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Abstract: This paper proposes an RG hyperparameter optimization approach, based on a sequential
use of random search (R) and grid search (G), for improving the blood glucose level prediction of
boosting ensemble learning models. An indirect prediction of blood glucose levels in patients is
performed, based on historical medical data collected by means of physical examination methods,
using 40 human body’s health indicators. The conducted experiments with real clinical data proved
that the proposed RG double optimization approach helps improve the prediction performance of
four state-of-the-art boosting ensemble learning models enriched by it, achieving 1.47% to 24.40%
MSE improvement and 0.75% to 11.54% RMSE improvement.

Keywords: blood glucose level; prediction; ensemble learning; boosting; hyperparameter optimiza-
tion; random search; grid search

1. Introduction

Diabetes mellitus is a chronic non-communicable disease, which is closely related
to people’s dietary habits and lifestyle. As of 2019, the estimated number of people with
diabetes has reached 463 million and there were an estimated 4.2 million deaths among
adults (aging from 20 to 79 years) attributable to diabetes worldwide [1], and these numbers
continue to grow. The authors in [1] have also found that “Excess glucose has been shown
to be associated with about 15% of all deaths due to CVD (CVD stands for cardiovascular
disease), kidney disease, and diabetes . . . , indicating a large number of these premature
deaths can be potentially prevented through prevention or early detection of type 2 diabetes
mellitus (the three common types of diabetes mellitus include: type 1, when the human
body fails to produce insulin; type 2, when the cells fail to use insulin; and gestational, with
high blood sugar level during pregnancy [2]) and improved management of all forms
of diabetes and these complications.” As an important health problem existing in many
countries, e.g., China [3], diabetes requires continuous surveillance and effective control
for tackling it properly.

One way to achieve this is to make full use of the medical history of people, e.g.,
obtained through regularly performed comprehensive physical examinations, established
as a routine practice, especially in the developed countries. In China, for instance, there
are many hospitals where such examinations can be done without a prior appointment,
with the cost of the examination being less than one tenth of the average monthly income.
The only requirement imposed for people is to appear in the hospital on an empty stomach
in the morning. In addition, each hospital has a special physical examination center,
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where companies arrange regularly one or two cost-free physical examination(s) of their
employees every year to master their health status. A typical medical examination includes
checking the liver functioning, blood fat, kidney functioning, hepatitis B virus existence,
blood routine examination, electrocardiograph, chest X-raying, B-mode ultrasound image,
etc. However, in the physical examination program in China, the blood routine examination
is mainly focused on blood cytology and cell morphology, and the typical instrument used
is a blood cell analyzer [4]. To check the blood glucose level, nurses need to take blood
again, which brings extra pain to physical examinees. Finally, the disposal of medical waste
is also an issue.

Thus, people seem to pay more attention to the use of non-invasive methods for the
prediction of blood glucose levels, but currently only optical technology seems to have a
good development prospect [5,6]. Others, such as thermal-, electrical-, and nanotechnology
methods, are still theoretical. However, optical techniques still have many limitations
in predicting blood glucose levels. For example, the intermediates used in fluorescence
technology are toxic [7], which may harm the person being tested, and, in addition, the
sensors have a short service life. The disadvantages of mid-infrared spectroscopy (MIRS) [6],
such as poor penetration and expensive equipment, must also be taken into account. Other
methods such as optical polarimetry [8] and optical coherence tomography [5] are very
sensitive to temperature. Wearable dynamic blood glucose monitors that use body fluids [9]
may be a good alternative, but they are not yet on the market in large numbers and their
cost is not affordable for every family. Therefore, non-invasive methods for the prediction
of blood glucose levels have not been widely used.

Research scholars nowadays focus strongly on the use of the full medical history of
people, e.g., obtained through regular physical examinations, to predict their blood glucose
levels. First of all, this is due to the fact that point-of-care glucose meters use different
measurement methods leading to device-specific limitations, interferences, and technical
constraints [10]. Secondly, the device type, sampling conditions, and interpretation of
results must also be taken into consideration. For example, in order to facilitate patients to
keep eye on their blood sugar level, some self-testing devices bring convenience to patients
without the help of professionals. However, all the testing equipment on the market needs
a test paper, which, after reacting with the oxygen in the air, may yield incorrect results.
In addition, the test paper and the blood glucose meter must be produced by the same
manufacturer, which brings unnecessary trouble and less freedom of choice to patients.

To improve the prediction of blood glucose levels in patients, based on their historical
medical data, this paper follows the idea, presented in [11], of using multiple human body’s
health indicators, collected by means of regular physical examinations and processed by
machine learning (ML) techniques. However, instead of the HY_LightGBM model pro-
posed in [11], other state-of-the-art ML models, namely boosting ensemble learning models,
are utilized here, all enriched by the proposed RG hyperparameter double optimization by
means of random search (R) and grid search (G). The results, obtained from the conducted
experiments, confirmed that the proposed RG double optimization helps improve the
blood glucose level prediction of the considered state-of-the-art boosting ensemble learning
models, enriched by this RG approach, while also outperforming the HY_LightGBM model
proposed in [11].

