Доклади на Българската академия на науките
 Comptes rendus de l'Académie bulgare des Sciences

Tome 74, No 10, 2021

MATHEMATICS
Coding theory

ON THE MAXIMAL CARDINALITY OF BINARY TWO-WEIGHT CODES

Ivan Landjev, Assia Rousseva*

(Submitted by Academician V. Drensky on June 7, 2021)

Abstract

In this note we prove a general upper bound on the size of a binary $\left(n,\left\{d_{1}, d_{2}\right\}\right)$-code with $d_{2}>2 d_{1}$. This bound is used to settle recent conjectures on the maximal cardinality of an $(n,\{2, d\})$-code. The special case of $d=4$ is also resolved using a classical shifting technique introduced by Erdős, Ko and Rado.

Key words: two-weight codes, the Erdős-Ko-Rado theorem, non-linear codes, main problem of coding theory

2010 Mathematics Subject Classification: 05A05, 05A20, 94B25, 94B65

1. Introduction. A binary (nonlinear) code $C \subset \mathbb{F}_{2}^{n}$ is called a two-distance code, or, with a certain abuse of language, a two-weight code if the possible distances between two different words of the code take on two different values, i.e.

$$
\{d(u, v) \mid u, v \in C, u \neq v\}=\left\{d_{1}, d_{2}\right\}
$$

where $0<d_{1}<d_{2}<n$. Here $d(u, v)$ denotes the Hamming distance between u and v, i.e. the number of positions in which the words u and v are different. A binary two-weight code of length n, cardinality M, and with distances d_{1} and d_{2}

[^0]is called an ($n, M,\left\{d_{1}, d_{2}\right\}$)-code. If the cardinality is not specified we speak of an ($n,\left\{d_{1}, d_{2}\right\}$)-code. A natural problem is to determine the maximal cardinality, denoted by $A_{2}\left(n,\left\{d_{1}, d_{2}\right\}\right)$, of a binary two-weight code of fixed length n and given distances d_{1} and d_{2}.

A systematic investigation of this problem for the non-linear case was made by Boyvalenkov et al. [${ }^{1}$], where along with proving upper bounds and various facts about $A_{2}\left(n,\left\{d_{1}, d_{2}\right\}\right)$, the authors state two conjectures:
(A) $A_{2}(n,\{2,4\})=\binom{n}{2}+1$ for all $n \geq 6$, and that
(B) $A_{2}(n,\{2, d\})= \begin{cases}n & \text { for } 5 \leq d \leq n-2, \\ n+1 & \text { for } d=n-1 .\end{cases}$

Let us note that $A_{2}(4,\{2,4\})=8$ and $A_{2}(5,\{2,4\})=16$. The optimal codes are the even weight codes. In the case $n=6$ we split the words of the even weight code into 16 pairs of complementary words. Any choice of a word from each of these pairs gives a ($6,\{2,4\}$)-code. For $n \geq 7$ the code consisting of the zero word and all words of weight two gives an $\left.\binom{n}{2}+1,\{2,4\}\right)$-code.

This paper is structured as follows. In Section 2, we prove a upper bound on the size of a binary ($n,\left\{d_{1}, d_{2}\right\}$)-code which improves on the bound from Theorem 6 in $\left[{ }^{1}\right]$. In Section 3, we settle Conjecture (B) using ideas from Section 2, which deals with the special case of $d_{1}=2$. In Section 4, we prove Conjecture (A) using a classical shifting technique introduced by Erdôs, Ko and Rado in [$\left.{ }^{2}\right]$.
2. A bound on the size of a code with two distances. In this section we consider binary codes with parameters ($n,\left\{d_{1}, d_{2}\right\}$) with $d_{2}>2 d_{1}$. Without loss of generality we assume that the zero word $\mathbf{0}=(\underbrace{0,0, \ldots, 0}_{n})$ is in C. The following observation is now straightforward:

