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Abstract

Series defined by means of the Le Roy type functions are considered in
this paper. These series are studied in the complex plane and their behaviour
is investigated ‘near’ the boundaries of their domains of convergence.
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1. Introduction. In two recent papers Gerhold [1] and, independently,
Garra and Polito [2] introduced the new special function (see also [3])

(1) F
(γ)
α,β(z) =

∞∑
k=0

zk

[Γ(αk + β)]γ
, z ∈ C, α, β ∈ C, γ > 0,

which turns out to be an entire function of the complex variable z for all values
of the parameters such that

(2) ℜ(α) > 0, β ∈ C, γ > 0.

This paper is performed in the frames of the Bilateral Res. Projects ‘Operators, differential
equations and special functions of Fractional Calculus – numerics and applications’ between BAS
and SANU and ‘Analysis, Geometry and Topology’ between BAS and MANU. It is also under
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As a matter of fact, the entire function (1) is introduced for the values of
parameters α > 0, β > 0, γ > 0, and on a later stage its definition is extended to
the range (2) by Garrappa, Rogosin and Mainardi [3].

The function F
(γ)
α,β(z) is closely related to the classical modified Bessel function

of the first kind I0(2
√
z), as well as to the 2-parametric Mittag-Leffler function

Eα,β(z) (see the recent monographs [4] and [5]). It is also closely related to the
multi-index generalizations of Eα,β(z) (with 2m and 3m parameters, m = 1, 2, . . . ,
i.e. the so-called multi-index Mittag-Leffler functions (for their definitions and
properties see e. g. [5–9]). Actually, if the parameter γ is a positive integer, the
function F

(γ)
α,β can be presented by the multi-index Mittag-Leffler functions. The

function (1) is also related to the so-called Le Roy function F (γ), named after
the great French mathematician Édouard Louis Emmanuel Julien Le Roy (1870–
1954), namely F (γ)(z) = F

(γ)
1,1 (z). Le Roy himself used it in [10] to study the

asymptotics of the analytic continuation of the sum of power series. This reason
for the origin of Le Roy function sounds somehow close to Mittag-Leffler’s idea
to introduce the function Eα(z) for the aims of analytic continuation (we have to
note that Mittag-Leffler and Le Roy were working on this idea in competition).
The Le Roy function is involved in the solution of problems of various types; in
particular it has been recently used in the construction of a Conway–Maxwell–
Poisson distribution [11] which is important due to its ability to model count data
with different degrees of over- and under-dispersion [12,13].

For the sake of brevity, we often use in this paper the name Le Roy type
function for the function F

(γ)
α,β defined by (1).

In the series of papers [14–16,18], as well as in the recent book [5], we stud-
ied series in different systems of special functions of Fractional calculus, and we
proved various results connected with their convergence in the complex plane. In
this paper, we discuss the results for the Le Roy type functions (1), previously
obtained, which are needful here. We consider series in Le Roy type functions and
investigate their behaviour ‘near’ the boundaries of their domains of convergence.

2. Inequalities and asymptotic formula. For our purpose we need the
family of functions

(3) F (γ)
α,n(z) =

∞∑
k=0

zk

[Γ(αk + n)]γ
, z ∈ C; n ∈ N, α > 0, γ > 0,

where N means the set of positive integers. Below is given an inequality, connected
to the functions (3) and an asymptotic formula for them. Namely, the following
results, proved by the author in [18], are formulated.

Lemma 1. Let z ∈ C, α > 0, γ > 0, n ∈ N and let K ⊂ C be a nonempty
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compact set. Then there exists an entire function ϑ(γ)
α,n such that

(4) F (γ)
α,n(z) =

1

[Γ(n)]γ
(1 + ϑ(γ)

α,n(z)), z ∈ C.