The research, reported here, explores the relationship between the blood glucose
and other human body’s health indicators. The presented study uses biochemical data
of liver functioning, kidney functioning, blood routine, etc., to explore the relationship
between the blood glucose and such data, showing that this could be used for indirect
prediction of blood glucose levels. Numerous results reported in the literature confirm
that the biochemical data, utilized in this research, are indeed related to the blood glucose,
and thus one can infer blood glucose levels from such data. For instance, the authors
in [12] show that the odds ratio of developing type 2 diabetes rises significantly with
increasing the levels of serum liver enzymes, γ-glutamyl transferase (GGT) and alanine
aminotransferase (ALT), i.e., two of the 40 human body’s health indicators utilized in
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the study reported here. The same authors conclude that increased GGT and ALT levels
are independent, additive risk factors for the development of type 2 diabetes mellitus in
subjects without fatty liver or hepatic dysfunction. In [13], the GGT and ALT levels were
found to be closely related to prediabetes and diabetes in overweight and obese people,
and positively associated with insulin resistance. In [14], the GGT level was reported as
a significant predictor of subsequent risk of diabetes mellitus, increased by 4% for every
1 IU/L increase in GGT (<24 IU/L). A study on the relation of liver enzymes with the
development of type 2 diabetes, presented in [15], suggests that ALT concentrations are
independently associated with type 2 diabetes in both males and females, whereas the GGT
level is also independently associated but only for females (sex of patients was also taken
into account by the research presented here). In [16], the liver enzymes were also found
independent risk factors for elevated blood glucose, with presented sex differences in the
role of each enzyme. The research results reported in [17] show that, among others, age
and serum triglyceride (TG)—i.e., another two human body’s health indicators considered
by the research presented here—are directly related to risk of type 2 diabetes. Moreover,
the authors of [17] saw similar gradients for diabetes across fitness groups in strata of
high-density lipoprotein cholesterol level (TC), which is another human body’s health
indicator utilized in the study presented here. The authors in [18] pointed out that, among
other factors, increased concentration of low-density-lipoprotein cholesterol (LDL_C) and
decreased concentration of high-density lipoprotein cholesterol (HDL_C)—another two
human body’s health indicators included in the study presented here—are the strongest
risk factors for patients with type 2 diabetes. In addition, these authors underlined that
high concentrations of triglyceride—yet another human body’s health indicator utilized in
the research presented here—are typically observed in people with type 2 diabetes. In [19],
the increased ratio of triglyceride to HDL_C has been associated with an increased risk
of all-cause and cardiovascular mortality in type 2 diabetic subjects, largely mediated by
the presence of kidney dysfunction. As stated in [20], the inverse relationship between
LDL_C and diabetes has been confirmed by multiple clinical trials and genetic instruments
using aggregate single nucleotide polymorphisms. In addition, at least eight individual
genes support this inverse association. Moreover, genetic and pharmacologic evidence
suggest that HDL_C may also be inversely associated with risk for diabetes. As stated
in [21], HDL_C, triglyceride, and total cholesterol (TC)—used as human body’s health
indicators in the presented here research– are identified as the top three most consistent
predictors of a coronary heart disease in type 2 diabetes subjects. Further on, the authors
of [21] found a significant positive linear correlation between elevated blood glucose and
total cholesterol, triglycerides, and LDL. The same authors conclude that type 2 diabetes
mellitus is strongly associated with lower level of HDL_C and higher level of LDL_C.

It should be specially noted that the goal of the research reported in this paper was not
to replace the routine blood glucose testing program, carried out in hospitals, with machine
learning techniques, but rather to explore the relationship between the blood glucose level
and other health indicators of human body that are obtained by periodic tests which,
however, do not include blood glucose level’s examination. In such a context, the proposed
approach can provide an early alert so that unsuspected diabetic cases can be identified
as early as possible in order to start treating them promptly. Such research belongs to the
interdisciplinary field of medical research and data science, as revealed above.

The rest of the paper is organized as follows. The next section presents the related
work done in this field, whereas Section 3 describes the background. Section 4 explains the
proposed RG hyperparameter optimization approach. Section 5 presents the experimental
performance evaluation of the compared models and discusses the results. Finally, Section 6
concludes the paper and sets future directions for research.

2. Related Work

Machine learning (ML) has achieved very good results for prediction and timely
treatment of various diseases [22,23]. For instance, Solanki et al. [24], proposed methods
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for improving the performance of ML classification models, namely a support vector
machine (SVM), a decision tree, and a multilayer perceptron (MLP), i.e., a feed-forward
artificial neural network (ANN), for the prognosis of breast cancer. ML models can be
utilized also to predict blood glucose levels, based on collected medical data and various
human body’s health indicators. The MLP diabetes prediction expert system, designed by
Jahangir et al. [3], performed an outlier detection of data before making a prediction, with
accuracy of 88.7%. Santhanam et al. [25] used a K-means clustering algorithm to remove
the noise in Pima-Indians data, found the characteristic value by a genetic algorithm,
and finally brought it into a SVM classifier to determine whether the test population had
diabetes. However, this study did not process the missing data and outliers, which would
otherwise have allowed it to increase the accuracy. Nai-arun et al. [26] analyzed a real
data set, collected from a hospital in Thailand, using the integration idea and performed
bagging and boosting fusion separately using Naïve Bayes, K nearest neighbors (KNN),
and decision trees as base classifiers. The bagging approach demonstrated an accuracy of
95.3% for the base classifier fusion, which indicated that the use of the integration approach
had a better predictive effect than applying the model alone. Wang et al. [11] proposed the
HY_LightGBM model, utilizing a Bayesian optimization algorithm for finding the optimal
values of hyperparameters, for predicting the blood glucose levels, showing that their
model outperforms the XGBoost model [27], the LightGBM model [28] optimized by a
genetic algorithm, and the LightGBM model optimized by a random search.

