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Abstract: We consider Lorentz surfaces in R3
1 satisfying the condition H2 − K 6= 0, where K and H

are the Gaussian curvature and the mean curvature, respectively, and call them Lorentz surfaces of
general type. For this class of surfaces, we introduce special isotropic coordinates, which we call
canonical, and show that the coefficient F of the first fundamental form and the mean curvature H,
expressed in terms of the canonical coordinates, satisfy a special integro-differential equation which
we call a natural equation of the Lorentz surfaces of a general type. Using this natural equation, we
prove a fundamental theorem of Bonnet type for Lorentz surfaces of a general type. We consider the
special cases of Lorentz surfaces of constant non-zero mean curvature and minimal Lorentz surfaces.
Finally, we give examples of Lorentz surfaces illustrating the developed theory.
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1. Introduction

The question of describing surfaces with a prescribed mean or Gaussian curvature
in the Euclidean 3-space R3 and also in the other Riemannian space forms have been the
subject of an intensive study. In particular, the geometry of spacelike or timelike surfaces
in the Minkowski 3-space R3

1 has been of wide interest. For example, a Kenmotsu-type
representation formula for spacelike surfaces with prescribed mean curvature was obtained
by Akutagawa and Nishikawa in [1]. In [2], Gálvez et al. obtained a representation for
spacelike surfaces in R3

1 using the Gaussian map and the conformal structure given by the
second fundamental form. Magid proved that the Gauss map and the mean curvature of a
timelike surface satisfy a system of partial differential equations and found a Weierstrass
representation formula for timelike surfaces in R3

1 [3]. Timelike surfaces in R3
1 with pre-

scribed Gaussian curvature and Gauss map are studied in [4], where a Kenmotsu-type
representation for such surfaces is given. This representation is used to classify the com-
plete timelike surfaces with positive constant Gaussian curvature in terms of harmonic
diffeomorphisms between simply connected Lorentz surfaces and the universal covering
of the de Sitter Space.

On the other hand, it is known that the minimal Lorentz surfaces in R3
1, R4

1, and R4
2 can be

parametrized by special isothermal coordinates, called canonical, such that the main invariants
(the Gaussian curvature and the normal curvature) of the surface satisfy a system of partial
differential equations called a system of natural PDEs. The geometry of the corresponding
minimal surface is determined by the solution of this system of natural PDEs.

In [5], canonical coordinates for the class of minimal Lorentz surfaces in the Minkowski
space R4

1 are introduced, and the following system of natural PDEs is obtained:
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4
√

K2 +κ2 ∆h ln 4
√

K2 +κ2 = 2K;

4
√

K2 +κ2 ∆h arctan
κ
K

= 2κ;
K2 +κ2 6= 0, (1)

where K is the Gaussian curvature, κ is the curvature of the normal connection (the normal
curvature), and ∆h is the hyperbolic Laplace operator in R2

1.
Similar results are obtained for minimal Lorentz surfaces in the pseudo-Euclidean space

with neutral metric R4
2 in [6,7]. The corresponding system of PDEs has the following form:

4
√∣∣K2 −κ2

∣∣ ∆h ln 4
√∣∣K2 −κ2

∣∣ = 2K ;

4
√∣∣K2 −κ2

∣∣ ∆h ln
∣∣∣∣K +κ
K−κ

∣∣∣∣ = 4κ ;
K2 −κ2 6= 0. (2)

The minimal Lorentz surfaces in R3
1 can also be considered as surfaces in R4

1 or R4
2, in

which cases κ = 0. Thus, systems (1) and (2) are reduced to one PDE:√
|K| ∆h ln

√
|K| = 2K; K 6= 0, (3)

which is the natural equation of minimal Lorentz surfaces in R3
1. Of course, the results in

this case can be directly obtained. In [8], canonical coordinates are introduced for minimal
Lorentz surfaces in R3

1 and equations equivalent to (3) are derived.
Thus, the following natural question arises: How to generalize the concepts of canonical

coordinates and natural equation for a wider class of Lorentz surfaces in R3
1 than that of the minimal

ones? The class of Weingarten Lorentz surfaces in R3
1 with different real principal curvatures

(which is equivalent to H2 − K > 0, where K and H are the Gaussian curvature and the
mean curvature, respectively) is considered in [9]. Canonical principal coordinates are
introduced for this class of surfaces, and a natural nonlinear partial differential equation is
derived, which is equivalent to (3) in the case of a minimal surface.