- if $\operatorname{wt}\left(\boldsymbol{c}_{1}\right)=\operatorname{wt}\left(\boldsymbol{c}_{2}\right)=d_{1}$, then $\operatorname{wt}\left(\boldsymbol{c}_{1} * \boldsymbol{c}_{2}\right)=d_{1} / 2$ and $d\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)=d_{1}$;
- if $\operatorname{wt}\left(\boldsymbol{c}_{1}\right)=d_{1}, \operatorname{wt}\left(\boldsymbol{c}_{2}\right)=d_{2}$, then $\mathrm{wt}\left(\boldsymbol{c}_{1} * \boldsymbol{c}_{2}\right)=d_{1} / 2$ and $d\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)=d_{2} ;$
- if $\mathrm{wt}\left(\boldsymbol{c}_{1}\right)=\mathrm{wt}\left(\boldsymbol{c}_{2}\right)=d_{2}$, then

$$
\begin{aligned}
& \text { either } \mathrm{wt}\left(\boldsymbol{c}_{1} * \boldsymbol{c}_{2}\right)=d_{2}-d_{1} / 2 \text {, and } d\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)=d_{1}, \\
& \text { or else } \mathrm{wt}\left(\boldsymbol{c}_{1} * \boldsymbol{c}_{2}\right)=d_{2} / 2 \text {, and } d\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)=d_{2} .
\end{aligned}
$$

Here we denote, as usual, by $\boldsymbol{c}_{1} * \boldsymbol{c}_{2}$ the star of the vectors \boldsymbol{c}_{1} and \boldsymbol{c}_{2}, i.e. if $\boldsymbol{c}_{1}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \boldsymbol{c}_{2}=\left(\beta_{1}, \ldots, \beta_{n}\right)$, then

$$
\boldsymbol{c}_{1} * \boldsymbol{c}_{2}=\left(\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \ldots, \alpha_{n} \beta_{n}\right) .
$$

Lemma 1. Let C be an $\left(n,\left\{d_{1}, d_{2}\right\}\right)$-code with $\mathbf{0} \in C, d_{2}>2 d_{1}$, and let $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3} \in C$ be words of weight d_{2}. If

$$
d\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)=d\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{3}\right)=d_{1}
$$

then $d\left(\boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right)=d_{1}$.
Proof. Assume for a contradiction that $d\left(\boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right)=d_{2}$. Denote by α the number of positions in which all three words $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$, and \boldsymbol{c}_{3} have 1's. Then by $\mathrm{wt}\left(\boldsymbol{c}_{1} * \boldsymbol{c}_{3}\right)=d_{2}-d_{1} / 2$ we get $d_{2}-d_{1} / 2-\alpha \leq d_{1} / 2$, whence $\alpha>d_{1}$. On the other hand, $\operatorname{wt}\left(\boldsymbol{c}_{2} * \boldsymbol{c}_{3}\right)=d_{1} / 2$ implies $d_{1} / 2-\alpha \geq 0$, a contradiction.

This lemma implies that the graph with vertices - the words of weight d_{2}, and neighbourhood between two vertices iff the corresponding words are at distance d_{1}, is a union of (possibly trivial) cliques.

Let us denote by A the $(M-1)$-by- n matrix having as rows the non-zero words of C. By Lemma 1, the words can be ordered in such way that
$A A^{T}=\left(\begin{array}{ccccc}\frac{d_{1}}{2} J+\frac{d_{1}}{2} I & \frac{d_{1}}{2} J & \frac{d_{1}}{2} J & \ldots & \frac{d_{1}}{2} J \\ \frac{d_{1}}{2} J & \left(d_{2}-\frac{d_{1}}{2}\right) J+\frac{d_{1}}{2} I & \frac{d_{2}}{2} J & \ldots & \frac{d_{2}}{2} J \\ \frac{d_{1}}{2} J & \frac{d_{2}}{2} J & \left(d_{2}-\frac{d_{1}}{2}\right) J+\frac{d_{1}}{2} I & \ldots & \frac{d_{2}}{2} J \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{d_{1}}{2} J & \frac{d_{2}}{2} J & \frac{d_{2}}{2} J & \ldots & \left(d_{2}-\frac{d_{1}}{2}\right) J+\frac{d_{1}}{2} I\end{array}\right)$,
where the diagonal matrices are of size $k_{0} \times k_{0}, k_{1} \times k_{1}, \ldots, k_{s} \times k_{s}$, respectively, where $k_{0}+k_{1}+\cdots+k_{s}=M-1$.

Using standard techniques for computing determinants, one can verify that the determinant of the matrix B is not zero.