Following the idea presented in [11] of using clinical data and human body’s health
indicators, obtained by physical examination of patients in a tertiary-care hospital, for
predicting their blood glucose levels, an RG hyperparameter optimization approach is
proposed in this paper for improving the prediction of boosting ensemble learning models.
However, as some clinical data in the utilized data set were missing, the importance of
features with missing data is first analyzed in order to conclude whether some of these
have value, which are subsequently not deleted, as done in [11], but filled with the medians.
In addition, in order to avoid poor prediction on normal data, the outlier data are first
removed using boxplots and then substituted with the medians. A final strong learner is
generated by using a residual iteration and fitting a regression tree.

Grid search is a commonly used hyperparameter adjustment method. Its principle is
to combine all possible hyperparameters and cycle each hyperparameter combination until
the best combination is found. Although this method is simple and easy to implement, its
use may cause waste of computing resources and time, especially in models working with
many hyperparameters, such as GBDT [29]. Aiming at the shortcomings of the grid search,
Bergstra et al. [30] proposed the use of random search to find the hyperparameters’ values
by randomly sampling the hyperparameters in a limited range. The hyperparameters of
continuous variables are regarded as a distribution for sampling. Therefore, the method can
quickly determine the approximate range of hyperparameters. By sequentially applying
these two methods, the RG optimization approach, proposed in this paper, first avails
of a random search (R) for determining the approximate range of the hyperparameters,
followed by a grid search (G) for finding their optimal values within this range.

In the past, scholars have predicted diabetes using ANNs, or a single learner, with poor
interpretability or unsatisfactory prediction results, while ensemble learning models based
on boosting (e.g., AdaBoost [31], GBDT, XGBoost, LightGBM) allow to greatly reduce the
prediction error through continuous fitting of residual errors. The prediction error of these
models could be further reduced by a sequential use of random search and grid search,
as demonstrated further in this paper. Thanks to this RG double optimization applied
to the state-of-the-art boosting ensemble learning models, their prediction performance
can be improved (quite significantly in some cases). Thus, the proposed RG optimization
approach can help better predict the patient’s blood glucose levels, avoid errors caused by
human factors, improve the work efficiency of the healthcare providers, and compensate
the deficiency of the existing boosting ensemble learning models used for prediction
of diabetes.
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3. Background
3.1. Ensemble Learning Models

Ensemble learning is a powerful ML paradigm whereby multiple learners are trained
for solving the same problem, such as text categorization, optical character recognition,
face recognition, gene expression analysis, computer-aided medical diagnosis, etc. [32].
Instead of trying to learn one hypothesis from the training data, as in the ordinary ML,
ensemble learning tries to construct a set of hypotheses for combined use. An ensemble
contains a few learners, called base learners or weak learners, which are generated from the
training data by means of a single base learning algorithm (e.g., a decision tree, an ANN,
etc.) or multiple algorithms. Then, the base learners are combined for use, e.g., by means
of weighted averaging in the case of solving a regression problem, or majority voting in
the case of a classification problem. The use of multiple learners helps ensemble learning
get much better generalization ability than that of a single learner. After proving made
by Schapire in 1989 [33] that weak learners can be boosted to strong learners, boosting has
emerged as one of the most influential ensemble learning approaches (the other two are
bagging and stacking). Boosting often does not suffer from overfitting even after a large
number of rounds, and sometimes it is even able to reduce the generalization error after the
training error reaching zero. Moreover, in addition to reducing the variance, boosting can
significantly reduce the bias, and thus, on weak learners, it is usually more effective [32].
The main representatives of boosting ensemble learning models are briefly described in the
following subsections.

3.1.1. AdaBoost

The adaptive boosting (AdaBoost) model was developed by Freund and Schapire [31]
in 1997. After initially assigning equal weights to all training examples, it generates a base
learner from the training data set by calling the base learning algorithm [32]. Then, it uses
the training examples to test the base learner and increases the weights of the incorrectly
classified examples. From the training data set and updated weight distribution, AdaBoost
generates another base learner by calling the base learning algorithm again. After repeating
this process R rounds, AdaBoost derives the final learner by weighted majority voting of
the R base learners. In practice, the base learning algorithm may use weighted training
examples directly, or otherwise the weights can be exploited by sampling the training
examples according to the weight distribution [32].

3.1.2. GBDT

Gradient boosting decision tree (GBDT), otherwise known as multiple additive regres-
sion tree (MART), is an iterative decision tree based model. It differs from AdaBoost, which
adjusts the weight according to the classification effect and then iterates continuously.
Instead, GBDT iterates with the negative gradient of the loss function as the approximation
of the residual, fits the regression tree, and finally forms a strong learner. The idea is to
combine multiple decision trees together to produce the final result. Although GBDT can
also be classified, its decision tree is a regression tree, so its core lies in accumulation, that
is, summing up the conclusions of all trees to reach the final conclusion. In other words,
the input of each tree learning is the residual of the sum of all previous tree conclusions.
The idea of gradient descent is used to calculate the residual. Freidman et al. [29] used the
direction of negative gradient of the loss function to replace the direction of residual, so the
negative gradient of the loss function is called pseudo residual. The direction of the pseudo
residual is the locally optimal direction. The negative gradient of the loss function is used
to fit the approximation of the current loss even if the loss function iterates to the minimum.

