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Abstract

Orthogonal Arrays (OA) play important roles in statistics (used in design-
ing experiments), computer science and cryptography. The most important
problems are those about their existence and classification of non-isomorphic
classes of OA with given parameters. The solving of these problems requires
possible Hamming distance distributions of studied orthogonal array to be de-
termined. In this paper we propose a method for computing of distance distri-
butions of OA with given parameters. Comparing computed possible distance
distributions of the considered OA with ones of its derivative OAs we proved
some nonexistence results and found some restrictions over structure of the
studied OA.
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1. Introduction. Orthogonal arrays were introduced by Rao (1946) and
since then have been studied by many researchers from various fields, both from
theoretical and practical point of view (see [1]). The latest results and achieve-
ments can be found on the web sites [2,3].
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Definition 1. Let A be an alphabet of q symbols. An Orthogonal Array
OA(M,n, q, t) of strength t with M rows, n columns (n ≥ t), and q levels is an
M ×n matrix (array) with entries from A so that every M × t submatrix contains
each of the qt possible t-tuples equally often as a row (say λ times).

The parameter λ = M/qt is called index. In what follows we assume that A
is the ring Zq of integers modulo q or the finite field GF (q) of q elements although
some properties hold even for A commutative ring with unity. Hamming distance
d(x,y) between two vectors x and y of An is the number of places in which they
differ:

d(x,y)
def
= |{i|xi 6= yi}|.

Hamming weight wt(c) of a vector c ∈ An is the number of its nonzero entries.
Clearly wt(c) = d(c,o), where o is all zero vector.

Let C be a subset (in general multi subset) of An and x ∈ An be a fixed
vector. The set of nonnegative integers p(x) = (p0, p1, . . . , pn) defined by

pi = |{u ∈ C | d(x,u) = i}|

is called the distance distribution of C with respect to x.
It should be emphasized that knowledge of distance distribution of C with

respect to points of An is of great importance for studying codes and orthogonal
arrays. In [4–6] authors compute p(x) as a nonnegative integer solution of a linear
system with matrix (tij), where tj = 1 − 2j

n , j = 0, . . . , n ([7]). They received
the possible values of p(x) and use them to prove the nonexistence of orthogonal
arrays with given parameters.

The information that can be derived from aforesaid linear system with ra-
tional coefficients is not too much. All (M + 1)n+1 possible nonnegative integer
(n+ 1)-tuples have to be tested if they satisfy the system.

In [8] the author shows how to obtain many linear systems with integer co-
efficients that p(x) satisfies. This approach enables upper bounds for all pi to be
obtained that significantly reduce the number of potential candidates for p(x).
It also makes possible to avoid testing whether given vector is a solution of the
system and to replace this test with checking only the signs of t + 1 coordinates
of that vector.

The next section presents the necessary notions and results for orthogonal
arrays. In Section 3 we describe the algorithm given in [8]. Section 4 presents our
approach to find expressions for some parameters that can give bounds for possible
distance distributions. In the last section the obtained results about orthogonal
arrays are presented.

2. Preliminaries. The Krawtchouk polynomials (see, e.g., [7,9–11]) are
well known and we list only their properties that we need. Let Rn+1[x] be the
linear space of polynomials of degree up to n over real numbers R. Let q ≥ 2 be
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an integer. The bilinear map defined by

(1) 〈f, g〉 def=
1

qn

n∑
i=0

(
n

i

)
(q − 1)if(i)g(i)

satisfies the axioms for scalar product.
Definition 2. Krawtchouk polynomial is a polynomial defined by

Kk(x; n, q) =

k∑
j=0

(−1)j
(
x

j

)(
n− x
k − j

)
(q − 1)k−j , k = 0, 1 . . . n.

The Krawtchouk polynomial Kk(x; n, q) is a polynomial of degree k in x with
leading coefficient (−q)k/k!. The parameters q and n have already been fixed, so
we omit n and q and write only Kk(x).

