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Abstract

The aim of this paper is to investigate the Laplace transforms related to
the first exit time from a strip of a Brownian motion. We suppose the existence
of a deterministic terminal moment. If the exit time is before this moment,
we know the corresponding value of the Brownian motion and hence we have
to derive the Laplace transform of the exit time. Otherwise, if the Brownian
motion stays in the strip till the terminal date, we determine the Brownian
motion Laplace transform at this moment.
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1. Introduction. There are many studies which examine the first exit time
of a Brownian motion from a strip – see [1–3]. In the present research we assume
that the strip boundaries are continuous piecewise linear functions and we intro-
duce a terminal time for the exit. We examine also the case when one of the
boundaries vanishes after some moment. The great importance of the Brownian
motion is seen by its wide use in many practical problems. Some examples which
lead to first exit problems can be found in the financial markets. First, the two-
sided barrier derivatives are a large class of the insurance instruments. Another
outstanding example includes derivatives which allow early exercising. For exam-
ple, the American style options lead to a one-sided optimal stopping problem –
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see [4,5]. When the early exercise right is given to both contract participants we
have a two-sided optimal exit problem. Such derivatives involve different game
options (cancelable puts and calls, see [6–8]), convertible bonds, etc. Note that if
the exit happens before the terminal date, we know the Brownian motion value,
but the exit moment is unknown, and vice versa. Because of this we examine
separately both cases. At last, but not least we have to mention that the derived
results can be an implement to the numerous existing numerical methods – some
examples of such algorithms are examined in [9–11].

2. Preliminaries. Let Bt be a Brownian motion; T be the terminal moment,
T ≤ ∞; and 0 ≡ t0 < t1 < · · · < tn ≡ T be a division of the time interval. Let
αi and βi, i = 0, 1, . . . , n, be some values such that α0 < 0 < β0, αi < βi,
and γi = βi − αi. The case when some last values of αi or βi are infinity is also
admissible. Let the functions ai (t) = ai,1t+ai,2 and bi (t) = bi,1t+bi,2 be the linear
functions which connect the points αi with αi+1 and βi with βi+1, respectively.
Let the piecewise linear functions a (t) < b (t) be composed by these functions.
We shall denote by τ1 and τ2 the first hitting times to the functions a (·) and
b (·), respectively, and by τ the lower one – τ = τ1 ∧ τ2. Let us notate by Λt the
indicator processes Λt = Iτ≤T and by N (·) the cumulative distribution function
of the standard normal distribution.

3. Linear boundaries. We shall use several times the following lemma. The
proof of its first statement is an immediate consequence of Theorem 4.2 from [1].
See also the proof of Theorem 3 from [2]. The second statement is proven in [12].

Lemma 3.1. Let a (T ) < z < b (T ). Then

(3.1) P (τ > T |BT = z) = 1−
∞∑
j=1

qj (0, z; 1),

where

qj (y, z; i) = exp

(
−2 [jγi−1 + αi−1 − y] [jγi + αi − z]

ti − ti−1

)
− exp

(
−2j [jγi−1γi + γi−1 (αi − z)− γi (αi−1 − y)]

ti − ti−1

)
+ exp

(
−2 [jγi−1 − (βi−1 − y)] [jγi − (βi − z)]

ti − ti−1

)
− exp

(
−2j [jγi−1γi − γi−1 (βi − z) + γi (βi−1 − y)]

ti − ti−1

)
.

(3.2)

If a (T ) = −∞, then formula (3.1) turns to

(3.3) P (τ > T |BT = z) = 1− exp

(
−2b2 (b (T )− z)

T

)
.
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Theorems 4.3 and 5.1 from [1] give the probabilities and the corresponding densi-
ties the hitting time to be before T . We give them as the following lemma.

Lemma 3.2.