3.1.3. XGBoost

Developed by Chen et al. [27], extreme gradient boosting (XGBoost) is a model for a
massively parallel boosted tree. The basic idea is the same as that of GBDT, which is based
on the direction of the negative gradient of the loss function. However, the XGBoost’s loss
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function is the second-order Taylor expansion of the error part. The regularization term
is added to prevent overfitting, and the objective function of iterative optimization could
be customized, if it is second-order differentiable. For large data sets, XGBoost consumes
more memory and takes more execution time, as stated in [11], than the LightGBM model
presented next.

3.1.4. LightGBM

LightGBM was proposed by Microsoft in 2017 [28]. Similarly to XGBoost, it supports
parallel arithmetic, but is more powerful and can be trained faster [11]. It is featured by
a decision tree algorithm based on: (i) a gradient-based one-side sampling (GOSS) for
keeping all large gradient samples and performing random sampling on the small gradient
samples; (ii) an exclusive feature bundling (EFB) for dividing the features into a smaller
number of mutually exclusive bundles; and (iii) a histogram and leaf-wise growth strategy
with a depth limit for finding a leaf node with the largest split gain in the current leaf nodes
every time [11].

3.2. Other ML Models
3.2.1. HY_LightGBM

Although LightGBM can achieve high prediction performance, just like other boosting
ensemble learning models, it involves many hyperparameters whose selection influences
greatly the prediction results. Therefore, Wang et al. [11] have proposed a Bayesian
hyperparameter optimization algorithm to determine the hyperparameter combination
for use with LightGBM, which resulted in the HY_LightGBM model. In terms of data
processing, the features with small missing values are filled with the medians, whereas the
features with large missing values are simply deleted. This differs from the method used
in this paper.

3.2.2. ANNs

Artificial neural networks (ANNs) abstract the human brain’s neural network from
the point of view of information processing. They are based on an interconnection of a
large number of nodes, called artificial neurons, which are organized into multiple layers.
The number of layers defines the depth of the network. Deep neural networks are generally
used for image- and voice-processing, whereas shallow neural networks are more suitable
for small-scale data sets.

ANNs are the most widely used classification and prediction ML tools at present,
especially for data with high structure, e.g., voice, pictures, and natural languages [34].
However, the tree-based models have obvious advantages for small-scale data sets, because
the increased complexity of the network can easily lead to overfitting in this case [35].
In addition, ANNs needs more rigorous data preparation, such as data type conversion,
data standardization, etc. Moreover, the interpretation of an ANN model is far less conve-
nient and less intuitive than the embedded feature selection of an integrated tree model.
Therefore, the latter is usually superior to ANN when applied to small-scale data sets [35],
such as those containing medical data.

To prove this, in the performance evaluation of models (c.f. Section 5), a specially
designed and optimized ANN was included for comparison with the boosting ensemble
learning models. This ANN consists of an input layer, three fully connected hidden layers,
and an output layer (Figure 1). Experimentally, we found that the use of more than three
hidden layers is not justified as it does not bring further improvement of accuracy and, in
addition, it increases the running time and leads to overfitting. The ANN was trained and
optimized by utilizing the adaptive learning rate algorithm ADAM [36]. Different from
the ANN processing in case of image classification, the output layer of this ANN does not
need to use an activation function and directly predicts the blood glucose level instead.
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Figure 1. The ANN used in the experiments.

3.3. Loss Functions

Different loss functions could be used for solving different problems. For regression
problems, the most used loss functions are briefly presented in the following subsections.

3.3.1. MSE

The mean square error (MSE) is defined, e.g., in [37], as:

L(y, f (x)) =
1
N

N

∑
i=1

(yi − f (xi))
2 (1)

where yi (i = 1, 2, . . . , N) denote the actual values and f (xi) denote their predicted values.
The corresponding negative gradient is:

− ∂L
∂ f (x)

= y− f (x) (2)

3.3.2. MAE

The mean absolute error (MAE) is defined, e.g., in [38], as:

L(y, f (x)) =
1
N

N

∑
i=1
|yi − f (xi)| (3)

The corresponding negative gradient error is:

sign(yi − f (xi)) (4)

A big problem with MAE relates to its constantly large gradient, which could lead to
missing minima at the end of training using gradient descent. In this regard, MSE is more
precise as its gradient decreases as the loss gets close to its minima [39].

3.3.3. Huber Loss

Huber loss is a compromise between MSE and MAE. It is defined in [40] as:

L(y, f (x)) =

{
1
2 (y− f (x))2, |y− f (x)| ≤ β

β
(
|y− f (x)| − β

2

)
, |y− f (x)| > β

(5)

where β is the hyperparameter of Huber loss.
The corresponding negative gradient error is:

r(yi, f (xi)) =

{
yi − f (xi), |y− f (x)| ≤ β
βsign(yi − f (xi)), |y− f (x)| > β

(6)
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Huber loss curves around the minima which decreases the gradient. In addition, it
is more robust to outliers than MSE. However, its main problem is that a training of the
hyperparameter β is needed, which is an iterative process [41].

The approach, presented in this paper, uses the MSE loss function.