Corollary 2.1. For fixed q and n the Krawtchouk polynomials K0(x), K1(x),
. . . , Kn(x) satisfy

1) First orthogonality relation

(2) 〈Kk,Kl〉 =
1

qn

n∑
i=0

(
n

i

)
(q − 1)iKk(i)Kl(i) =

(
n

k

)
(q − 1)k δkl;

2) Second orthogonality relation

(3)
n∑
i=0

Kk(i)Ki(l) = qnδkl.

From (2) they are an orthogonal basis of Rn+1[x] according to scalar prod-
uct (1). And second orthogonality relation follows from relation

(4) (q − 1)i
(
n

i

)
Kk(i) = (q − 1)k

(
n

k

)
Ki(k).

The next theorem is a consequence from the fact that K0(x), K1(x), . . . ,
Kn(x) form an orthogonal basis of Rn+1[x].

Theorem 2.2. For any polynomial f(x) ∈ Rn+1[x] there is a unique expan-
sion

f(x) =

n∑
k=0

fkKk(x),

where

fk =
1

qn
(
n
k

)
(q − 1)k

n∑
i=0

(
n

i

)
(q − 1)if(i)Kk(i) =

1

qn

n∑
i=0

f(i)Ki(k).
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Indeed fk = 〈f(x),Kk(x)〉/〈Kk(x),Kk(x)〉. The second equality follows
from (4).

Following [1] some properties of OA’s will be showed.
Theorem 2.3 ([1]). For an OA(M,n, q, t) the following properties hold:

(i) A permutation of the rows or columns in OA(M,n, q, t) results in orthog-
onal array with the same parameters.

(ii) A permutation of the symbols of any column in OA(M,n, q, t) results in
orthogonal array with the same parameters.

(iii) Any M × k sub-array of OA(M,n, q, t) is an OA(M,k, q, t′), where t′ =
min{t, k}.

(iv) If A =

(
A1

A2

)
is an OA(M,n, q, t), where A1 itself is an OA(M1, n, q, t1),

then A2 is an OA(M −M1, n, q, t2) with t2 ≥ min{t, t1}.

Recall that herein the alphabet A is the ring Zq of integers modulo q or the
finite field GF (q) of q elements. The next two results are due to Delsarte [12–14].

Lemma 2.4. Let C be OA(M,n, q, t) and x ∈ An. If p(x) = (p0, p1, . . . , pn)
is the distance distribution of C with respect to x, then

(5)
n∑
i=0

piKk(i) = 0 for k = 1, . . . , t.

Let C be a (multi-)subset of An. The sequence of rational numbers {Ai},
i = 0, 1, . . . , n, defined by

Ai
def
=

1

|C|
∣∣{(x,y) ∈ C2 | d(x,y) = i}

∣∣
is called distance distribution of C. Obviously {Ai} is the mean of p(x) on x ∈ C.

Lemma 2.5. Let C be OA(M,n, q, t) and {Ai}, i = 0, 1, . . . , n be distance
distribution of C. Then

n∑
i=0

AiKk(i) ≥ 0 for any k = 0, 1, . . . , n.

3. Algorithm for effectively computing distance distributions. Boy-
valenkov et al. [4–6] point out that in the general case all feasible distance dis-
tributions can be computed as nonnegative integer solutions of certain system of
linear equations with Vandermonde matrix (tij), where tj = 1− 2j

n , j = 0, . . . , n.
Recently, Manev [8] using properties of Krawtchouk polynomials showed dif-

ferent representations of this system. Some of these can facilitate fast computation
of distance distributions. Manev’s results are summarized in Theorem 3.2. In this
section we follow the results of [8].
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Theorem 3.1. Let C be OA(M,n, q, t) and v ∈ An. If p(v) = (p0, p1, . . . , pn)
is the distance distribution of C with respect to v then for any polynomial f(x) of
degree deg f ≤ t the following hold

(6)
n∑
i=0

pif(i) = f0M, f0 =
1

qn

n∑
i=0

f(i)Ki(0) =
1

qn

n∑
i=0

(
n

i

)
(q − 1)if(i),

where f(x) = f0 +
∑t

j=1 fjKj(x).
Theorem 3.2 ([8]). Let C be OA(M,n, q, t) and v ∈ An. If p(v) =

(p0, p1, . . . , pn) is the distance distribution of C with respect to v, then for k =
0, 1, . . . , t the following systems hold:

