− q)

t∫
0

m(s)
(t− s)q ds = cΓ(q) = Γ(q) lim

t→0+
[t1−qm(t)].

(b) If there exists a.e. a limit limt→0+ 0 I1−q
t m(t) = c ∈ R, and if there exists the limit

limt→0+[t1−qm(t)], then

lim
t→0+

[t1−qm(t)] =
c

Γ(q)
=

1
Γ(q)

lim
t→0+

0 I1−q
t m(t).

Remark 3. According to Proposition 2, the initial condition (2) could be replaced by

0 I1−q
t x(t)|t=0 = x0.

We introduce the assumption:
A1. The function , f ∈ C(R+ ×Rn,Rn), f (t, 0) = 0 for t ∈ R+.
Let J ⊂ R+, 0 ∈ J , ρ > 0. Define the classes

C1−q(J ,Rn) = {m : J → Rn : t1−qm(t) ∈ C(J ,Rn)},

and

M(J ) = {a ∈ C[J ,R+] : a(0) = 0, a(r) is strictly increasing in J , and

a−1(αr) ≤ rqa(α) for some function qa : qa(α) ≥ 1, if α ≥ 1};
K(J ) = {a ∈ C[J ,R+] : a(0) = 0, a(r) is strictly increasing in J , and

a(r) ≤ Kar for some constant Ka > 0};
Sρ = {x ∈ Rn : ||x|| ≤ ρ}.

Remark 4. The function a(u) = u ∈ K(R+) and a(u) = u ∈ M(R+). Further, a(u) = K1u,
K1 > 0 is from the class K(R+) with Ka = K1. The function a(u) = K2u2, K2 ∈ (0, 1] is from
the class M([1, ∞)) with q(u) =

√
u

K2
≥ 1 for u ≥ 1.

We will generalize Lipschitz stability [4] to systems of nonlinear RL fractional differ-
ential equations. In our further considerations below, we will assume the existence of the
solution of the IVP for FrDE (1), (2) and we will denote it by x(t; φ) ∈ C1−q([0, ∞),Rn).

The solution of (1), (2) has a singularity at the initial point 0. We will illustrate it on a
simple linear scalar RL fractional equation:
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Example 1. Consider the initial value problem for the scalar linear FrDE

RL
0 Dq

t x(t) = ax(t) for t > 0, lim
t→t0+

[t1−qx(t)] =
x0

Γ(q)
. (4)

The function x(t) = x0tα−1Eα,α(atα), t > 0 is a solution of (4). It is not defined at the initial
time 0. (see Figure 1 for a = −1, x0 = 1 and various fractional orders.

0.2 0.4 0.6 0.8 1.0

t

0.5

1.0

1.5

xHtL

q=0.1

q=0.4

q=0.7

q=0.9

Figure 1. Example 1. Graphs of the solutions of (4) for a = −1, x0 = 1 and various fractional orders q.

Example 1 illustrates that the stability of the solution in the case of RL fractional
derivative could not be defined for t ≥ 0 (such as it is done in Definition 2.3 [16]). In
connection with this phenomenon, we will define a new type of stability:

Definition 1. The zero solution of the IVP for FrDE (1), (2) is Lipschitz stable in time if there
exist constants T > 0 and M ≥ 1 such that for any x0 ∈ Rn : ||x0|| < ∞, the inequality
||x(t; x0)|| ≤ M||x0|| holds for t ≥ T.

3. Lyapunov Functions and Comparison Results

We will use Lyapunov-like functions from the class Λ.

Definition 2. The function V(t, x) ∈ C(J × ∆,R+) belongs to the class Λ(J , ∆) if it is locally
Lipschitz with respect to its second argument, where J ⊂ R+, 0 ∈ J , and ∆ ⊂ Rn.

We will use the two following types of derivatives of Lyapunov functions V(t, x) ∈
Λ(J, ∆) to study the Lipschitz stability properties of FrDE (1):

- First type—RL fractional derivative of V(t, x(t)) ∈ Λ((0, ∞), ∆) is defined by

RL
0 DqV(t, x(t)) =

1
Γ(1− q)

d
ds

t∫
0

(t− s)−qV(s, x(s))ds, t > 0, (5)

where x ∈ C1−q(R+, ∆) is a solution of (1), (2).
- Second type—Dini fractional derivative of V ∈ Λ((0, ∞),Rn) among (1):

D+
(1)V(t, x) = lim sup

h→0+

1
hq

[
V(t, x)−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x− hq f (t, x))

]
for t > 0, x ∈ Rn.