The main purpose of this article is to generalize the notion of canonical coordinates
and to find a natural PDE for all Lorentz surfaces satisfying H2 − K 6= 0 (we call them
surfaces of the general type). We introduce special isotropic coordinates (which we call
canonical) for these surfaces and obtain a natural integro-differential equation. The natural
equation for the class of minimal Lorentz surfaces is given by√

|K|
(

ln
√
|K|
)

uv = K; K 6= 0.

It can be reduced to (3) by changing the isotropic coordinates with isothermal ones.
This shows that the newly obtained results for an arbitrary Lorentz surface of a general
type in R3

1 generalize the known results for the case of a minimal Lorentz surface.
In Section 2, we give some basic formulas for Lorentz surfaces in R3

1 parametrized by
arbitrary isotropic coordinates. We present the Gauss and Codazzi equations in terms of
these coordinates and formulate the fundamental theorem of Bonnet type.

In Section 3, we introduce the notion of canonical isotropic coordinates for the class of
Lorentz surfaces of general type (H2 − K 6= 0) in R3

1. We prove existence and uniqueness
theorems for these coordinates and give the relation between the canonical coordinates and
the natural parameters of the isotropic curves of the surface.

In Section 4, we consider Lorentz surfaces of general type parametrized by canonical
coordinates and show that the coefficient F of the first fundamental form and the mean
curvature H of such surface satisfy the following integro-differential equation

FFuv − FuFv

F
=
(

ε1 +
∫ v

v0
F(u, s)Hu(u, s) ds

)(
ε2 +

∫ u
u0

F(s, v)Hv(s, v) ds
)
− F2H2,
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ε1 = ±1, ε2 = ±1. We call it the natural equation of the Lorentz surfaces in R3
1 and prove a

fundamental theorem of Bonnet type. We consider in detail the special cases of a Lorentz
surface with a non-zero constant mean curvature and a minimal Lorentz surface.

In Section 5, we give examples of different types of Lorentz surfaces and their canonical
coordinates in R3

1.

2. Preliminaries

Let R3
1 be the standard three-dimensional pseudo-Euclidean space in which the indefi-

nite inner scalar product is given by the formula:

〈a, b〉 = −a1b1 + a2b2 + a3b3.

Let M = (D, x) be a Lorentz surface in R3
1, where D ⊂ R2 and x : D → R3

1 is an
immersion. The coefficients of the first fundamental form ofM are denoted as usually
by E, F, G and L, M, N denote the coefficients of the second fundamental form. Then,
the Gaussian curvature K and the mean curvature H of M are given by the formulas
(see [10,11]):

K =
LN −M2

EG− F2 ; H =
EN − 2FM + GL

2(EG− F2)
.

In a neighbourhood of each point ofM, there exist isotropic coordinates (u, v) such
that E = G = 0 [10]. Such parameters are also called null coordinates [12]. It can
easily be seen that, if (u, v) and (ũ, ṽ) are two different pairs of isotropic coordinates in
a neighbourhood of a fixed point, then they are related either by u = u(ũ), v = v(ṽ), or
u = u(ṽ), v = v(ũ).

Furthermore, we consider a surfaceM parametrized by isotropic coordinates and,
without loss of generality, we assume that F > 0. Then, the formulas for K and H take the
following form:

K =
M2 − LN

F2 ; H =
M
F

. (4)

Consider the tangent vector fields X = xu, Y = xv and denote by l the unit normal

vector field l =
xu × xv

|xu × xv|
such that {X, Y, l} be a positively oriented frame field in R3

1. Since

M is parametrized by isotropic coordinates, we have:

X2 = Y2 = 0; l2 = 1; 〈X, Y〉 = F; 〈X, l〉 = 〈Y, l〉 = 0.

Hence, we get

Xv = Yu; 〈Xu, X〉 = 〈Xv, X〉 = 〈Yu, Y〉 = 〈Yv, Y〉 = 〈lu, l〉 = 〈lv, l〉 = 0.

Using the last equalities, we obtain the following Frenet-type formulas for the frame
field {X, Y, l}:∣∣∣∣∣∣∣∣∣∣∣

Xu =
Fu

F
X + Ll;

Yu = Ml;

lu = −M
F

X − L
F

Y;

∣∣∣∣∣∣∣∣∣∣
Xv = Ml;

Yv =
Fv

F
Y + Nl;

lv = −N
F

X − M
F

Y.