3.4. Search Methods
3.4.1. Grid Search

Grid search [41] is a commonly used search method, but with a low-search efficiency.
It requires the determination of L candidate values for each hyperparameter and a random
combination of the candidate values of K hyperparameters to form alternative parameters.
The number of experiments in grid search is:

S =
K

∏
K=1

∣∣∣L(K)
∣∣∣ (7)

In this method, the growth of the number of hyperparameters may lead to a dimen-
sional catastrophe and could also make the selection of these difficult. Moreover, for a large
number of hyperparameters, grid search is very slow.

3.4.2. Random Search

Random search [30] uses a random number to obtain the optimal solution. This
method continuously generates random points in a certain interval and calculates the
values of a constraint function and an objective function. For the points meeting the
constraint conditions, the values of the objective function are compared one by one, and
the optimal values are saved. Instead of trying all possible combinations, the random
search performs sampling according to the distribution of each hyperparameter and selects
a specific number of hyperparameters for random combinations. However, the random
search exhibits a poor performance when applied to small-scale data sets [26].

4. RG Hyperparameter Optimization Approach

The proposed RG hyperparameter optimization approach is based on the sequential
use of random search (“R” in the approach’s name) and grid search (“G” in the approach’s
name). Ensemble learning models usually involve many hyperparameters, whose values’
selection has great impact on the prediction performance. A reasonable set of hyperparam-
eters can reduce the prediction error. Manual tuning is a method of repeated experiments
that consumes a lot of time. At the same time, since the grid search will try every hyper-
parameter combination, it will be extremely slow in finding the hyperparameters when
the number of these is more than three. In many cases, hyperparameters are not equally
important. Random selection of parameter combinations in the hyperparameter space is
faster than the grid search, but because it does not ensure that the optimal hyperparameter
combinations are given, it is necessary also to apply a grid search after the random search
to adjust the range near each hyperparameter.

Therefore, in the proposed RG hyperparameter optimization approach, a random
search is used first, followed by a grid search, to determine the optimal values of hyper-
parameters, as shown in Table 1 for the RG_GBDT model, used here as an example of the
RG-enriched boosting ensemble learning models.
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Table 1. The optimal values of hyperparameters determined for the RG_GBDT model.

Hyperparameter Default Value Optimal Value
(After Random Search)

Optimal Value
(After Grid Search) Implication on

n_estimators 100 69 67 The number of boosting stages
that will be performed

learning_rate 0.1 0.09 0.07 How much the contribution of
each tree will shrink

subsample 1 0.7 0.8 The subsampling ratio

min_samples_split 2 280 280
The minimum number of

samples required to split an
internal node

min_samples_leaf 1 440 440 The smallest possible record
tree for a leaf

max_features none 6 6
The number of features to

consider when looking for the
best cut

max_depth 3 17 17 The limit of the number of
nodes in the tree

After the optimal value of each hyperparameter is determined, the strongest expres-
sion [42] is obtained according to the following Algorithm 1:

Algorithm 1 Training Algorithm

Input:{x1, x2, . . . , xN}, where for the given d = 40 data features xi =
(

xi1, xi2, . . . , xid
)

and
i = 1, 2, . . . , N.
The maximum number of iterations for the model is T and the loss function is L.
Result: The predicted glucose level.
Begin:
1. Initialize the loss function.

f0(x) = argmin

}

c

N
∑

i=1
L(yi, c)

2. For iterations t = 1 to T do:
(a) For samples i = 1 to N do:

rti = −
[

∂L(y, f (xi))
∂ f (xi)

]
f (x)= ft−1(x)

End for
(b) Use (xi, rti) (i = 1, 2, . . . , N) to fit the regression tree. The leaf node region is

Rtj, j = 1, 2, . . . , J, where J is the number of leaf nodes.
(c) For j = 1 to J do:

ctj = argmin

}

c

∑
xi∈Rtj

L(yi, ft−1(xi) + c)

End for
(d) Update

ft(x) = ft−1(x) +
J

∑
j=1

ctj I
(

x ∈ Rtj

)
End for
3. Return Output strong learner

f (x) = fT(x) =
T
∑

t=1

J
∑

j=1
ctj I
(

x ∈ Rtj

)
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5. Performance Evaluation
5.1. Data Set

To ensure the authenticity of data, the public data set, i.e., the patient clinical data
and human body’s health indicators (Tables 2 and 3), used for indirect prediction of blood
glucose (fasting/pre-prandial) levels in the experiments presented here, were provided
by a tertiary-care hospital in 2017 as part of the Tianchi competition [43]. The hospital
keeps the physical examination results of each patient and files the data. The patients’
names were not released to protect their privacy; these were replaced with IDs. A total
of 6641 data entries were made publicly available with 42 features. As it is empirically
known that the ‘patient ID’ and ‘date of physical examination’ data features have no effect
on the predicted blood glucose values, these two features were omitted, and the remaining
40 features only were used for training of models, considered in this paper. However, some
of the features contain missing values, as shown in Figure 2.

Table 2. Human body’s health indicators, divided into groups.

Group Human Body’s Health Indicators

Liver
functioning

Aspartate aminotransferase, Alanine aminotransferase,
Alkaline phosphatase,

γ-Glutamyltransferase, Total serum protein, Serum albumin,
Globulin, Ratio of albumin to globulin.

Blood fat
Serum triglyceride, Total cholesterol in lipoproteins,
High-density lipoprotein cholesterol, Low-density

lipoprotein cholesterol.