(i)
n∑
i=0

(
n− i
k

)
pi =

M

qk

(
n

k

)
= λqt−k

(
n

k

)
;

(ii)
n∑
i=0

pii
k =

M

qn

n∑
i=0

(
n

i

)
ik(q − 1)i;

(iii)
n∑
i=0

pi(n− i)k =
M

qn

n∑
i=0

(
n

i

)
(n− i)k(q − 1)i;

(iv)
n∑
i=0

(
i− s
k

)
pi =

M

qn

n∑
i=0

(
n

i

)(
i− s
k

)
(q − 1)i.

One can choose suitable polynomials in Theorem 3.1 to prove Theorem 3.2.
The following theorems are important and basic in more efficient algorithm

for computing distance distribution p = p(v) which is described below.
Theorem 3.3 ([8]). Let A = (aki) = (ik), k = 0, 1, . . . , t, i = 1, 2, . . . , n. For

t < m ≤ n the vector(
1,−

(
m

1

)
,

(
m

2

)
, . . . , (−1)j

(
m

j

)
, . . . , (−1)m, 0, . . . , 0

)
and all n −m − 1 its cyclic right shifts are linear independent and belong to the
null-space of A. In partial for m = t+ 1 they form a basis of the null-space.

Lemma 3.4. Let Rt = (rij) =
((

j
i

))
, where i, j = 0, 1, 2, . . . , t. Its inverse

matrix is

R−1t =

(
(−1)i+j

(
j

i

))
.

ALGORITHM [8]

P1. Find the best possible upper bound vector u for the vectors p.
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P2. Set up s. Let s be the number of position before chosen t + 1 consecutive
positions, where u has maximal values. Compute a partial solution from
Theorem 3.2 (iv) putting zeros in all positions but in the chosen t+1 positions.

P3. Apply the Null Space Algorithm.

NS 1. Construct the matrix As = (akl) =
((

l−s
k

))
. It contains the matrix

Rt defined in Lemma 3.4 in columns s+ 1, . . . , s+ t+ 1.

NS 2. Transform A into a row echelon form B by multiplying with R−1t
(see Lemma 3.4) and obtain:

B = R−1t A = (U1 It+1U2),

where identity (t+1)×(t+1) matrix It+1 in columns s+1, . . . , s+t+1.
The matrices U1 and U2 are (t + 1) × s and (t + 1) × (n − t − s)
matrices, respectively.

NS 3. Construct the matrix generating the null space, namely

G =

(
Is −Uτ

1 O1

O2 −Uτ
2 In−t−s

)
,

where O1 and O2 are zero matrices of suitable size.

NS 4. Generate all linear combinations of the rows of G with nonnegative
coefficients bounded by u.

P4. By adding the partial solution to any vector of the null space find the integer
solutions of Theorem 3.2 (iv).

P5. Select the solutions that have nonnegative values in s + 1, . . . , s + t + 1
positions.

Solutions with zero first coordinate are distance distribution with respect to an
external point for the orthogonal array while ones with nonzero first coordinate
correspond to distributions with respect to internal point. If the first coordinate is
greater than 1 it means that the point appears more than once, i.e., the orthogonal
array is a multi-set.

4. Our approach. Minimization of the upper bound u is very important.
Decreasing even by 1 in one position of u leads to significant decreasing of numbers
of checks. That is why our efforts are directed to understand the structure of
matrix B and to make some better bounds for u.

Let us consider system (iv) in Theorem 3.2 in details.