(5)

The integrability conditions of (5), considered as a system of PDE for the triple (X, Y, l),
imply the following Gauss equation:

FFuv − FuFv

F
= LN −M2 (6)
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and the Codazzi equations

Lv = F
(

M
F

)
u
; Nu = F

(
M
F

)
v
. (7)

Note that (6) and (4) imply K = − 1
F
(ln F)uv, which is the Gauss’s Theorema Egregium

in the case of isotropic coordinates.

As it is well known, the Gauss and Codazzi equations are not only necessary, but also
sufficient conditions for the existence of a solution to the PDE system (5). This gives us a
fundamental Bonnet-type theorem for Lorentz surfaces in R3

1. The proof is analogous to
that of the classical theorem for surface in R3 (see ([13]).

Theorem 1. LetM be a Lorentz surface in R3
1 parametrized by isotropic coordinates. Then, the

coefficients F, L, M, N of the first and the second fundamental forms ofM give a solution to the
Gauss and Codazzi Equations (6) and (7). If M̂ is obtained fromM by a proper motion in R3

1, then
M̂ generates the same solution to (6) and (7).

Conversely, if the functions F, L, M, and N satisfy Equations (6) and (7), then, at least locally,
there exists a unique (up to a proper motion in R3

1) Lorentz surfaceM parametrized by isotropic
coordinates, such that the given functions are the coefficients of the first and the second fundamental
forms ofM.

3. Canonical Isotropic Coordinates of Lorentz Surfaces in R3
1R3
1R3
1

In the present section, we will show that the Lorentz surfaces satisfying H2 − K 6= 0
admit special isotropic coordinates, which we will call canonical. It follows from the
Codazzi Equation (7) and the second equality of (4) that

Lv = FHu; Nu = FHv. (8)

Integrating the last equalities, we obtain

L = L(u, v0) +
∫ v

v0

F(u, s)Hu(u, s) ds; N = N(u0, v) +
∫ u

u0

F(s, v)Hv(s, v) ds. (9)

Now, we will try to choose the isotropic coordinates in such a way that L(u, v0) and
N(u0, v) have the simplest form.

First, let us find the transformation formulas for the coefficients of the first and
the second fundamental forms under changes of the isotropic coordinates. There are
two possible cases:

1. If
u = u(ũ); v = v(ṽ),

then, we have F̃ = Fu′v′, which implies u′v′ > 0, since we have assumed at the beginning
that F̃ > 0 and F > 0. In this case, the orientation of the surface does not change, i.e., l̃ = l.
Then, for the coefficients F̃, L̃, M̃, Ñ, we have

F̃ = Fu′v′; L̃ = Lu′2; M̃ = Mu′v′; Ñ = Nv′2. (10)

2. In the case u = u(ṽ); v = v(ũ), it is sufficient to consider only the change of
coordinates:

u = ṽ; v = ũ,

since the general case is reduced to this and the previous one. In this case, the orientation
of the surface changes, i.e., l̃ = −l, and we have

F̃ = F; L̃ = −N; M̃ = −M; Ñ = −L. (11)
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The transformation formulas (10) and (11) show that, if L = 0 or N = 0 for some
isotropic coordinates, then L̃ = 0 or Ñ = 0 for any isotropic coordinates. Furthermore, we
consider surfaces satisfying L 6= 0 and N 6= 0 at least locally. It follows from (4) that

H2 − K =
LN
F2 , (12)

which implies that the conditions L 6= 0 and N 6= 0 are equivalent to H2 − K 6= 0.
We give the following definition.

Definition 1. A Lorentz surfaceM in R3
1 is said to be of general type, if H2 − K 6= 0.

The Lorentz surfaces of general type are naturally divided into two subclasses.

Definition 2. A Lorentz surface of general type in R3
1 is said to be of first kind (resp. second kind),

if H2 − K > 0 (resp H2 − K < 0).

Remark 1. Since K and H are invariants ofM, the properties of a surface to be the general type, as
well as the kind of the surface, are geometric—they do not depend on the local parametrization and
are invariant under motions in R3

1. It is known that the discriminant of the characteristic polynomial
of the Weingarten map has the form D = 4(H2 − K) [11]. Hence, the surfaces of general type are
those surfaces for which the Weingarten map has two different eigenvalues. Moreover, the surfaces
of the first kind are those with real eigenvalues, and the surfaces of the second kind are those with
complex eigenvalues.