Kidney
functioning Urea, Creatinine, Uric acid.

Hepatitis B virus
Hepatitis B surface antigen, Hepatitis B surface antibody,
Hepatitis Be antigen, Hepatitis Be antibody, Hepatitis B

core antibody.

Blood routine examination

White blood cell count, Red blood cell count, Hemoglobin,
Packed cell volume,

Mean corpuscular volume, Mean corpuscular hemoglobin,
Mean corpuscular hemoglobin concentration,

Red blood cell volume distribution width, Platelet count, Mean
platelet volume, Platelet volume distribution width, Platelet

specific volume, Neutrophils, Lymphocytes, Monocytes,
Eosinophils, Basophils.

Table 3. Human body’s health indicators with their normal ranges of values.

Short Name Full Name/
Explanation

Normal
Range of Values Short Name Full Name/

Explanation
Normal

Range of Values

Age Patient’s age 3 ÷ 93 years HbeAg Hepatitis Beantigen 0.0 ÷ 0.5 PEI/mL

Sex Patient’s sex Male/ Female HBeAb Hepatitis Beantibody 0.0 ÷ 1.5 PEI/mL

HBsAg Hepatitis Bsurface
antigen 0.0 ÷ 0.5 ng/mL HBcAb Hepatitis B core

antibody 0.0 ÷ 0.9 PEI/mL

HBsAb Hepatitis B surface
antibody 0 ÷ 10 miu/mL WBC White blood cell

count 3.50 ÷ 9.50×10ˆ9/L
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Table 3. Cont.

Short Name Full Name/
Explanation

Normal
Range of Values Short Name Full Name/

Explanation
Normal

Range of Values

AST Aspartateamino-
transferase 0 ÷ 40 U/L RBC Red blood cell count 4.30 ÷ 5.80×10ˆ12/L

ALT Alanine aminotransferase 0 ÷ 40 U/L HGB Hemoglobin 130 ÷ 175 g/L

ALP Alkalinephosphatase 35 ÷ 135 U/L PCV Packed cell
volume 40 ÷ 50%

GGT γ-Glutamyltransferase 11 ÷ 60 U/L MCV Mean corpuscular
volume 82 ÷ 100 fL

TP Total serum protein 60 ÷ 83 g/L MCH Mean corpuscular
hemoglobin 34 ÷ 37 pg

ALB Serum albumin 37 ÷ 53 g/L MCHC
Mean corpuscular

hemoglobin
concentration

316 ÷ 354 g/L

GLB Globulin 15.0 ÷ 35.0 g/L ROW
Red blood cell

volume distribution
width

9.0 ÷ 17.0 fL

AG Ratio of albumin to
globulin 1.1 ÷ 2.5 PLT Platelet count 125 ÷ 350×10ˆ9/L

TG Serumtriglyceride 0.00 ÷ 1.71 mmol/L MPV Mean platelet volume 6.5–12.0 fL

TC Total cholesterol in
lipoproteins 3.1 ÷ 6.1 mmol/L PDW Platelet volume

distribution width 9.0 ÷ 17.0 fL

HDL_C High-density lipoprotein
cholesterol 0.9 ÷ 2.0 mg/dL PCT Platelet specific

volume 0.108 ÷ 0.282%

LDL_C Low-density lipoprotein
cholesterol 0.00 ÷ 3.36 mg/dL Neutrophils Percentage of

neutrophilsin WBC 40.0 ÷ 75.0%

Urea Urea 2.82 ÷ 8.20 mmol/L Lymph Percentage of
lymphocytes in WBC 20.0 ÷ 50.0%

Cre Creatinine 45 ÷ 106 µmol/L Monocytes Percentage of
monocytes in WBC 3.0 ÷ 10.0%

UA Uric acid 200 ÷ 450 µmol/L Eosinophils Percentage of
eosinophils in WBC 0.4 ÷ 8.0%

bgl
Blood glucose

(fasting/pre-prandial)
level

4.0 ÷ 6.0 mmol/L Basophils Percentage of
basophils in WBC 0.0 ÷ 1.0%

Figure 2. The number of missing values per data feature.
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The influence weight of each data feature was obtained according to a correlation
function. The importance degree of each data feature is depicted on Figure 3.

Figure 3. Eigenvalue weight.

From Figure 2, one can see that the top five data features with severely missing values
are HBeAb, HBcAb, HBsAg, HBsAb, and HbeAg. Even though the eigenvalue weight of
these five features (Figure 3) is small, in a clinical sense these features have a certain impact
on the blood glucose levels. Thus, in order to avoid wasting the information contained in
these data features, differently from [11], these were not just deleted but rather filled with
the medians. The results obtained from the experiments, described in the next subsection,
confirmed that this tactic works better than simply deleting all data features with severely
missing values.

Due to measurement equipment’s problems or presence of outliers in some attributes
of human factors, in order to avoid poor prediction based on the normal data due to fitting
the outliers, we used the boxplots to display the outliers in each attribute, by setting the
outlier empty and filling it and the other missing data simultaneously with the medians.
Figure 4 shows the boxplot of γ-Glutamyltransferase.

Figure 4. Boxplot of γ-Glutamyltransferase.
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5.2. Experiments

The training set {x1, x2, . . . , xN}, used in the experiments, comprised N = 5641
samples, whereas the test set {y1, y2, . . . , yM} consisted of M = 1000 samples.