Moreover, there exists a constant C = C(K), 0 < C < ∞, such that

(5) max
z∈K

∣∣∣ϑ(γ)
α,n(z)

∣∣∣ ≤ C
[Γ(n)]γ

[Γ(α+ n)]γ
,

for all the natural numbers n.
Theorem 1. Let z ∈ C; n ∈ N, α > 0, γ > 0. Then

(6) F (γ)
α,n(z) =

1

[Γ(n)]γ
(1 + ϑ(γ)

α,n(z)), ϑ(γ)
α,n(z) → 0 as n → ∞,

uniformly in the max-norm on the compact sets in C.
Remark 1. According to the asymptotic formula (6), it follows that there

exists a natural number M such that the functions [Γ(n)]γ F (γ)
α,n(z) do not vanish

for any n great enough (say n > M).
3. Series in Le Roy type functions. For simplicity of studying, we intro-

duce auxiliary functions, related to the Le Roy functions, adding F̃
(γ)
α,0 (z) just for

completeness, namely:

(7) F̃
(γ)
α,0 (z) = 1, F̃ (γ)

α,n(z) = zn [Γ(n)]γ F (γ)
α,n(z), n ∈ N; α > 0, γ > 0,

and we stydy the series in these functions:

(8)
∞∑
n=0

an F̃ (γ)
α,n(z),

for z ∈ C and with complex coefficients an (n = 0, 1, 2, . . . ).
Our main objective is to study the convergence of the series (8) in the complex

plane. Such kind of results may be useful for studying the solutions of some
fractional order differential and integral equations, expressed in terms of series (or
series of integrals) in special functions of the type (7) (as for example in Kiryakova
[19] in a more general case).

4. Cauchy–Hadamard type theorem and corollaries. Let us denote by
D(0;R) the open disk with the radius R and centred at the origin, and let the circle
C(0;R) be its boundary, i.e. D(0;R) = {z : |z| < R} and C(0;R) = {z : |z| = R}
(z ∈ C). In this section we discuss results, mainly obtained in [18], corresponding
to the classical Cauchy–Hadamard theorem and Abel lemma for the power series.
The theorem of the Cauchy–Hadamard type for the series (8) is formulated below.
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Theorem 2 (of Cauchy–Hadamard type). Let z ∈ C, n ∈ N, α > 0, γ > 0.
Then the domain of convergence of the series (8) with complex coefficients an is
the disk D(0;R) = {z : |z| < R} with a radius of convergence

(9) R = 1/ lim sup
n→∞

( |an| )1/n.

The cases R = 0 and R = ∞ are included in the general case.
Thus, the considered series (8) absolutely converges in the disk D(0;R) with

the radius R, given by (9), like in the classical theory of the power series. Addi-
tionally, it turns out that the convergence of the discussed series is uniform inside
the disk, i.e., the following corollary, similar to the classical Abel lemma, holds.

Corollary 2.1. Let z ∈ C, n ∈ N, α > 0, γ > 0, and let the series (8)
converge at the point z0 ̸= 0. Then it converges absolutely in the disk D(0; |z0|)
and on the compact subsets of the disk D(0;R) (R defined by (9)), as well.

Theorem 2 and Corollary 2.1 have been obtained in [18]. Here we give one
more corollary.

Corollary 2.2. Let z ∈ C, n ∈ N, α > 0, γ > 0, and let the series (8)
diverge at the point z0 ̸= 0. Then it is divergent for each z with |z| > |z0|.

Proof. Assuming the opposite, the trueness of the corollary follows by getting
a contradiction.

Note that the very disk of convergence is not obligatorily a region of uniform
convergence and on its boundary the series may even be divergent. More precise
results, connected with the behaviour of the series (8) ‘near’ the boundary C(0;R)
are obtained and discussed in the next sections.