Now, we will introduce special isotropic coordinates by the following:

Definition 3. LetM = (D, x) be a Lorentz surface of general type in R3
1 parametrized by isotropic

coordinates (u, v), such that F > 0, and x0 = x(u0, v0) be a point ofM. We call (u, v) canonical
coordinates with initial point x0, if the coefficients of the second fundamental form satisfy the conditions:

L(u, v0) = ε1; N(u0, v) = ε2, (13)

where ε1 = ±1 and ε2 = ±1.

Remark 2. In the general case, condition (13) for the coordinates to be canonical depends on the
choice of the initial point (u0, v0). If (u1, v1) is another point in the same neighbourhood, from (9),
it is obvious that L(u, v0) 6= L(u, v1) and N(u0, v) 6= N(u1, v) in general. In the special case of a
surface with constant mean curvature H, L is a function of u and N is a function of v because of
(8). Hence, for the class of surfaces with constant mean curvature, the canonicity of the coordinates
does not depend on the choice of the initial point (u0, v0).

Theorem 2. IfM = (D, x) is a Lorentz surface of general type in R3
1 and x0 is a fixed point, then

we can introduce canonical coordinates with initial point x0.

Proof. Let x0 be a fixed point ofM and (u, v) be isotropic coordinates in a neighbourhood
of x0 such that F > 0 and x0 = x(u0, v0). Consider the change of the coordinates u = u(ũ)
and v = v(ṽ). According to (10) and Definition 3, the new coordinates (ũ, ṽ) are canonical
if and only if

L(u, v0)u′
2
= L̃(ũ, ṽ0) = ±1; N(u0, v)v′2 = Ñ(ũ0, ṽ) = ±1. (14)

The signs on the right-hand sides of (14) are chosen to coincide with the signs of L and
N, respectively. Thus, we obtain ordinary differential equations for u(ũ) and v(ṽ) whose
solutions have the following form:
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ũ = ũ0 +
∫ u

u0

√
|L(s, v0)| ds; ṽ = ṽ0 +

∫ v

v0

√
|N(u0, s)| ds, (15)

where (ũ0, ṽ0) is arbitrarily chosen. It follows from (12) that L 6= 0 and N 6= 0, which imply
ũ′ > 0 and ṽ′ > 0. Hence, equalities (15) define new isotropic coordinates (ũ, ṽ) satisfying
the condition F̃ > 0. Since (15) is equivalent to (14), then L̃(ũ, ṽ0) = ±1 and Ñ(ũ0, ṽ) = ±1.
Thus, (ũ, ṽ) are canonical coordinates ofM with initial point x0.

Remark 3. IfM is a surface of first kind according to Definition 2, then (12) implies LN > 0. It
follows from (11) that a change in the coordinates numeration leads to a change in the signs of L
and N. Hence, surfaces of the first kind admit both canonical coordinates for which L = N = 1 and
canonical coordinates for which L = N = −1.

IfM is of the second kind, then LN < 0, and hence (10) and (11) show that the signs of L and
N do not change under changes of the isotropic coordinates. Therefore, the surfaces of the second
kind can be divided into two subclasses: surfaces with canonical coordinates such that L = 1 and
N = −1, and surfaces with canonical coordinates such that L = −1 and N = 1.

Now, we will discuss the question of uniqueness of the canonical coordinates.

Theorem 3. LetM be a Lorentz surface of general type in R3
1 and (u, v) be canonical coordinates

with initial point x0 = x(u0, v0) ofM. Then, (ũ, ṽ) is another pair of canonical coordinates with
the same initial point x0 if and only if

u = δũ + c1;
v = δṽ + c2;

or
u = δṽ + c1;
v = δũ + c2,

(16)

where δ = ±1, c1 and c2 are constants.

Proof. First, we consider the case u = u(ũ) and v = v(ṽ). Equalities (10) imply that (ũ, ṽ)
are canonical coordinates if and only if u′2 = 1, v′2 = 1, and u′v′ > 0. The last conditions
are equivalent to the first pair of equalities in (16).

The case u = u(ṽ) and v = v(ũ) reduces to the previous one by means of (11).

The meaning of the last theorem is that the canonical coordinates are uniquely deter-
mined up to a numeration, a sign and an additive constant.