(7) Asp
t = a,
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where
As = (akl) =

((
l − s
k

))
is a (t+ 1)× (n+ 1) matrix. The vector a = (a0, a1, . . . , at)

τ is determined by

ak =
M

qn

n∑
i=0

(
n

i

)(
i− s
k

)
(q − 1)i,

where k = 0, . . . , t. Columns of A corresponding to l = s, . . . , s + t form (t +

1) × (t + 1) matrix Rt = (rij) =
((

j
i

))
. Multiplying system (7) by R−1t we get

Bpτ = b, where B = R−1t A = (bml) and b = (b0, . . . , bt)
τ , that is,

bml = (−1)m
t∑

j=0

(−1)j
(
j

m

)(
l − s
j

)
, m = 0, 1, . . . , t, l = 0, 1, . . . , n,

and

(8) bm = (−1)mλqt−n
n∑
i=0

((
n

i

)
(q − 1)i

t∑
j=0

(
j

m

)(
i− s
j

))
, m = 0, 1, . . . , t.

To find good expression for elements bml from matrix B we use the following
lemma.

Lemma 4.1. The following hold:

(a) S =
t∑

j=0

(−1)j
(
j

m

)(
d

j

)
= (−1)m

(
d

m

)(
t− d
t−m

)
;

(a) S =

(−1)t
d

d−m
(
t
m

)(
d−1
t

)
, d 6= m

(−1)m, d = m;

(a) S =

(−1)t
d− t
d−m

(
t
m

)(
d
t

)
, d 6= m

(−1)m, d = m.

Proof. Let us first observe that
t∑

j=0

(−1)j
(
d

j

)
= (−1)0

(
d

0

)
+

t∑
j=1

(−1)j
((

d− 1

j

)
+

(
d− 1

j − 1

))

= 1 +

t∑
j=1

(−1)j
(
d− 1

j

)
+

t∑
j=1

(−1)j
(
d− 1

j − 1

)

= (−1)t
(
d− 1

t

)
= (−1)t

d− t
d

(
d

t

)
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and using
(
j

m

)(
d

j

)
=

(
d

m

)(
d−m
j −m

)
and

(
n+m− 1

m

)
= (−1)m

(
−n
m

)
.

Now, we are ready to show (a), that is

S =
t∑

j=0

(−1)j
(
j

m

)(
d

j

)
=

t∑
j=0

(−1)j
(
d

m

)(
d−m
j −m

)
=

(
d

m

) t∑
j=0

(−1)j
(
d−m
j −m

)

=

(
d

m

) t−m∑
k=0

(−1)m+k

(
d−m
k

)
= (−1)m

(
d

m

) t−m∑
k=0

(−1)k
(
d−m
k

)
= (−1)m

(
d

m

)
(−1)t−m

(
d−m− 1

t−m

)
= (−1)m

(
d

m

)(
t− d
t−m

)
.

By analogy, we prove identities (b) and (c).
Based on Lemma 4.1 we can evaluate the elements of the matrix B by the

next theorem. The received analytical expression of the matrix B helps a lot
in faster calculation of distance distributions and finding analytical bounds for
covering radius [15] and minimal distance of orthogonal arrays.

Theorem 4.2. The following hold:

(a) bml = (−1)2m
(
l − s
m

)(
t− l − s
t−m

)
=

(
l − s
m

)(
t− l − s
t−m

)
;

(a) bml =

(−1)m+t l − s− t
l − s−m

(
t

m

)(
l − s
t

)
, l 6= s+m

1, l = s+m.

Therefore B = (U1It+1U2), where

• U1 = (bml) is (t+ 1)× s matrix (l = 0, 1, . . . , s− 1);

• U2 = (bml) is (t+ 1)× (n− s− t) matrix (l = s+ t+ 1, . . . , n);

• It+1 is identity (t+1)×(t+1) matrix, placed in columns l = s, s+1, . . . , s+t.

Now we can simplify expression for bm. Applying Lemma 4.1 to (8) we get

bm = (−1)mλqt−n
n∑
i=0

(
n

i

)
(q − 1)i(−1)m

(
i− s
m

)(
t+ s− i
t−m

)
or equivalently

bm = (−1)m+tλqt−n
(
t

m

) n∑
i=0

(
n

i

)(
i− s
t

)
i− s− t
i− s−m

(q − 1)i,

where m = 0, 1, . . . , t.
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The vector (b0, b1, . . . , bt) is a partial solution, i.e., any solution is a sum of
this and vector of the Null space of B, i.e., linear combination of rows of

G =

(
Is −U τ1 O1

O2 −U τ2 In−t−s

)
.