Theorem 2. Let C be a binary ($n, M,\left\{d_{1}, d_{2}\right\}$)-code. Then $M \leq n+1$.
Proof. By the above argument $\operatorname{det} A A^{T} \neq 0$ and hence the matrix $A A^{T}$ is of full rank over \mathbb{Q}. Now using the Sylvester inequality, we get

$$
M-1=\operatorname{rank} A A^{T} \leq \operatorname{rank} A \leq n
$$

which proves the theorem.
Corollary 3. If $d_{2}>2 d_{1}$, we have $A_{2}\left(n,\left\{d_{1}, d_{2}\right\}\right) \leq n+1$.
Let us note that this theorem improves significantly on the bound given in Theorem 6 from $\left[{ }^{1}\right]$, which for the case $q=2$ gives $A_{2}\left(n,\left\{d_{1}, d_{2}\right\}\right) \leq 2 n+1$. Equality in Corollary 3 can be achieved, for instance, if $d_{1}=2, d_{2}=n-1$. As we shall prove in the next section, there exist pairs $\left(d_{1}, d_{2}\right)$ for which this bound can be improved.
3. On $(\boldsymbol{n},\{2, d\})$-codes. Using the idea from the previous section, we can tackle the second part of Conjecture 1 from [$\left.{ }^{1}\right]$. The authors conjecture there that $A_{2}(n,\{2, d\})=n$ for $n \geq 6,5 \leq d \leq n-1$, and $A_{2}(n,\{2, n-1\})=n+1$.

The construction of an $(n, M=n,\{2, d\})$-code, as well as of a code of cardinality $n+1$ for $d=n-1$ is given in $\left[{ }^{1}\right]$. The upper bound is easily verified in
the cases of d odd, as demonstrated in [${ }^{1}$]. For $d=n-1$ this bound follows from Theorem 2. Below we consider the most interesting case where d is even.

Let us assume that $n \geq 8$ and $6 \leq d \leq n-2, d$ even. Furthermore, let C be an $(n, M,\{2, d\})$-code with d and n satisfying the above restrictions.

Without loss of generality $\mathbf{0} \in C$. All the remaining words are of weight 2 or d. We denote by a the number of words in C that are of Hamming weight 2 . We have $1 \leq a \leq M-2$ since there exist two words at distance 2 and not all distances between different words are equal to 2 . As before, denote by A the $(M-1)$-by- n matrix that has as rows the non-zero words of C. Then up to a row and column permutation A has the following form:

$$
A=\left(\begin{array}{c|cccc|ccccc}
1 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \tag{1}\\
1 & 0 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & & & \ddots & & & & \ddots & & \\
1 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 & 0 \\
\hline 0 & 1 & 1 & \ldots & 1 & & & & & \\
\vdots & & & \ddots & & & & & \\
0 & 1 & 1 & \ldots & 1 & & & & \\
\hline 1 & 0 & 0 & \ldots & 0 & & B & & \\
\vdots & & & \ddots & & & & & \\
1 & 0 & 0 & \ldots & 0 & & & &
\end{array}\right) .
$$

The matrix B is the $(M-a-1)$-by- $(n-a-1)$ matrix formed by the bottom $M-a-1$ rows (corresponding to the words of weight d) and the rightmost $n-a-1$ columns. We denote by $C_{i}, i=0,1$, the set of all words of C that are of weight d and have i in the first coordinate.

By Lemma 1 the graph with vertices - the words of weight d, and edges - the pairs of words of weight d that are at distance 2 , is a union of (possibly trivial) cliques.

1) Let us first assume that $a>\frac{d}{2}$. Assume that both C_{0} and C_{1} are nonempty. For $\boldsymbol{c}_{0} \in C_{0}$ and $\boldsymbol{c}_{1} \in C_{1}$, we have

$$
d\left(\boldsymbol{c}_{0}, \boldsymbol{c}_{1}\right) \geq a+1+(d-1)-(d-a)=2 a>d
$$

a contradiction. Thus we have either $C_{0}=\varnothing$, or $C_{1}=\varnothing$.
(a) Assume $C_{1}=\varnothing$. Since every two words from C_{0} are obviously at distance 2, we have

$$
B B^{T}=(d-a-1) J+I
$$

and it is easily checked that $\operatorname{det} B B^{T} \neq 0$. Now we have

$$
M-a-1=\operatorname{rank} B B^{T} \leq \operatorname{rank} B \leq n-a-1
$$

whence $M \leq n$.
(b) Assume $C_{0}=\varnothing$. Now we have

It can be proved again that $\operatorname{det} B B^{T} \neq 0$, and we can repeat the above argument:

$$
M-a-1=\operatorname{rank} B B^{T} \leq \operatorname{rank} B \leq n-a-1 .
$$

2) Now we consider the case where $1 \leq a \leq \frac{d}{2}$. The structure of C is again the same as in (1). We keep the notation form 1), i.e. C_{0} is the set of all words of weight d that start with 0 , and C_{1} is the set of all words of weight d that start with 1.