5. Abel type theorem. Let z0 ∈ C, 0 < R < ∞, |z0| = R and gφ be an
arbitrary angular region with size 2φ < π and with a vertex at the point z = z0,
which is symmetric with respect to the straight line passing through the points 0
and z0, and let dφ be the part of the angular region gφ, closed between the angle’s
arms and the arc of the circle centred at the point 0 and touching the arms of the
angle. The following inequality is verified for z ∈ dφ ([5], p. 21):

(10) |z − z0| cosφ < 2(|z0| − |z|).

The next theorem refers to the uniform convergence of the series (8) in the
set dφ and the limit of its sum at the point z0, provided z ∈ D(0;R) ∩ gφ.

Theorem 3 (of Abel type). Let {an}∞n=0 be a sequence of complex numbers,
R be the real number defined by (9) and 0 < R < ∞. If f(z; α, γ) is the sum of
the series (8) in the region D(0;R), i.e.

f(z; α, γ) =

∞∑
n=0

anF̃
(γ)
α, n(z), z ∈ D(0;R),

and this series converges at the point z0 of the boundary C(0;R), then:
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(i) The following relation holds

(11) lim
z→z0

f(z; α, γ) =

∞∑
n=0

anF̃
(γ)
α, n(z0),

provided z ∈ D(0;R) ∩ gφ.
(ii) The series (8) converges uniformly in the max-norm on compact subsets of
the region dφ.

Idea of proof. Beginning with (i), we consider the difference

(12) ∆(z) =
∞∑
n=0

anF̃
(γ)
α, n(z0)− f(z; α, γ) =

∞∑
n=0

an(F̃
(γ)
α, n(z0)− F̃ (γ)

α,n(z))

and represent it in the form

∆(z) =

k∑
n=0

an(F̃
(γ)
α, n(z0)− F̃ (γ)

α,n(z)) +

∞∑
n=k+1

an(F̃
(γ)
α, n(z0)− F̃ (γ)

α,n(z)).

According to Remark 1, there exists a positive integer M such that F̃ (γ)
α,n(z0) ̸=0

when n > M . Let k > M and p > 0. By using the notations

βk = 0, βm =

m∑
n=k+1

anF̃
(γ)
α, n(z0), m > k, γn(z) = 1− F̃ (γ)

α, n(z)/F̃
(γ)
α, n(z0),

and the Abel transformation (see in ([20], vol.1, Ch.1, p.32, 3.4:7)) for the expres-

sion
k+p∑

n=k+1

an(F̃
(γ)
α, n(z0)− F̃ (γ)

α, n(z)) =

k+p∑
n=k+1

(βn − βn−1)γn(z), we obtain:

k+p∑
n=k+1

an(F̃
(γ)
α, n(z0)− F̃ (γ)

α, n(z)) = βk+pγk+p(z)−
k+p−1∑
n=k+1

βn(γn+1(z)− γn(z)).

In order to estimate the module of the difference (12) we consider the last relation
and we firstly find the estimations of |γn+1(z) − γn(z)| and |γk+p(z)|. For this
purpose, letting the natural number n > k, we apply the Schwarz lemma (see
in ([20], vol.1, Ch.1, p.317)) for them. Let now ε be a positive number. After
additional estimations, bearing in mind (10), we establish that there exists δ =

δ(ε) such that inequality |∆(z)| = |
∞∑
n=0

an(F̃
(γ)
α, n(z0)−F̃ (γ)

α, n(z))| < ε holds, provided

z ∈ dφ and |z − z0| < δ(ε), which proves equality (11).
In order to prove (ii), we also use inequality (10) which is the crucial point

of the proof. So, let z ∈ dφ. Setting

C. R. Acad. Bulg. Sci., 74, No 3, 2021 319



(13) Sk(z) =

k∑
n=0

anF̃
(γ)
α, n(z), Sk(z0) =

k∑
n=0

anF̃
(γ)
α, n(z0), lim

k→∞
Sk(z0) = s,

we obtain Sk+p(z) − Sk(z) =

k+p∑
n=0

anF̃
(γ)
α, n(z) −

k∑
n=0

anF̃
(γ)
α, n(z) =

k+p∑
n=k+1

anF̃
(γ)
α, n(z).