(6)
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Remark 5. Let x(t) be a solution of (1), then

D+
(1)V(t, x(t)) = lim sup

h→0+

1
hq

[
V(t, x(t))−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x(t)− hq f (t, x(t)))

]
.

Remark 6. Dini fractional derivative of a Lyapunov function is less restrictive than its RL fractional
derivative.

We will use the following IVP for the scalar comparison RL fractional differential equation:

RL
0 Dq

t u(t) = g(t, u(t)) for t > 0, lim
t→0+

t1−qu(t) =
u0

Γ(q)
, (7)

where u0 ∈ R, g : R+ ×R→ R.
Consider the following condition:
A2. The function g ∈ C(R+ ×R,R) is decreasing with respect to its second argument

and g(t, 0) = 0 for t ∈ R+.
In our study, we will use comparison results by Lyapunov functions.

3.1. Comparison Result with RL Fractional Derivative of Lyapunov Functions

Lemma 1. Assume:

1. Conditions (A1), (A2) are satisfied.
2. The function x∗(t) = x(t; x0), x∗ ∈ C1−q([0, ∞),Rn), is a solution of (1), (2).
3. The function u∗(t) = u(t; u0), u ∈ C1−q([0, ∞),R), is a solution of (7).
4. The function V ∈ Λ((0, ∞),Rn) is such that the inequality

RL
0 Dq

t V(t, x∗(t)) ≤ g(t, V(t, x∗(t))), t > 0

holds.

If limt→0+ t1−qV(t, x∗(t)) ≤ u0
Γ(q) , then the inequality V(t, x∗(t)) ≤ u(t) for t > 0 holds.

Proof. Define m(t) = V(t, x∗(t)), t ≥ 0.
Let ε > 0 be an arbitrary number. We will prove

m(t) < u(t) + tq−1ε, t > 0. (8)

From the choice of the initial point u0, we get

lim
t→0+

t1−qV(t, x∗(t)) ≤ u0

Γ(q)
<

u0

Γ(q)
+ ε = lim

t→0+
t1−qu(t) + lim

t→0+
t1−qtq−1ε

= lim
t→0+

t1−q
(

u(t) + tq−1ε
)

.
(9)

From inequality (9), there exists a number δ > 0 such that t1−qV(t, x∗(t)) < t1−q
(

u(t)+

tq−1ε
)

for t ∈ (0, δ), i.e., inequality V(t, x∗(t)) < u(t) + tq−1ε holds, i.e., (8) is satisfied on

(0, δ).
Assume the inequality (8) is not true. Then, there exists a point ξ ≥ δ such that

m(ξ) = u(ξ) + (ξ)q−1ε, m(t) < u(t) + tq−1ε, t ∈ [0, ξ).
From condition (A2), equalities RL

0 Dq
t tq−1 = 0, ξq−1ε > 0 RL

0 Dq
t tq = Γ(1 + q), and

Proposition 1 with t1 = ξ and v(t) = m(t)− u(t)− tq−1ε, we obtain the inequality

RL
0 Dq

t m(ξ) ≥ RL
0 Dq

t

(
u(ξ) + (ξ)q−1ε

)
= RL

0 Dq
t u(ξ) = g(ξ, u(ξ))

= g
(

ξ, m(ξ)− ξq−1ε
)
< g(ξ, m(ξ)).

(10)
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Inequality (10) contradicts condition 4.
Therefore, inequality (8) is true for any arbitrary number ε and thus, m(t) ≤ u(t), t > 0,

which proves the claim of Lemma 1.

3.2. Comparison Result with Dini Fractional Derivative (6) of Lyapunov Functions

Lemma 2. Assume:

1. Conditions 1, 2, and 3 of Lemma 1 are satisfied.
2. The function V ∈ Λ((0, ∞),R) is such that the inequality

D(1)V(t, x∗(t)) ≤ g(t, V(t, x∗(t)), t > 0

holds.

If limt→0+ t1−qV(t, x∗(t)) ≤ u0
Γ(q) , then the inequality V(t, x∗(t)) ≤ u(t) for t > 0 holds.