The predicted values of the M samples are as follows:

ỹ = {ỹ1, ỹ2, . . . , ỹM} (8)

The experimental process, performed with the considered boosting ensemble learning
models enriched by the proposed RG hyperparameter optimization approach, is depicted
in Figure 5.

Figure 5. The flow chart of the experiments, conducted with the boosting ensemble learning models, enriched by the
proposed RG hyperparameter optimization approach.

In the experiments, conducted with the considered boosting ensemble learning models,
enriched by the proposed RG hyperparameter optimization approach (further called shortly
RG-enriched models), these steps were followed:

1. The data were first divided into a training set and a test set. Then outliers in the
data were identified using the IQR method, i.e., all data value less than Q1 − 1.5IQR
or greater than Q3 + 1.5IQR were considered outliers. These outliers were set to
null value and, along with other missing data, were filled simultaneously with the
medians as to avoid the model fitting the outliers and to reduce inaccurate prediction.

2. A random search was then used to find the initial optimal value of each hyperparam-
eter and determine its approximate range. Then, a grid search was performed in this
range to find the final optimal value of each hyperparameter, which was brought into
the corresponding boosting ensemble learning model (i.e., AdaBoost, GBDT, XGBoost,
LightGBM), used for predicting the blood glucose levels.

3. The blood glucose level prediction performance of each RG-enriched model was
compared to the corresponding original model by using MSE, root MSE (RMSE),
and coefficient of determination R2 which are commonly used evaluation indicators
in regression tasks [11]. The smaller the MSE and RMSE, the better the prediction
performance of the corresponding model. For the coefficient of determination: if a
model predicts exactly all observed values, then R2 = 1; if a model always predicts the
mean of observed values, then R2 = 0; and if a model predicts worse than this, then
R2 < 0.
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Additionally, as suggested, e.g., in [44,45], an experimental test with randomly gener-
ated numbers and a known distribution function was carried out to see if the RG optimiza-
tion approach does provide improved results to these as well, i.e., to check whether some
medical-physiological dependencies are behind the proposed approach. For this purpose,
a generated matrix of 3000 rows and 40 columns containing random, uniformly distributed,
sample values was used in lieu of real clinical data set. Each column corresponded to
one of the 40 human body’s health indicators used for the prediction of blood glucose
levels in this paper. The values in each of these columns were generated randomly with
a uniform distribution, within the relevant ranges shown in Table 3. The values of the
40th column were randomly generated with a uniform distribution within the range of
4.0 to 8.0 as ‘phantom values’ of blood glucose (measured in mmol/L). A total 2000 out
of the 3000 rows were randomly chosen for training, whereas the remaining 1000 rows
were used for testing the boosting ensemble learning models considered (i.e., AdaBoost,
GBDT, XGBooST, and LightGBM), first in their original form and then by applying the RG
hyperparameter optimization to see if this could bring any improvement in predicting the
values of the last column.

Finally, experiments were performed with the ANN, described in Section 3.4, and the
HY_LightGBM model of [11], both applied to the same clinical data set in order to compare
their performance to that of the other models considered.

5.3. Results

The results of the first group of experiments, shown in Table 4 and Figure 6, prove
that each RG-enriched boosting ensemble learning model outperforms the corresponding
original model, according to all evaluation indicators used. In terms of MSE and RMSE, for
instance, the biggest improvement is achieved against the XGBoost model (24.40% for MSE
and 11.54% for RMSE) and the smallest improvement against the GBDT model (1.47% for
MSE and 0.75% for RMSE).

Table 4. The blood glucose level prediction improvement, in terms of MSE, RMSE and R2, of
RG-enriched boosting ensemble learning models against corresponding original models.

Model MSE RMSE R2

RG_AdaBoost 0.3766
(19.07% improvement)

0.6137
(9.11% improvement) 0.1195

AdaBoost 0.4484 0.6696 −0.0481

RG_GBDT 0.3741
(1.47% improvement)

0.6116
(0.75% improvement) 0.1255

GBDT 0.3797 0.6162 0.1123

RG_XGBoost 0.3787
(24.40% improvement)

0.6154
(11.54% improvement) 0.1146

XGBoost 0.4711 0.6864 −0.1012

RG_LightGBM 0.3871
(6.90% improvement)

0.6222
(3.39% improvement) 0.0950

LightGBM 0.4138 0.6433 0.0326
HY_LightGBM * 0.4135 0.6430 0.0333

ANN 0.5180 0.7200 −0.2264
* The figures for the HY_LightGBM model differ from the figures reported in [11], as these were obtained by us
based on our own implementation of this model (in Python) and applying it on the same data set, as in [11], but
using only the publicly available part of it, totaling in 6641 data entries, and excluding the non-publicly available
1001 data entries used in [11].
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Figure 6. The prediction performance improvement, in terms of MSE, of boosting ensemble learning models after enriching
them by the proposed RG hyperparameter optimization.

Figure 7 shows the difference (d) between the predicted and actual blood glucose
(fasting/pre-prandial) levels for the four RG-enriched models. Thanks to the good pre-
diction ability of the proposed models, most of the absolute values of d are less than
1 mmol/L; a few of these are in the range of 1 to 2 mmol/L, and only a very few are in
the range of 2 to 3 mmol/L. Therefore, based on the specified diagnostic ranges of blood
glucose (fasting/pre-prandial) levels [46], it can be considered that most of the errors
produced by the proposed models are within the acceptable margin separating the two
groups of people—without and with type 2 diabetes, i.e., 4.0 ÷ 6.0 mmol/L and over
7.0 mmol/L, respectively.