P l1 (T ; a1, a2, b1, b2) ≡ P ((τ1 ∧ τ2) < T, τ1 < τ2)

= N

(
a1T+a2√

T

)

+

∞∑
j=1



e−2[−ja2+(j−1)b2][−ja1+(j−1)b1]N

(
−a1T−2 (j−1) b2+ (2j−1) a2√

T

)
−e−2[j2(a1a2+b1b2)−j(j−1)a2b1−j(j+1)b2a1]N

(
−a1T−2jb2+ (2j−1) a2√

T

)
−e−2[−(j−1)a2+jb2][−(j−1)a1+jb1]N

(
a1T−2jb2+ (2j−1) a2√

T

)
+e−2[j

2(a1a2+b1b2)−j(j−1)b2a1−j(j+1)a2b1]N

(
a1T+ (2j+1) a2−2jb2√

T

)


P l2 (T ; a1, a2, b1, b2) ≡ P ((τ1 ∧ τ2) < T, τ2 < τ1)

= 1−N
(
b1T+b2√

T

)

+
∞∑
j=1



e−2[jb2−(j−1)a2][jb1−(j−1)a1]N

(
b1T+2 (j−1) a2− (2j−1) b2√

T

)
−e−2[j2(b1b2+a1a2)−j(j−1)b2a1−j(j+1)a2b1]N

(
b1T+2ja2− (2j−1) b2√

T

)
−e−2[(j−1)b2−ja2][(j−1)b1−ja1]N

(
−b1T+2ja2− (2j−1) b2√

T

)
+e−2[j

2(b1b2+a1a2)−j(j−1)a2b1−j(j+1)b2a1]N

(
−b1T− (2j+1) b2+2ja2√

T

)


.

(3.4)

pl1 (t; a (·) , b (·)) ≡ dP ((τ1 ∧ τ2) ∈ dt, τ1 < τ2)

dt

=
1

√
2πt

3
2

e−
(a1t+a2)

2

2t

∞∑
j=0

{
e−

2j[jb2−(j+1)a2][b(t)−a(t)]
t [2jb2− (2j+1) a2]

−e−
2(j+1)[(j+1)b2−ja2][b(t)−a(t)]

t [2 (j+1) b2− (2j+1) a2]

}

pl2 (t; a (·) , b (·)) ≡ dP ((τ1 ∧ τ2) ∈ dt, τ2 < τ1)

dt

=
1

√
2πt

3
2

e−
(b1t+b2)

2

2t

∞∑
j=0

{
e−

2j[(j+1)b2−ja2][b(t)−a(t)]
t [(2j+1) b2− (2j+1) a2]

−e−
2(j+1)[jb2−(j+1)a2][b(t)−a(t)]

t [(2j+1) b2−2ja2]

}
.

(3.5)

Our first result is presented in the following theorem.
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Theorem 3.1. Let θ > 0. The Laplace transforms of τ if it is before T are

L1 (t, θ; a (·) , b (·)) = E
[
e−θτΛT Iτ=τ1

]
= e

a2
(√

a21+2θ−a1
)
P l1

(
T ;
√
a21 + 2θ, a2, b1 +

√
a21 + 2θ − a1, b2

)
L2 (t, θ; a (·) , b (·)) = E

[
e−θτΛT Iτ=τ2

]
= e

b2
(√

b21+2θ−b1
)
P l2

(
T ; a1 +

√
b21 + 2θ − b1, a2,

√
b21 + 2θ, b2

)
,

(3.6)

where P l1 (·) and P l2 (·) are given by equations (3.4).
Proof. Using equation (3.5) and the form of the normal distribution density

we can easily obtain

E
[
e−θτΛT Iτ=τ1

]
=

∞∫
0

e−θtIt<T p
l
1 (t; a1, a2, b1, b2) dt

= e
a2

(√
a21+2θ−a1

)
P l1

(
T ;
√
a21 + 2θ, a2, b1 +

√
a21 + 2θ − a1, b2

)
.