Thus the received formulae give us possibility to obtain some bounds for bml
and bm (l = 0, . . . , s−1, s+t+1, . . . , n), otherwise bml is 1 or 0 when l = s, . . . , s+t.

Corollary 4.3. The numbers bml have the same sign with (−1)m for t even
number and for every l = 0, 1, . . . , s− 1, s+ t+ 1, . . . , n.

Proof. Let us notice that
l − s− t
l − s−m

> 0. This is true because

• if l ≤ s⇒ l − s ≤ 0⇒ l − s− t
l − s−m

> 0;

• if l > s+ t⇒ l − s ≥ t+ 1⇒ l − s− t
l − s−m

> 0 (m ≤ t).

Using Theorem 4.2 (b) and facts that in any case
l − s− t
l − s−m

> 0 and
(
l−s
t

)
≥ 0

whether l − s is greater than or less than 0 for even t.
Corollary 4.4. For t even number the inequality holds

pl ≤
⌊
bm
bml

⌋
for l = 0, 1, . . . , s− 1, s+ t+ 1, . . . , n.

Proof. The numbers bm have the same sign as bml.
The situation when t is odd number is more complicated, because

(
l−s
t

)
< 0

for l = 0, 1, . . . , s− 1. Therefore, for a given m the numbers bml in the matrix U1

are with one sign, but have the opposite in matrix U2.
5. Relation between distance distributions of OA(M,n,q,t) and its

derivative OAs. The information of possible distance distributions of an or-
thogonal array with respect to any point could be used to solve existence and
classification problems. It provides useful information about the covering radius
of the orthogonal array considered as a q-ary code in the Hamming space.

In what follows we show how we study orthogonal arrays applying the knowl-
edge of possible distance distributions and derive information about its structure.

Let C be an OA(M,n, q, t) and we can assume that C contains the all-zero
vector. Let Č be the orthogonal array obtained from C by deleting the first
column. Denote by Ci, i = 0, 1, . . . , q−1, the set obtained by taking all rows of C
with the i-th element of A in the first column and then deleting the first column.
(C0 corresponds to 0 in the first column.) According to Theorem 2.3

Č is OA(M,n− 1, q, t) and Ci is OA(M/q, n− 1, q, t− 1).
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Using the described algorithm we compute all possible distance distributions
of C, Ci, Č as well as ones of any other necessary array derived from C.

Let c = (c1, c2, . . . , cn) ∈ C, i.e., c0 = (c2, . . . , cn) ∈ C0 or Ci. The dis-
tance distribution of C with respect to c is p(c) = (p0, p1, . . . , pn) and p0(c0) =
(p00, p

0
1, . . . , p

0
n−1) of C0 (or Ci) to c0, respectively.

We say that a vector a = (a1, a2, . . . , an) dominates another vector b =
(b1, b2, . . . , bn) if ai ≥ bi for all i = 1, . . . , n.

Corollary 5.1. If vector p = (p0, p1, . . . , pn) is a distance distribution of
OA(M,n, q, t) array C then it satisfies the following conditions:

(i) (p0, p1, . . . , pn−1) dominates (p00, p
0
1, . . . , p

0
n−1) when p00 ≥ 1;

(i) (p1, p2, . . . , pn) dominates (p00, p
0
1, . . . , p

0
n−1) when p00 = 0;

(i) the difference

p(c0) = (p̄0, p̄1, . . . , p̄n−1) = (p1 − p01, . . . , pn−1 − p0n−1, pn)

has to be the distance distribution of C1 ∪ · · · ∪ Cq−1 with respect to the
external point c0;

(i) p̌(c0) = p(c0) + p0(c0) has to be a distance distribution of Č with respect
to c0.

We will call p̌, p, p0 successors of p and p their parent vector. When we
delete different columns we can obtain not only different Ci but different values
for p̌, p, p0. The following result holds.

Theorem 5.2 ([4,8]). Let p(1), p(2), . . . , p(s) be all possible successors of p and
let p(i) be obtained in ki cases of deleting of a column, i = 1, 2, . . . , s. Then the
integers ki satisfy∣∣∣∣∣∣

k1 + k2 + · · ·+ ks = n

k1p
(1) + k2p

(2) + · · ·+ ksp
(s) = (p1, 2p2, . . . , npn)

ki ≥ 0.