Proof. The proof is similar to the one of Lemma 1, where the Dini fractional derivative is
applied instead of RL fractional derivative of the Lyapunov function. The main difference
between the proofs of both Lemma 1 and Lemma 2 is connected with the proof of inequality
(8). Assume it is not true. Then, there exists a point ξ ≥ δ such that m(ξ) = u(ξ) +
(ξ)q−1ε, m(t) < u(t) + tq−1ε, t ∈ [0, ξ). According to Remark 2 with τ = ξ, we get
the inequality

GL
0 Dq

+m(ξ) ≥GL
0 Dq

+u(ξ) +GL
0 Dq

+(t
q−1ε) = GL

0 Dq
+u(ξ) = g(ξ, u(ξ))

= g(ξ, m(ξ)− ξq−1ε) > g(ξ, m(ξ)).
(11)

For any fixed t > 0, we have

GL
0 Dq

t m(t) = lim sup
h→0+

1
hq

[ t
h ]

∑
r=0

(−1)r
qCrm(t− rh)

= lim sup
h→0+

1
hq

[ t
h ]

∑
r=0

(−1)r
qCrV(t− rh, x∗(t− rh))

= lim sup
h→0+

1
hq

[
V(t, x∗(t))−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x∗(t− rh))

]

= lim sup
h→0+

1
hq

{[
V(t, x∗(t))−

[ t
h ]

∑
r=1

(−1)r+1
qCrV(t− rh, x∗(t)− hq f (t, x∗(t))

]

+
[ t

h ]

∑
r=1

(−1)r+1
qCr

[
V(t− rh, x∗(t)− hq f (t, x∗(t))−V(t− rh, x∗(t− rh))

]}
.

(12)

Denote

F(x∗(t), h) =
[ t

h ]

∑
r=1

(−1)r+1
qCrx∗(t− rh).

From Equation (1), it follows GL
0 Dq

t x∗(t) = lim suph→0+

[
x∗(t) − F(x∗(t), h)

]
=

RL
0 Dq

t x∗(t) = f (t, x∗(t)). Therefore, x∗(t) − hq f (t, x∗(t)) = F(x∗(t), h) + Ω(hq), where

limh→0+
||Ω(hq)||

hq = 0.
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Therefore, for any r = 1, 2, . . . and h > 0, we get

V(t− rh, x∗(t)− hq f (t, x∗(t))−V(t− rh, x∗(t− rh))

≤ L||F(x∗(t), h) + Ω(hq)− x∗(t− rh)||

≤ L||
[ t

h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− x∗(t− rh)||+ L||Ω(hq)||.

(13)

Thus, by (1 + u)α = 1 + ∑∞
k=1 αCkuk, i.e., 1 = ∑∞

k=1(−1)k+1
αCk, we obtain

||
[ t

h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− x∗(t− rh)||

= ||
[ t

h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− (

∞

∑
j=1

(−1)j+1
qCj)x∗(t− rh))||

≤ ||
[ t

h ]

∑
j=1

(−1)j+1
qCj[x∗(t− jh)− x∗(t− rh)]||+ ||

∞

∑
j=[ t

h ]

(−1)j+1
qCj|| ||x∗(t− rh)||.

(14)

From inequalities (12)–(14) and condition 2 of Lemma 2, we get

GL
0 Dq

t m(t) ≤ D+
(1)V(t, x∗(t)) + L lim sup

h→0+

||Ω(hq)||
hq

[ t
h ]

∑
r=1

(−1)r+1
qCr

+ L lim sup
h→0+

1
hq

[ t
h ]

∑
r=1

(−1)r+1
qCr||

[ t
h ]

∑
j=1

(−1)j+1
qCjx∗(t− jh)− x∗(t− rh)||

= D+
(1)V(t, x∗(t))

+ L lim sup
h→0+

1
hq

[ t
h ]

∑
r=1

(−1)r+1
qCr||

[ t
h ]

∑
j=1

(−1)j+1
qCj[x∗(t− jh)− x∗(t− rh)]||

+ L lim sup
h→0+

||
∞

∑
j=[ t

h ]

(−1)j+1
qCj||

1
hq

[ t
h ]

∑
r=1

(−1)r+1
qCr||x∗(t− rh)||

= D+
(1)V(t, x∗(t)) ≤ g(t, V(t, x∗(t))).

(15)

Inequality (15) contradicts (11). The contradiction proves the validity of (8).