Let us note that if $\boldsymbol{c}_{0} \in C_{0}$, and $\boldsymbol{c}_{1} \in C_{1}$, then $d\left(\boldsymbol{c}_{0}, \boldsymbol{c}_{1}\right)=d$. This is obvious if $a \geq 2$. Assume that $a=1$. Set

$$
\begin{aligned}
& \boldsymbol{c}_{0}=(0,1, \underbrace{1, \ldots, 1}_{d-1}, 0, \ldots, 0), \\
& c_{1}=(1,0, \underbrace{1, \ldots, 1}_{d-1}, 0, \ldots, 0) .
\end{aligned}
$$

Consider a word $\boldsymbol{c}^{\prime} \in C$. Obviously, $\boldsymbol{c}^{\prime}=(0,1, *, *, \ldots, *)$, or $\boldsymbol{c}^{\prime}=(1,0, *, *, \ldots, *)$. In both cases, we have

$$
\left|d\left(\boldsymbol{c}_{0}, \boldsymbol{c}^{\prime}\right)-d\left(\boldsymbol{c}_{1}, \boldsymbol{c}^{\prime}\right)\right|=2
$$

which is impossible since this difference can take on only the values 0 and $d-2$.
Now we compute again $\operatorname{det} B B^{T}$ which turns out to be not 0 . Hence using the chain of inequalities

$$
M-a-1=\operatorname{rank} B B^{T} \leq \operatorname{rank} B \leq n-a-1
$$

we get again $M \leq n$. Thus we have proved the following theorem.
Theorem 4. If C is an ($n, M,\{2, d\}$)-code with $n \geq 8,6 \leq d \leq n-2$, d even, then $M \leq n$.

This implies the validity of Conjecture $1(\mathrm{~b})$ from $\left[{ }^{1}\right]$:
Corollary 5. If $d \geq 5$ then

$$
A_{2}(n,\{2, d\})= \begin{cases}n & \text { for } 5 \leq d \leq n-2, \\ n+1 & \text { for } d=n-1\end{cases}
$$

4. The shifting technique. In this section, we consider the case $d_{1}=2$, $d_{2}=4$. The following definition goes back to Erdős, Ko and Rado $\left[{ }^{2}\right]$ (see also Frankl $\left.\left[{ }^{3}\right]\right)$ and is introduced here for binary vectors and binary codes.

Let $C \subset \mathbb{F}_{2}^{n}$ and let $\boldsymbol{v} \in \mathbb{F}_{2}^{n}$. We denote by $\operatorname{supp}(\boldsymbol{v})$ the set of non-zero coordinate positions of \boldsymbol{v}. So $\operatorname{supp}(\boldsymbol{v})$ can be thought of as a subset of $\{1, \ldots, n\}$. The (i, j)-shift of \boldsymbol{v} is defined by

$$
s_{i, j}(\boldsymbol{v})= \begin{cases}\boldsymbol{v}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j} & \text { if } i \notin \operatorname{supp}(\boldsymbol{v}), j \in \operatorname{supp}(\boldsymbol{v}), \boldsymbol{v}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j} \notin C \tag{2}\\ \boldsymbol{v} & \text { otherwise }\end{cases}
$$

Here \boldsymbol{e}_{i} is the unit vector with 1 in position i. The (i, j)-shift of a binary code C is defined by

$$
\begin{equation*}
S_{i, j}(C)=\left\{s_{i, j}(\boldsymbol{v}) \mid \boldsymbol{v} \in C\right\} \tag{3}
\end{equation*}
$$

Our proof is based on the following lemma.
Lemma 6. Let C be a $(n,\{2,4\})$-code. Then $S_{i, j}(C)$ is also an ($n,\{2,4\}$)code.

Proof. Let us consider two words $\boldsymbol{u}, \boldsymbol{v} \in C, \boldsymbol{u} \neq \boldsymbol{v}$. We have to show that $d\left(s_{i, j}(\boldsymbol{u}), s_{i, j}(\boldsymbol{v})\right) \in\{2,4\}$. We have four possibilities:
(1) $s_{i, j}(\boldsymbol{u})=\boldsymbol{u}, s_{i, j}(\boldsymbol{v})=\boldsymbol{v}$;
(2) $s_{i, j}(\boldsymbol{u})=\boldsymbol{u}, s_{i, j}(\boldsymbol{v}) \neq \boldsymbol{v}$;
(3) $s_{i, j}(\boldsymbol{u}) \neq \boldsymbol{u}, s_{i, j}(\boldsymbol{v})=\boldsymbol{v}$;
(4) $s_{i, j}(\boldsymbol{u}) \neq \boldsymbol{u}, s_{i, j}(\boldsymbol{v}) \neq \boldsymbol{v}$.