At the end of this section, we will characterize the canonical coordinates in terms of
the null curves lying on the considered surfaces. Recall that, if α is a null curve (α′2 = 0) in
R3

1, then α′′2 ≥ 0. The null curves satisfying α′′2 > 0 are called non-degenerate. It is known
that these curves admit a parametrization such that α′′2 = 1 [11]. Such parameter is known
in the literature as a natural parameter or pseudo arc-length parameter, since it plays a role
similar to the role of the arc-length parameter for non-null curves [14].

Theorem 4. LetM = (D, x) be a Lorentz surface in R3
1 parametrized by isotropic coordinates

(u, v), such that F > 0, and x0 = x(u0, v0) be a point ofM. Then,M is of general type if and
only if the null curves lying onM are non-degenerate. The coordinates (u, v) ofM are canonical
with initial point x0 if and only if they are natural parameters of the null curves onM passing
through x0.

Proof. The Frenet formulas (5) imply x2
uu = X2

u = L2 and x2
vv = Y2

v = N2. Hence, the
u-lines and v-lines are non-degenerate if and only if L 6= 0 and N 6= 0, which is equivalent
to M being of the general type. Moreover, u is a natural parameter (x2

uu = 1) of the
null curve x(u, v0) passing through x0 if and only if L2(u, v0) = 1. Analogously, v is a
natural parameter (x2

vv = 1) of the null curve x(u0, v) passing through x0 if and only if
N2(u0, v) = 1. The last conditions are equivalent to L(u, v0) = ±1 and N(u0, v) = ±1,
which means that the coordinates (u, v) ofM are canonical with initial point x0.
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4. Natural Equation of Lorentz Surfaces of General Type in R3
1R3
1R3
1

In this section, we will consider the Gauss and Codazzi equations of a Lorentz surface of
general typeM = (D, x) in R3

1 parametrized by canonical isotropic coordinates (u, v) with
initial point x0 = x(u0, v0) ∈ M. In such case, the coefficients of the second fundamental
form are expressed by the coefficient F of the first fundamental form, the mean curvature H,
and the constants ε1 and ε2 (see Definition 3). It follows from (4), (9) and (13) that:

L = ε1 +
∫ v

v0
F(u, s)Hu(u, s) ds; M = FH; N = ε2 +

∫ u
u0

F(s, v)Hv(s, v) ds, (17)

where ε1 = ±1; ε2 = ±1, the signs depending on the kind of surface. Substituting these
expressions in the Gauss Equation (6), we obtain:

FFuv − FuFv

F
=
(

ε1 +
∫ v

v0
F(u, s)Hu(u, s) ds

)(
ε2 +

∫ u
u0

F(s, v)Hv(s, v) ds
)
− F2H2. (18)

Consequently, F and H give a solution to the integro-differential Equation (18), which
we call the natural equation of the Lorentz surfaces of general type in R3

1. The converse is
also true. Namely, the following Bonnet-type theorem holds:

Theorem 5. LetM = (D, x) be a Lorentz surface of general type in R3
1 and (u, v) be canonical

isotropic coordinates with initial point x0 = x(u0, v0) ∈ M. Then, the coefficient F of the first
fundamental form and the mean curvature H ofM give a solution to the natural Equation (18). If
M̂ is obtained fromM by a proper motion in R3

1, then M̂ generates the same solution to (18).
Conversely, let F > 0 and H be functions of (u, v) defined in a neighbourhood of (u0, v0)

and satisfying the natural Equation (18), where ε1 = ±1 and ε2 = ±1. Then, at least locally,
there exists a unique (up to a proper motion in R3

1) Lorentz surface of general type in R3
1 defined by

x = x(u, v) in canonical isotropic coordinates with initial point x0 = x(u0, v0), such that the given
functions F and H are the non-zero coefficient of the first fundamental form and the mean curvature,
respectively, and the signs of the corresponding coefficients L and N of the second fundamental form
coincide with the signs of ε1 and ε2.

Proof. We have already seen that the coefficient F and the mean curvature H of a surface
with the given properties satisfy the natural equation. Now, we will prove the converse.