4. Main Results

We will obtain some sufficient conditions for Lipschitz stability in time by Lyapunov
functions and their two fractional derivatives defined above.

4.1. RL Fractional Derivative of Lyapunov Functions among Solutions of (1) and (2)

Theorem 1. Assume the following:

1. Conditions (A1), (A2) are satisfied.
2. There exists a function V ∈ Λ((0, ∞),Rn) such that:

(i) there exists a number T > 0 such that the inequality

b(||x||) ≤ V(t, x), x ∈ Rn, t > T (16)

holds, where b ∈ M([0, ρ]), ρ > 0;
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(ii) for any function y ∈ C1−q([0, ∞),Rn) : limt→0+

(
t1−qy(t)

)
= y0 ∈ Sλ, the inequality

t1−qV(t, y(t))|t=0+ = lim
t→0+

t1−qV(t, y(t)) ≤ a(||y0||)

holds with a ∈ K([0, ρ]);
(iii) for any x0 ∈ Sλ and the corresponding solution x(t) = x(t; x0) of (1), (2), the inequality

RL
0 Dq

t V(t, x(t)) ≤ g(t, V(t, x(t))), t > 0

holds.

3. The zero solution of (7) is Lipschitz stable in time.

Then, the zero solution of (1), (2) is Lipschitz stable in time.

Proof. Let the zero solution of (7) be Lipschitz stable in time. Therefore, there exist
constants M1 ≥ 1, T1, δ1 > 0 such that for any u0 ∈ R : |u0| < δ1, the inequality

|u(t; u0)| ≤ M1 |u0| for t ≥ T1 (17)

holds, where u(t; u0) is a solution of (7) with the initial value u0.
From the conditions of the functions a and b (a ∈ K([0, ρ]), b ∈ M([0, ρ])), there exist a

function qb(u) ≥ 1 for u ≥ 1 and Ka > 0 such that

αr ≤ b(rqa(α)), r ∈ [0, ρ], (18)

and
a(r) ≤ Kar, r ∈ [0, ρ]. (19)

Without loss of generality, we can assume Ka ≥ 1.
Choose the constant M2 such that M2 > max{1, qb(Ka), qb(M1Ka)} and δ2 ≤ ρ

2M2
.

Therefore, 2M2δ2 ≤ ρ.
Let δ = min

{
λ, δ1, δ2, δ1

Ka

}
. Choose the initial value x0 ∈ Rn : ||x0|| < δ, thus, x0 ∈ Sλ.

Consider the solution x∗(t) = x(t; x0) of (1), (2) for the chosen initial value x0. Then,
applying 1

Γ(q) < 1 (see Figure 2), we get || limt→0+ t1−qx∗(t)|| = || x0
Γ(q) || <

δ
Γ(q) < δ ≤ λ ,

i.e., limt→0+ t1−qx∗(t) ∈ Sλ and, according to condition 2(ii), the inequality

t1−qV(t, x∗(t))|t=0+ < a(
||x0||
Γ(q)

) < a(||x0||) (20)

holds. From inequality (20), it follows that there exists η > 0 such that t1−qV(t, y(t)) <
a(||x0||) for t ∈ [0, η).

Let u∗(t) be a solution of (7) with u∗0 = t1−qV(t, x∗(t))|t=0+. From the choice of x0, the
initial condition (2), inequality (20), and condition 2(ii), we obtain u∗0 = t1−qV(t, x∗(t))|t=0+ ≤
a( ||x0||

Γ(q) ) < a(||x0||) ≤ Ka||x0|| < Kaδ ≤ δ1. Therefore, the function u∗(t) satisfies (17) for
t > T1 with u0 = u∗0 .

According to Lemma 1,

V(t, x∗(t)) ≤ u∗(t) for t > 0. (21)

Let T2 = max{T, T1}. Then, from conditions 2(i), 2(ii); inequalities (17)–(19); with
r = ||x0||, α = M1Ka > 1, and (20), (21), we obtain

b(||x∗(t)||) ≤ V(t, x∗(t)) ≤ u∗(t) < M1u∗0 = M1t1−qV(t, x∗(t))|t=0+ < M1a(||x0||)
≤ M1Ka||x0|| ≤ b(qb(M1Ka)||x0||) ≤ b(M2||x0||), t > T2.

(22)
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Inequality (22) proves the claim of Theorem 1.
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Figure 2. Graph of the functions 1
Γ(q) for various q.