Figure 7. The difference (d) between the predicted and actual blood glucose (fasting/pre-prandial)
levels for the RG-enriched models.
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Figure 8 depicts the Bland–Altman plots for the four RG-enriched models. As sig-
nificant part of the data points falls within ±1.96 standard deviations (SD) of the mean
difference (MD), the blood glucose values predicted by the RG-enriched model are in good
agreement with the actual values [47].

Figure 8. The Bland–Altman plots for the RG-enriched models.

The scatter plots and Clarke error grid analysis (EGA) diagrams of the actual blood
glucose levels versus the levels predicted by the four RG-enriched models are depicted in
Figures 9–17. As evident from the EGA diagrams, for all RG-enriched models, a dominant
part of values is in Zone A representing accurate blood glucose prediction results, some
other values are in Zone B representing acceptable prediction results, and only a small
percentage of values are in Zone D representing failure to detect and treat diabetes [48].

Figure 9. The scatter plot diagram of the actual and predicted blood glucose (fasting/pre-prandial)
levels by the RG_AdaBoost and AdaBoost models.
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Figure 10. The EGA diagram for the RG_AdaBoost model.

Figure 11. The scatter plot diagram of the actual and predicted blood glucose (fasting/pre-prandial)
levels by the RG_GBDT and GBDT models.
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Figure 12. The EGA diagram for the RG_GBDT model.

Figure 13. The scatter plot diagram of the actual and predicted blood glucose (fasting/pre-prandial)
levels by the RG_XGBoost and XGBoost models.
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Figure 14. The EGA diagram for the RG_XGBoost model.

Figure 15. The scatter plot diagram of the actual and predicted blood glucose (fasting/pre-prandial)
levels by the RG_LightGBM and LightGBM models.
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Figure 16. The EGA diagram for the RG_LightGBM model.

Figure 17. The scatter plot diagram of the actual and predicted blood glucose (fasting/pre-prandial)
levels by the RG-enriched models.

The results of the last group of experiments (c.f. the last two lines in Table 4) show
that: (i) each of the proposed RG-enriched boosting ensemble learning models outperforms
the HY_LightGBM model [11], even though the latter performs better than three of the
original boosting ensemble learning models considered, i.e., AdaBoost, XGBoost, and
LightGBM; and (ii) the artificial neural network (ANN) performs worst, even worse than
all the original boosting ensemble learning models.
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The results, shown in Table 5, correspond to the experimental test with random
numbers and a known distribution function, which was carried out to check if the proposed
RG optimization approach does provide any improved results to these as well. The obtained
results demonstrate that: (i) the prediction performance of the boosting ensemble learning
models is worse when applying them on random uncorrelated data rather than on real
clinical data, as evident from the MSE, RMSE, and R2 values shown in Table 5, which are
all worse than the corresponding ones shown in Table 4; and (ii) in the case of random
data, the original boosting ensemble models perform better than their RG-form, which
proves that the proposed RG hyperparameter optimization approach works only on real
correlated clinical data, used for indirect prediction of blood glucose levels.

Table 5. The negative effect of the RG hyperparameter optimization on the prediction performance
of boosting ensemble learning models when applied on randomly generated uncorrelated data.

Model MSE RMSE R2

RG_AdaBoost 1.3701
(0.15% deterioration)

1.1705
(0.08% deterioration) −0.0107

AdaBoost 1.3681 1.1697 −0.0092

RG_GBDT 1.4190
(1.08% deterioration)

1.1912
(0.54% deterioration) −0.0468

GBDT 1.4039 1.1849 −0.0357

RG_XGBoost 1.7010
(2.16% deterioration)

1.3042
(1.07% deterioration) −0.2548

XGBoost 1.6651 1.2904 −0.2284

RG_LightGBM 1.5219
(0.57% deterioration)

1.2337
(0.28% deterioration) −0.1227

LightGBM 1.5133 1.2302 −0.1163

6. Conclusions

It is well known that ensemble learning can lead to better prediction results compared
to regular machine learning based on a single model. However, as the selection of different
hyperparameters has a great impact on the prediction results, this should be done with
caution. In order to improve the prediction performance of boosting ensemble learning
models, this paper has proposed to enrich these by an RG hyperparameter optimization,
involving a sequential use of a random search (R) and a grid search (G). Based on this RG
double optimization, the prediction performance of the considered state-of-the-art boosting
ensemble learning models has been improved (significantly in some cases) as demonstrated
by the conducted experiments for predicting blood glucose levels in patients, based on
their clinical data.

Considering that a small error in medicine can cause an immense damage to patients
and hospitals, it is clear that every bit of improvement in predicting the patients’ health
condition is important. The RG hyperparameter optimization approach, proposed in
this paper, could be helpful in increasing the work efficiency and accuracy of healthcare
providers and in supporting intelligent medical treatment. As such, it shows a great
promise for use in clinical applications and is worthy of further study.

The future work in this direction will be focused on: (1) using the mean values, instead
of the median values, for filling the missing data; (2) performing principal component
analysis for better feature selection; (3) Bayesian optimization fused with the proposed RG
approach for the purpose of exploring the pathogenesis of diabetes; and (4) considering
more human body’s health indicators having an impact on the blood glucose level.
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