It is clear that in cases (1) and (4), we have $d\left(s_{i, j}(\boldsymbol{u}), s_{i, j}(\boldsymbol{v})\right)=d(\boldsymbol{u}, \boldsymbol{v})$. Cases (2) and (3) are similar and are treated in the same way. Hence we shall consider just case (2). Since $s_{i, j}(\boldsymbol{u})=\boldsymbol{u}$ one of the following must take place:
(i) $i \notin \operatorname{supp}(\boldsymbol{u}), j \notin \operatorname{supp}(\boldsymbol{u})$;
(ii) $i \in \operatorname{supp}(\boldsymbol{u}), j \in \operatorname{supp}(\boldsymbol{u})$;
(iii) $i \in \operatorname{supp}(\boldsymbol{u}), j \notin \operatorname{supp}(\boldsymbol{u})$;
(iv) $i \notin \operatorname{supp}(\boldsymbol{u}), j \in \operatorname{supp}(\boldsymbol{u}), \boldsymbol{u}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j} \in C$.

The vectors \boldsymbol{v} and $s_{i, j}(\boldsymbol{v})$ have exactly one unit in positions i and j in all cases. So, in cases (i) and (ii) $d(\boldsymbol{u}, \boldsymbol{v})=d\left(\boldsymbol{u}, s_{i, j}(\boldsymbol{v})\right)$. Similarly, in case (iii), we get

$$
d\left(\boldsymbol{u}, s_{i, j}(\boldsymbol{v})\right)=d(\boldsymbol{u}, \boldsymbol{v})-2 .
$$

If $d(\boldsymbol{u}, \boldsymbol{v})=4$, then $d\left(\boldsymbol{u}, s_{i, j}(\boldsymbol{v})\right)=2$. If $d(\boldsymbol{u}, \boldsymbol{v})=2$, then $d\left(\boldsymbol{u}, s_{i, j}(\boldsymbol{v})\right)=0$, i.e. $\boldsymbol{u}=s_{i, j}(\boldsymbol{v})$ which contradicts the definition of an (i, j)-shift.

Finally, in case (iv)

$$
d\left(\boldsymbol{u}, s_{i, j}(\boldsymbol{v})\right)=d\left(\boldsymbol{u}, \boldsymbol{v}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j}\right)=d\left(\boldsymbol{u}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j}, \boldsymbol{v}\right) \in\{2,4\},
$$

since $\boldsymbol{u}+\boldsymbol{e}_{i}+\boldsymbol{e}_{j} \in C$.
A code C with the property

$$
S_{i, j}(C)=C
$$

for all $i<j$ is called stable. Clearly, every code can be transformed to a stable code by performing at most $\binom{n}{2}$ shifts, e.g. the shifts $S_{i, j}$ for all pairs i, j with $i<j$.

Now we are going to prove our main result that implies the exact value of $A_{2}(n,\{2,4\})$.

Theorem 7. Let C be a binary ($n,\{2,4\}$)-code with $n \geq 6$. Then

$$
|C| \leq\binom{ n}{2}+1
$$

Proof. Assume for a contradiction that C is an $(n,\{2,4\})$-code of cardinality

$$
|C|>\binom{n}{2}+1
$$

Because of Lemma 6 we can assume that C is a stable code. Since the case $n=6$ was settled in the introduction, we can assume that $n \geq 7$. Since the Hamming metric is translation invariant we can also assume that the zero word is in C. Hence all words in C are of weight 2 or 4.

Denote

$$
C_{i}=\left\{v=\left(v_{1}, \ldots, v_{n}\right) \in C \mid v_{n}=i\right\}, i=0,1 .
$$

We shall use induction on the length of C. Therefore we can assume that $\left|C_{0}\right| \leq$ $\binom{n-1}{2}$ which in turn implies that $\left|C_{1}\right|>n-1$.