Theorem 2. Let the conditions of Theorem 1 be satisfied where the conditions 2(i) and 2(ii) are
replaced by the following

2∗(i) there exist numbers T, p > 0 such that the inequality

λ(t)||x||p ≤ V(t, x), x ∈ Rn, t > T (23)

holds, where λ(t) ≥ A1, t > T, A1 > 0 is a constant;
2∗(ii) for any function y ∈ C1−q([0, ∞),Rn) : limt→0+

(
t1−qy(t)

)
= y0 ∈ Sλ, the inequality

t1−qV(t, y(t))|t=0+ = lim
t→0+

t1−qV(t, y(t)) ≤ A2||y0||p

holds with A2 > 0.
Then, the zero solution of (1) and (2) is Lipschitz stable in time.

Proof. The proof is similar to the one of Theorem 1, where M2 = p
√

M1 A2
A1

and δ =

min
{

λ, p
√

δ1
A2

}
.

4.2. Dini fractional derivative of Lyapunov functions among solutions of (1) and (2)

Theorem 3. Let the conditions of Theorem 1 be satisfied where condition 2(iii) is replaced by
the following:

2(iii*) for any point x ∈ Rn, the inequality

D+
(1)V(t, x) ≤ g(t, V(t, x)), t > 0

holds.
Then, the zero solution of (1) is Lipschitz stable in time.

The proof of Theorem 3 is similar to the one of Theorem 1, where Lemma 2 is applied
instead of Lemma 1.

Remark 7. Note condition 2(iii) of Theorem 1 is harder than condition 2(iii*) of Theorem 3. It
is practically easier to check the validity of condition 2(iii*) of Theorem 3 since we do not use the
solution of (1), (2).

Theorem 4. Let the conditions 1, 3 of Theorem 1 be satisfied and
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2(i) there exist numbers T, p > 0 such that the inequality

λ(t)||x||p ≤ V(t, x), x ∈ Rn, t > T (24)

holds, where λ(t) ≥ A1, t > T, A1 > 0 is a constant;
2(ii) for any function y ∈ C1−q([0, ∞),Rn) : limt→0+

(
t1−qy(t)

)
= y0 ∈ Sλ, the inequality

t1−qV(t, y(t))|t=0+ = lim
t→0+

t1−qV(t, y(t)) ≤ A2||y0||p

holds with A2 > 0;
2(iii) the inequality

D+
(1)V(t, x) ≤ g(t, V(t, x)), for t > 0, x ∈ Rn

holds.

Then, the zero solution of (1) and (2) is Lipschitz stable in time.

The proof of Theorem 4 is similar to the one of Theorem 2 with the application of
Lemma 2 and we omit it.

Example 2. Consider the following IVP for the system of RL fractional differential equations:

RL
0 D0.25

t x1(t) = −0.5x1(t)− x2
2(t)x1(t),

RL
0 D0.25

t x2(t) = −0.5x2(t) +
x2

1(t)x2(t)
1 + x2

2(t)
for t > 0,

lim
t→t0+

[t0.75x1(t)] =
x0,1

Γ(0.25)
, lim

t→t0+
[t0.75x2(t)] =

x0,2

Γ(0.25)
.

(25)

Let V(t, x) = x2
1 + x2

2, x = (x1, x2). Then, for any t > 0 and any solution x(t) of (25),
we get

RL
0 D0.25

t V(t, x(t)) ≤ 2x1(t) RL
0 D0.25

t x1(t) + 2x2(t) RL
0 D0.25

t x2(t) < −V(t, x(t)).

Thus, the comparison scalar RL fractional equation is

RL
0 D0.25

t u(t) = −u, for t > 0, lim
t→t0+

[t0.75u(t)] =
u0

Γ(0.25)
. (26)

The solution of (26) is u(t) = u0t−0.75E0.25,0.25(−t0.25).
According to Theorem 1, the zero solution of (25) is Lipschitz stable is time.

Example 3. Consider the following IVP for the system of RL fractional differential equations:

RL
0 Dq

t x1(t) = −
(

0.5tq−1 + t−q Γ(2− q)
Γ(2− 2q)

+ x2
2(t)

)
x1(t),

RL
0 Dq

t x2(t) = −
(

0.5tq−1 + t−q Γ(2− q)
Γ(2− 2q)

−
x2

1(t)
1 + x2

2(t)

)
x2(t) for t > 0,

lim
t→t0+

[t1−qx1(t)] =
x0,1

Γ(q)
, lim

t→t0+
[t1−qx2(t)] =

x0,2

Γ(q)
.