Proof. We calculate the nonzero positions of the submatrix of rows at dis-
tance i from c (called i-block) in two ways.

Calculating by rows we get the right side ipi, while the calculation by columns
gives the left side of the equation.

6. Results.
Theorem 6.1. The minimal index for ternary arrays with strength t = 3 and

length 17 and 16 is λ = 5.
Proof. We have to prove that an OA(108, 17, 3, 3) and an OA(108, 16, 3, 3)

do not exist. Based on the given above algorithms and obtained results we do the
following:
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1. First we compute all possible distance distributions p = (p0, p1, . . . , pn) with
respect to internal points for the OA(108, 17, 3, 3) and the OA(108, 16, 3, 3)
are 10 and 49, respectively.

2. The same distributions p0 = (p00, p
0
1, . . . , p

0
n−1) for the residual arrays

OA(36, 16, 3, 2) and OA(36, 15, 3, 2) are 6 and 12, respectively.

3. Then we apply Corollary 5.1. Only nine vectors p of the OA(108, 17, 3, 3)
dominate internal distributions p0 of the OA(36, 16, 3, 2).

4. For any pair (p,p0) we compute the difference p = (p̄0, p̄1, . . . , p̄n−1) (see
Corollary 5.1). Then we test whether p is an external distribution for C1∪C2

that are the OA(72, 16, 3, 2) and the OA(72, 15, 3, 2) arrays, respectively.
This means that the set of received distance distributions have to satisfy
system of equations (Theorem 3.2).

5. In the case n = 17 test shows that none of p satisfies the system. The
obtained contradiction proves that the OA(108, 17, 3, 3) does not exist.

6. The case n = 16 is more complicated. For seven of pairs (p,p0) the cor-
responding vectors p satisfy the system for the OA(72, 15, 3, 2). Hence we
have to apply Theorem 5.2 for the rest p. No one passes this test. Therefore
the OA(108, 16, 3, 3) does not exist.

Remark. The nonexistence result for an OA(108, 17, 3, 3) has already been
obtained using another method and appeared in [16].

Structural results
Structure of the OA(108, 15, 3, 3)

Applying the aforesaid approach we obtain four from 119 possible internal
distance distributions for the OA(108, 15, 3, 3) which pass all tests:

[1, 0, 0, 0, 0, 0, 0, 0, 15, 0, 84, 0, 0, 0, 0, 8]

[1, 0, 0, 0, 0, 0, 0, 1, 11, 6, 80, 1, 0, 0, 0, 8]

[1, 0, 0, 0, 0, 0, 0, 2, 7, 12, 76, 2, 0, 0, 0, 8]

[1, 0, 0, 0, 0, 0, 0, 3, 3, 18, 72, 3, 0, 0, 0, 8].

Hence we cannot get contradictions but we have collected much information
for the structure of array. It gives us a hope that we succeed in constructing the
OA(108, 15, 3, 3) array.

Structure of the OA(1458, 16, 3, 5)

In this case we compute only one possible internal distribution:

p = (1, 0, 0, 0, 0, 0, 0, 0, 270, 320, 0, 0, 840, 0, 0, 0, 27),
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which dominates only one inner distribution of C0, namely

p0 = (1, 0, 0, 0, 0, 0, 0, 135, 140, 0, 0, 210, 0, 0, 0).

Then
p = (0, 0, 0, 0, 0, 0, 0, 135, 180, 0, 0, 630, 0, 0, 0, 27)

is external distribution for C1 ∪ C2 and

p̌ = (1, 0, 0, 0, 0, 0, 0, 0, 135, 315, 140, 0, 630, 210, 0, 0, 27)

is internal distribution for Č.
Unfortunately, we cannot obtain nonexistence since p̌ and p pass all our tests.

But repeating the procedure with residual arrays C0 and Č we collect very rich
knowledge about the structure of the OA(1458, 16, 3, 5).
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