The Laplace transform L2 can be derived analogously.
Note that the four terms of qj in formula (3.2) (for i = 1) can be presented as

exponent of linear functions λj,kz + ξj,k, k = {1, 2, 3, 4}, divided by T . We shall
use also the notations s2 = s4 = 1 and s1 = s3 = −1. Using this presentation we
can formulate our second result in the following way.

Theorem 3.2. If a (T ) < z < b (T ), then the Laplace transform of the Brow-
nian motion if τ is after T is

V (θ, z, T, a (·) , b (·)) = E
[
eθBT Iτ>T,BT>z

]

= exp

(
θ2T

2

)


(
N

(
b (T )− θT√

T

)
−N

(
z − θT√

T

))
+

+

∞∑
j=1

4∑
k=1


sk exp

(
λj,kθ +

(
λ2j,k + 2ξj,k

2T

))
×(

N

(
b (T )− (θT + λj,k)√

T

)
−N

(
z − (θT + λj,k)√

T

))




.

(3.7)

Proof. Using equation (3.1) we obtain

P (BT < u, τ > T ) =
1√
2πT

u∫
a(T )

∞∑
j=1

4∑
k=0

sk exp

(
λj,kv + ξj,k

T

)
exp

(
− v

2

2T

)
dv.

672 T. S. Zaevski



Therefore

E
[
eθBT Iτ>T,BT<z

]
=

b(T )∫
z

eθudP (BT < u, τ > T )

=
1√
2πT

∞∑
j=1

4∑
k=0

sk

b(T )∫
z

eθu exp

(
λj,ku+ ξj,k

T

)
exp

(
− u

2

2T

)
dy,

which after rearranging leads to formula (3.7).
4. Piecewise linear boundaries. The following theorem holds if the bound-

aries are piecewise linear.
Theorem 4.1. Let θ > 0. If the functions L1,2 (·) and V (·) are given by

equations (3.6) and (3.7), then the Laplace transforms are

E
[
e−θτIτ∈(tm−1,tm),τ=τ1,2

]

=

β1,...,βm−1∫
α1,...,αm−1


m−1∏
i=1

1−
∞∑
j=1

qj (xi−1, xi; i)

 exp
(
− (xi−xi−1)

2

2(ti−ti−1)

)
√

2π (ti−ti−1)

e−θtm−1L1,2

(
tm−tm−1, θ;
am (·)−xm−1, bm (·)−xm−1

)
 dx1 · · · dxm−1

(4.1)

E
[
eθBT IBT>z,τ>T

]

=

β1,...,βn−1∫
α1,...,αn−1


n−1∏
i=1

1−
∞∑
j=1

qj (xi−1, xi; i)


(

exp
(
− (xi−xi−1)

2

2(ti−ti−1)

))
√

2π (ti−ti−1)

eθxn−1V

(
θ, z−xn−1, tn−tn−1;
an−1 (·)−xn−1, bn−1 (·)−xn−1

)
 dx1 · · · dxn−1.

(4.2)

Proof. We have

L1 =

tm∫
tm−1

e−θudP (τ < u, τ = τ1)

=

tm∫
tm−1

 e−θu
m−1∏
i=1

exp
(
− (xi−xi−1)

2

2(ti−ti−1)

)
√

2π (ti − ti−1)
dP
(
τ < u, τ = τ1|Bt1=x1 , . . . , Btm−1=xm−1

)
dx1 · · · dxm−1
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=

tm∫
tm−1

e−θud


β1,...,βm−1∫
α1,...,αm−1



m−1∏
i=1

exp
(
− (xi−xi−1)

2

2(ti−ti−1)

)
√

2π (ti−ti−1)
m−1∏
i=1

P ti−1,xi−1 ( ti < τ |Bti=xi)

P tm−1,xm−1 (τ < u, τ=τ1)


dx1 · · · dxm−1



=

β1,...,βm−1∫
α1,...,αm−1



m−1∏
i=1

exp
(
− (xi−xi−1)

2

2(ti−ti−1)

)
√

2π (ti−ti−1)
m−1∏
i=1

1−
∞∑
j=1

qj (xi−1, xi; i)


e−θtm−1

tm−tm−1∫
0

e−θvpl1

(
v, am−1 (·)−xm−1,
bm−1 (·)−xm−1

)
dv


dx1 · · · dxm−1.