Given the functions F and H satisfying (18), we define functions L, M, and N by
equalities (17). Then, (18) implies that the quadruple F, L, M, N satisfies the Gauss
Equation (6). Differentiating (17), we get that the Codazzi Equation (7) is also fulfilled.
Applying Theorem 1, we get a Lorentz surfaceM parametrized by isotopic coordinates
whose coefficient of the first fundamental form is the given function F and the coefficients
of the second fundamental form are the functions L, M, N, defined by (17). Comparing (9)
with (17), we obtain L(u, v0) = ε1, N(u0, v) = ε2, which means thatM is of the general
type and (u, v) are canonical isotropic coordinates. Comparing (4) with (17), we see that
the mean curvature ofM is the given function H. Hence, the surfaceM has the necessary
properties.

Moreover, if M̂ is another surface with the same properties, then (17) is also valid
for M̂. Thus, M and M̂ have one and the same coefficients of the first and second
fundamental forms. Hence, according to Theorem 1, M̂ is obtained fromM by a proper
motion in R3

1.

Now, we will consider the natural Equation (18) in the case of a surface with constant
mean curvature H. In this case, Equation (18) takes the form:

FFuv − FuFv

F
= ε1ε2 − F2H2, (19)

and (17) implies L = ε1, N = ε2. Then, it follows from (12) that

H2 − K =
ε1ε2

F2 ; F =
1√

|H2 − K|
. (20)
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If we rewrite (19) in the form

1
F
(ln F)uv =

ε1ε2

F2 − H2 (21)

then, by use of (20), we obtain√
|H2 − K|

(
ln
√
|H2 − K|

)
uv = K; H2 − K 6= 0. (22)

We call (22) the natural equation of constant mean curvature Lorenz surfaces in R3
1.

Thus, we can formulate the following Bonnet-type theorem for Lorentz surfaces of
constant non-zero mean curvature.

Theorem 6. LetM = (D, x) be a Lorentz surface of general type in R3
1 with constant non-zero

mean curvature H parametrized by canonical isotropic coordinates. Then, the Gaussian curvature
K satisfies the natural Equation (22). If M̂ is obtained fromM by a proper motion in R3

1, then M̂
generates the same solution to (22).

Conversely, let H be a non-zero constant and K be a function of (u, v) satisfying the natural
Equation (22). Then, at least locally, there exist (up to a proper motion in R3

1) exactly two Lorentz
surfaces of general type in R3

1 parametrized by canonical isotropic coordinates, with the constant H
as non-zero mean curvature and the function K as Gaussian curvature.

Proof. We have already seen that the mean curvature H and the Gaussian curvature K of a
surface with the given properties satisfy Equation (22). Now, we will prove the converse.

Given the constant H and the function K satisfying (22), we define a function F
and constants ε1 = ±1, ε2 = ±1 such that equalities (20) hold true. Then, equality (22)
implies (21), which is equivalent to (19), the latter being the natural Equation (18) in
case H is constant. Note that the function F is determined uniquely by (20), while, for
the choice of ε1 and ε2, we have two different options depending on the choice of signs.
This means that, according to Theorem 5, we obtain two different Lorentz surfacesM1
andM2 parametrized by canonical isotropic coordinates, whose mean curvature is the
given constant H and the coefficient of the first fundamental form is the given function F.
Equalities (20) hold true for bothM1 andM2, and hence K is determined uniquely by F
and H. Consequently, the Gaussian curvature of bothM1 andM2 is the given function K.

The surfaceM2 cannot be obtained fromM1 by a proper motion in R3
1, since the

proper motions preserve the signs of ε1 and ε2, and the signs of these constants are different
forM1 andM2. If M̂ is another surface with the same properties, then equalities (20)
also hold true for M̂. Hence,M1,M2, and M̂ have one and the same coefficients of the
first fundamental form and equal mean curvatures. Moreover, the constants ε1 and ε2 for
M̂ coincide with the constants for one of the two surfacesM1 orM2. Thus, according
to Theorem 5, M̂ can be obtained from one of the two surfacesM1 orM2 by a proper
motion in R3

1.

Remark 4. The two surfaces obtained in the last theorem are really different. We have already
seen thatM2 cannot be obtained fromM1 by a proper motion in R3

1. Furthermore,M2 cannot
be obtained from M1 by coordinate change of the form u = u(ũ) and v = v(ṽ), since such a
change preserves the signs of ε1 and ε2, according to (10).M2 cannot be obtained fromM1 also by
coordinate change of the form u = u(ṽ) and v = v(ũ), since, in such case, the sign of H changes,
according to (4) and (11), but the surfacesM1 andM2 have equal mean curvatures. Such a pair of
surfaces is presented in Examples 4 and 5.