According to Remark 1, there exists a natural number N0 such that F̃ (γ)
α, n(z0) ̸= 0

when n > N0. Let k > N0 and p > 0. Then, using the denotation γn(z; z0) =
F̃ (γ)
α, n(z)/F̃

(γ)
α, n(z0), we can write the difference Sk+p(z)− Sk(z) as follows:

Sk+p(z)− Sk(z) =

k+p∑
n=k+1

(βn − βn−1)γn(z; z0),

with βn = Sn(z0) − s. Applying after that the Abel transformation (see in ([20],
vol.1, ch.1, p.32, 3.4:7)), we estimate the module |Sk+p(z) − Sk(z)| in a similar
way to (i), and so we succeed to prove the theorem. �

6. Tauber type theorem. In this section we provide two theorems, inverse

of Theorem 3. We consider the series
∞∑
n=0

an, an ∈ C. Let z0 ∈ C, |z0| = R,

0 < R < ∞, F̃ (γ)
α, n(z0) ̸= 0 for n = 0, 1, 2, . . . . For the sake of brevity, denote

F ∗
n,α,γ(z; z0) =

F̃
(γ)
α, n(z)

F̃
(γ)
α, n(z0)

.

Let the series
∞∑
n=0

anF
∗
n,α,γ(z; z0) be convergent for |z| < R and

(14) F (z) =

∞∑
n=0

anF
∗
n,α,γ(z; z0), |z| < R.

Theorem 4 (of Tauber type). If {an}∞n=0 is a sequence of complex numbers
with

(15) lim{nan} = 0,

and there exists

(16) lim
z→z0

F (z) = S (|z| < R, z → z0 radially),

then the series
∞∑
n=0

an is convergent and
∞∑
n=0

an = S.

320 J. Paneva-Konovska



Idea of proof. Let z belong to the segment [0, z0]. By using the asymptotic
formula (6) for the Le Roy type functions, we obtain:

(17) anF
∗
n,α,γ(z; z0) = an

(
z

z0

)n 1 + ϑ
(γ)
α,n(z)

1 + ϑ
(γ)
α,n(z0)

= an

(
z

z0

)n (
1 + ϑ̃(γ)

α,n(z; z0)
)
.

Then ϑ̃(γ)
α,n(z; z0) = O

(
1

nαγ

)
, due to (5) and the Γ-functions quotient property.

Let us write
∞∑
n=0

anF
∗
n,α,γ(z; z0) in the form

(18)
∞∑
n=0

anF
∗
n,α,γ(z; z0) =

∞∑
n=0

an

(
z

z0

)n (
1 + ϑ̃(γ)

α,n(z; z0)
)
,

Denoting wn(z) = an

(
z

z0

)n

ϑ̃(γ)
α,n(z; z0), we consider the series

∞∑
n=0

wn(z) and we

prove that

(19) lim
z→z0

∞∑
n=0

wn(z) =
∞∑
n=0

lim
z→z0

wn(z) = 0.

Then, bearing in mind (14) and (18), we can obtain that

(20) lim
z→z0

F (z) = lim
z→z0

∞∑
n=0

anF
∗
n,α,γ(z; z0) = S = lim

z→z0

∞∑
n=0

an

(
z

z0

)n

.

Now, from (20) and by the classical Tauber theorem for the power series, it follows

that the series
∞∑
n=0

an converges and
∞∑
n=0

an = S . �

Theorem 5 (of Littlewood type). If {an}∞n=0 is a sequence of complex num-
bers with an = O(1/n), and there exists lim

z→z0
F (z) = S (|z| < R, z → z0 radially),

then the series
∞∑
n=0

an is convergent and
∞∑
n=0

an = S.

Ending we note that the proof of Theorem 5, as well as the specific details of
the proofs, following the ideas given here, will be provided elsewhere.
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