Assume that $\boldsymbol{e}_{i}+\boldsymbol{e}_{n} \in C, i \neq n$. Since C is stable it contains also all vectors $\boldsymbol{e}_{i}+\boldsymbol{e}_{j}$ for all $j \in\{1, \ldots, n\} \backslash\{i\}$. This implies that all words in C of weight 4 have 1 in position i. Otherwise, such a word of weight 4 is at distance 6 from at least one of $\boldsymbol{e}_{i}+\boldsymbol{e}_{j}$. This uses the fact that $n \geq 7$. This observation implies immediately that there are at most four words of weight 2 in C_{1}. If there are
exactly four words of weight 2 in C_{1}, then C_{1} cannot contain a word of weight 4 and hence $\left|C_{1}\right| \leq n-1$. This implies

$$
|C|=\left|C_{0}\right|+\left|C_{1}\right| \leq 1+\binom{n-1}{2}+\binom{n-1}{1}=1+\binom{n}{2}
$$

Now let there exist exactly three words of weight 2 in $C_{1}: \boldsymbol{e}_{i_{j}}+\boldsymbol{e}_{n}, j=1,2,3$. Then the only possible word of weight 4 in C_{1} is $\boldsymbol{e}_{i_{1}}+\boldsymbol{e}_{i_{2}}+\boldsymbol{e}_{i_{3}}+\boldsymbol{e}_{n}$ and

$$
|C|=\left|C_{0}\right|+\left|C_{1}\right| \leq 1+\binom{n-1}{2}+(1+3)<\binom{n}{2}+1
$$

Now assume C_{1} has two words of weight $4, \boldsymbol{u}$ and \boldsymbol{v} say. We consider the case where $d(\boldsymbol{u}, \boldsymbol{v})=4$, i.e.

$$
\boldsymbol{u}=\boldsymbol{e}_{i_{1}}+\boldsymbol{e}_{i_{2}}+\boldsymbol{e}_{i_{3}}+\boldsymbol{e}_{n}, \quad \boldsymbol{v}=\boldsymbol{e}_{i_{1}}+\boldsymbol{e}_{j_{2}}+\boldsymbol{e}_{j_{3}}+\boldsymbol{e}_{n}
$$

where $i_{1}, i_{2}, i_{3}, j_{2}, j_{3}$ are all different. Let $k \in\{1, \ldots, n-1\} \backslash\left\{i_{1}, i_{2}, i_{3}, j_{2}, j_{3}\right\}$ $(n \geq 7)$. Since C is stable we have that $\boldsymbol{w}=\boldsymbol{e}_{i_{1}}+\boldsymbol{e}_{i_{2}}+\boldsymbol{e}_{i_{3}}+\boldsymbol{e}_{k} \in C$. Now $d(\boldsymbol{w}, \boldsymbol{v})=6$, a contradiction. Thus we have proved that if $\boldsymbol{u}, \boldsymbol{v} \in C_{1}$ and they are both of weight 4 , then $d(\boldsymbol{u}, \boldsymbol{v})=2$. Now by the Erdős-Ko-Rado theorem the number of the words of weight 4 in C_{1} is at $\operatorname{most}\binom{n-1-2}{3-2}=n-3$. Hence

$$
|C|=\left|C_{0}\right|+\left|C_{1}\right| \leq\binom{ n-1}{2}+1+(n-3) \leq\binom{ n}{2}+1
$$

Corollary 8. $A_{2}(n,\{2,4\})=\binom{n}{2}+1$ for all $n \geq 6$.

REFERENCES

[1] Boyvalenkov P., K. Delchev, D. V. Zinoviev, V. A. Zinoviev (2021) On twoweight codes, Discrete Math., 344(5), https://doi.org/10.1016/j.disc. 2021. 112318.
[2] Erdốs P., C. Ko, R. Rado (1961), Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2), 12, 313-320.
$\left[{ }^{3}\right]$ Frankl P. (1987) The shifting technique in extremal set theory. In: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 123, Cambridge, Cambridge University Press, 81-110.

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Akad. G. Bonchev St, Bl. 8
1113 Sofia, Bulgaria
e-mail: ivan@math.bas.bg
*Faculty of Mathematics and Informatics Sofia University "St. Kliment Ohridski" 5, J. Bourchier Blvd 1164 Sofia, Bulgaria e-mail: assia@fmi.uni-sofia.bg

[^0]: The research of the first author was supported by the Bulgarian National Science Fund under Contract KP-06-32/2-07.12.2019.

 The research of the second author was supported by the Research Fund of Sofia University under Contract No 80-10-88/25.03.2021.

 DOI:10.7546/CRABS.2021.10.01