We have used Lemma 3.1 and the Markovian property of the Brownian motion.
It remains to use Theorem 3.1. The form of L2 can be obtained analogously. We
prove formula (4.2) in a similar way

E
[
eθBT IBT>z,τ>T

]
=

bn(T )∫
z

eθudP (BT < u, τ > T )

=

bn(T )∫
z

eθud


β1,...,βn−1∫
α1,...,αn−1


P (BT < u, τ > T |Bt1 = x1, . . . ,
Btn−1 = xn−1

)
n−1∏
i=1

(
exp

(
− (xi−xi−1)

2

2(ti−ti−1)

))
√

2π (ti − ti−1)

 dx1 · · · dxn−1



=

β1,...,βn−1∫
−∞



n−1∏
i=1

1−
∞∑
j=1

qj (xi−1, xi; i)


n−1∏
i=1

(
exp

(
− (xi−xi−1)

2

2(ti−ti−1)

))
√

2π (ti − ti−1)
bn(T )∫
z

eθudP tn−1,xn−1 (τ > T ,BT < u)


dx1 · · · dxn−1.

We finish the proof using Theorem 3.2.
Finally, we present a modification of Theorem 4.1 concerning the case when

one of the boundaries is infinitely large (small) after some moment. We shall
present only the case when the lower boundary does not exist.
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Theorem 4.2. Let αi = −∞ for all i ≥ k, θ > 0, and m > k. Then

L2 = E
[
e−θτIτ∈(tm−1,tm),τ=τ1,2

]

=

β1,...,βm−1∫
α1,...,αk−1,−∞



k−1∏
i=1

1−
∞∑
j=1

qj (xi−1, xi; i)


m−1∏
i=k

(
1− exp

(
−2 (βi−1 − xi−1) (βi − xi)

ti − ti−1

))
m−1∏
i=1

exp
(
− (xi−xi−1)

2

2(ti−ti−1)

)
√

2π (ti − ti−1)
e−θtm−1L (tm − tm−1, θ; bm,1, βm−1 − xm−1)


dx1 · · · dxm−1

E
[
eθBT IBT>z,τ>T

]

=

β1,...,βn−1∫
α1,...,αk−1,−∞



k−1∏
i=1

1−
∞∑
j=1

qj (xi−1, xi; i)


n−1∏
i=k

(
1− exp

(
−2 (βi−1 − xi−1) (βi − xi)

ti − ti−1

))
n−1∏
i=1

(
exp

(
− (xi−xi−1)

2

2(ti−ti−1)

))
√

2π (ti − ti−1)
eθxn−1V (θ, z − xn−1, tn − tn−1;
b1,n−1, b2,n−1 − xn−1)


dx1 · · · dxn−1.

The functions L (·) and V (·) are obtained in Theorems 3.1 and 3.2 from [13] and
they are

L (T, θ; b1, b2) = E
[
e−θτΛT

]
= e

b2
(√

b21+2θ−b1
)
g

(
T ;
√
b21 + 2θ, b2

)
V (θ, z, T ; b1, b2) ≡ E

[
eθBT IBT>z,τ>T

]
=

= exp

(
Tθ2

2

)N
(
b (T )− Tθ√

T

)
−N

(
z − Tθ√

T

)
+e2b2(θ−b1)

(
N

(
z − Tθ − 2b2√

T

)
−N

(
b (T )− Tθ − 2b2√

T

))
 .

(4.3)

Proof. The proof is similar to the proof of Theorem 4.1. Note that when the
lower boundary is infinity we have to use the second statement of Lemma 3.1.
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