(27)

Choose the Lyapunov function V(t, x) = t1−q(x2
1 + x2

2), x = (x1, x2), t > 0.
Thus, the inequality t1−q||x||2 ≤ t1−q(x2

1 + x2
2) for x ∈ Rn, t > 0 holds, i.e., condition 2(i)

of Theorem 2 (Theorem 4) is satisfied with λ(t) = t1−q ≥ 1, t > 1.
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Let the function y ∈ C1−q([0, ∞),R2), y = (y1, y2) be such that limt→0+

(
t1−qyk(t)

)
=

y0,k, k = 1, 2. Then,

lim
t→0+

t1−qV(t, y(t)) = lim
t→0+

t1−q
(

t1−q(y2
1(t) + y2

2(t)
)

=
(

lim
t→0+

t1−qy1(t)
)2

+
(

lim
t→0+

t1−qy2(t)
)2

= y2
0,1 + y2

0,2 = ||y0||2.

(28)

Therefore, the condition 2(ii) of Theorem 2 (Theorem 4) is satisfied with A2 = 1, p = 2.
The RL fractional derivative of the function t1−q(x2

1(t)+ x2
2(t)) with x(t) = (x1(t), x2(t)), t >

0, being of solution of (27), is very difficult to be obtained, so the results with the RL fractional
derivative of Lyapunov functions are not applicable.

We will apply the Dini fractional derivative of V.
For t > 0, x ∈ R2 : x = (x1, x2), we get

D+
(27)t

1−q(x2
1 + x2

2)

= lim sup
h→0+

1
hq

[
t1−q(x2

1 + x2
2)

−
[ t

h ]

∑
r=1

(−1)r+1
qCr(t− rh)1−q[(x1 − hq f1(t, x))2 + (x2 − hq f2(t, x))2]

]
= lim sup

h→0+

1
hq t1−q

[
x2

1 − (x1 − hq f1(t, x))2 + x2
2 − (x2 − hq f2(t, x))2

]

+ lim sup
h→0+

1
hq [(x1 − hq f1(t, x))2 + (x2 − hq f2(t, x))2]

[ t
h ]

∑
r=0

(−1)r
qCr(t− rh)1−q

= lim sup
h→0+

1
hq t1−q

[
(2x1 − hq f1(t, x))hq f1(t, x) + 2(x2 + hq f2(t, x))hq f2(t, x)

]
+ [x2

1 + x2
2]

RL
0 Dq

t t1−q

= 2t1−qx1 f1(t, x) + 2t1−qx2 f2(t, x) + [x2
1 + x2

2]
Γ(2− q)

Γ(2− 2q)
t1−2q

= 2t1−qx1(−0.5tq−1x1 − t−q Γ(2− q)
Γ(2− 2q)

x1 − x2
2x1)

+ 2t1−qx2(−0.5tq−1x2 − t−q Γ(2− q)
Γ(2− 2q)

x2 +
x2x2

1
1 + x2

2
)

+ [x2
1 + x2

2]
Γ(2− q)

Γ(2− 2q)
t1−2q = −V(t, x)− [x2

1 + x2
2]

Γ(2− q)
Γ(2− 2q)

t1−2q

≤ −V(t, x).

(29)

Therefore, the condition 2(ii) of Theorem 4 is satisfied with g(t, u) ≡ −u, u ∈ R. According
to Theorem 4, the zero solution of (27) is Lipschitz stable in time.

5. Conclusions

In this paper, a system of nonlinear RL fractional differential equations is studied.
The appropriate initial condition is applied and, in connection with the singularity of the
corresponding solutions at the initial time, a new type of stability is defined. This stability
is a generalization of the classical Lipschitz stability with appropriate changes connected
with the type of the initial condition and RL fractional derivative. Two types of derivatives
of the applied Lyapunov functions are used to obtain sufficient conditions for the defined
stability. The conditions are deeply connected with the type of initial condition required
for RL fractional differential equations.
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Note the ideas about this type of stability and that the conditions of Lyapunov func-
tions could be applied to study another types of stability properties of RL fractional
differential equations.
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