Now, we will consider the case of a surfaceM with zero mean curvature H, i.e.,M is
a minimal surface in R3

1. In this case, equality (22) takes the form:√
|K|
(

ln
√
|K|
)

uv = K; K 6= 0. (23)



Mathematics 2021, 9, 3121 9 of 12

Let us point out that the Gaussian curvature K and the canonical coordinates are
invariant under non-proper motions in R3

1. Hence, in this case, the surface is determined
uniquely by the solution of (23) up to an arbitrary motion. We have the following Bonnet-
type theorem for minimal Lorentz surfaces in R3

1.

Theorem 7. LetM = (D, x) be a minimal Lorentz surface of general type in R3
1 parametrized

by canonical isotropic coordinates. Then, the Gaussian curvature K of M satisfies the natural
Equation (23). If M̂ is obtained fromM by a motion in R3

1, then M̂ generates the same solution
to (22).

Conversely, given a function K of (u, v) satisfying the natural Equation (23), there exists, at
least locally, a unique (up to a motion in R3

1) minimal Lorentz surface of general type parametrized
by canonical isotropic coordinates, such that its Gaussian curvature is the given function K.

Proof. The proof is similar to the proof of Theorem 6; therefore, we will not give it in detail,
and we will only point out the difference. Again, given the function K, we obtain two
different minimal surfacesM1 andM2 parametrized by canonical isotropic coordinates,
having K as the Gaussian curvature and having different signs of ε1 and ε2. Let M̃1 be a
surface obtained fromM1 by a non-proper motion in R3

1. Then, the Gaussian curvature K
and the signs of ε1 and ε2 of M̃1 are the same as those ofM2. Thus, equalities (20) imply
that M̃1 andM2 have one and the same coefficient F of the first fundamental form. Hence,
according to Theorem 5,M2 is obtained from M̃1 by a proper motion in R3

1. Consequently,
M2 is obtained fromM1 by a non-proper motion in R3

1.

5. Examples

In this section, we will consider examples of Lorentz surfaces of general type in R3
1,

illustrating the developed theory. First, we give an example of a minimal Lorentz surface.

Example 1. Let us consider the surface in R3
1, determined by the following parametrization:

x =
1
6
(u3 − v3 + 3u− 3v, −u3 + v3 + 3u− 3v, 3u2 − 3v2). (24)

The coefficients of the first and the second fundamental forms are:

E = G = 0; F =
1
2
(u− v)2; L = 1; M = 0; N = 1.

The Gaussian curvature and the mean curvature of the surface defined above are
expressed as follows:

K = − 4
(u− v)4 ; H = 0. (25)

Hence, the surface defined by (24) is a minimal Lorentz surface (of Enneper-type)
parametrized by isotropic coordinates. Moreover, the coordinates (u, v) are canonical, since
L = N = 1. The Gaussian curvature K is negative, so the surface is of first kind according
to Definition 2. The function K given in (25) is a solution to the natural Equation (23).

Example 2. Let us consider the surface in R3
1, defined by

x =
1
6
(u3 − v3 + 3u− 3v, −u3 + v3 + 3u− 3v, 3u2 + 3v2). (26)

The coefficients of the first and the second fundamental forms are:

E = G = 0; F =
1
2
(u + v)2; L = 1; M = 0; N = −1.
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The Gaussian curvature and the mean curvature are expressed as follows:

K =
4

(u + v)4 ; H = 0. (27)

As in the previous example, (26) defines a minimal Lorentz surface of Enneper-type
parametrized by canonical isotropic coordinates. In this example, the Gaussian curvature K
is positive and hence the surface is of a second kind according to Definition 2. The function
K given in (27) is also a solution to the natural Equation (23).

Now, we will give examples of surfaces with non-zero constant mean curvature.

Example 3. We consider the Lorentz sphere in R3
1 parametrized by isothermal coordinates (t, s)

as follows:
x = (sinh t sech s, cosh t sech s, tanh s).

Changing the coordinates with isotropic ones, we obtain:

x = (sinh(u− v) sech(u + v), cosh(u− v) sech(u + v), tanh(u + v)). (28)

The coefficients of the first and the second fundamental forms are:

E = G = 0; F = 2 sech2(u + v); L = 0; M = 2 sech2(u + v); N = 0.

The Gaussian curvature and the mean curvature are given by:

K = 1; H = 1.

Hence, the surface defined by (28) is a Lorentz surface with non-zero constant mean
curvature parametrized by isotropic coordinates. In this example, H2 − K = 0, which
means that the surface is not of a general type within the meaning of Definition 1. In this
case, we cannot introduce canonical coordinates in the sense of Definition 3.

Example 4. Let us consider the cylinder in R3
1, parametrized by isothermal coordinates (t, s)

as follows:
x = (t, cos s, sin s).

Changing the coordinates with isotropic ones, we obtain:

x = (u− v, cos(u + v), sin(u + v)).

The coefficients of the first and the second fundamental forms are:

E = G = 0; F = 2; L = 1; M = 1; N = 1.

The Gaussian curvature and the mean curvature are given by:

K = 0; H =
1
2

.

This is an example of a Lorentz surface with non-zero constant mean curvature
parametrized by canonical isotropic coordinates. It corresponds to the trivial (zero) solution
to Equation (22).

Example 5. Now, let us consider the hyperbolic Lorentz cylinder in R3
1, parametrized by isothermal

coordinates (t, s) as follows:
x = (sinh s, cosh s, t).

Changing the coordinates with isotropic ones, we obtain:

x = (sinh(u− v), cosh(u− v), u + v).

The coefficients of the first and the second fundamental forms are:
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E = G = 0; F = 2; L = −1; M = 1; N = −1.

The Gaussian curvature and the mean curvature are given by:

K = 0; H =
1
2

.

This is also an example of a Lorentz surface with non-zero constant mean curvature
parametrized by canonical isotropic coordinates. It also corresponds to the trivial (zero)
solution to Equation (22).

Comparing the results of the last two examples, we see that the two cylinders have
equal constant mean curvatures and equal Gaussian curvatures. Hence, they give one and
the same solution to the natural Equation (22). However, there is a difference in the signs
of ε1 = L and ε2 = N. These two cylinders form a pair of surfacesM1 andM2 as the ones
described in the proof of Theorem 6.

Finally, we will consider a surface with non-constant mean curvature.

Example 6. Let us consider the hyperbolic Lorentz coneM in R3
1, parametrized by isothermal

coordinates (t, s) as follows:

x =
(
e

t
2 sinh s,

√
3 e

t
2 , e

t
2 cosh s

)
.

Changing the coordinates with isotropic ones, we obtain:

x =
(
e

u+v
2 sinh(u− v),

√
3 e

u+v
2 , e

u+v
2 cosh(u− v)

)
.

The coefficients of the first and the second fundamental forms are:

E = G = 0; F = 2eu+v; L =

√
3

2
e

u+v
2 ; M = −

√
3

2
e

u+v
2 ; N =

√
3

2
e

u+v
2 .

The Gaussian curvature and the mean curvature are given by:

K = 0; H = −
√

3
4

e−
u+v

2 .

Hence, in this example,M is a Lorentz surface with a non-constant mean curvature
parametrized by isotropic coordinates. The coordinates (u, v) are not canonical, since
L(u, v0) 6= ±1 and N(u0, v) 6= ±1.

We will introduce canonical isotropic coordinates (ũ, ṽ)with initial point (u0, v0) = (0, 0).
Using formulas (15), we get:

ũ = ũ0 + 2
√

2 4
√

3(e
u
4 − 1); ṽ = ṽ0 + 2

√
2 4
√

3(e
v
4 − 1).

To simplify the formulas, we choose ũ0 = ṽ0 = 2
√

2 4
√

3. Then,

ũ = 2
√

2 4
√

3 e
u
4 ; ṽ = 2

√
2 4
√

3 e
v
4 ; u = 4 ln

ũ
2
√

2 4
√

3
; v = 4 ln

ṽ
2
√

2 4
√

3
.

Using the last equalities and formula (10), we express the coefficient of the first
fundamental form F̃ and the mean curvature H̃ in terms of the canonical coordinates (ũ, ṽ)
as follows:

F̃ =
ũ3ṽ3

1152
; H̃ = −48

√
3

ũ2ṽ2 . (29)

According to Theorem 5, the functions F̃ and H̃ given by (29) provide a solution to the
natural Equation (18) in the case ε1 = ε2 = 1.
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