Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

DIFFERENTIAL EQUATIONS IN ABSTRACT CONES

Tadeusz Jankowski

Communicated by I. D. Iliev

Abstract

We extend the method of quasilinearization to differential equations in abstract normal cones. Under some assumptions, corresponding monotone iterations converge to the unique solution of our problem and this convergence is superlinear or semi-superlinear.

1. Introduction. Denote by B a real Banach space with a norm $\|\cdot\|$ and let B^{*} denote the dual of B. Let K be a cone in B. We assume that K is closed convex subset of B such that $\lambda K \subset K$ for every $\lambda \geq 0$ and $K \cap\{-K\}=\{0\}$, where 0 denotes the null element of B. The cone K induces the order relation in B defined by $x \leq y, x, y \in B$ if and only if $y-x \in K$. We let $K^{*}=\left\{\phi \in B^{*}\right.$: $\phi(u) \geq 0$ for all $u \in K\}$. We assume in this paper that K is a normal cone i.e. there exists a real number $c>0$ such that $0 \leq u \leq v$ implies $\|u\| \leq c\|v\|$, where c is independent of u and v. A subset B_{0} of B is said to be a distance set if for each $u \in B$ there corresponds a point $v \in B_{0}$ such that $d\left(u, B_{0}\right)=\|u-v\|$.
[^0]Put $C_{*}=C(J \times B, B), C_{1}=C^{1}(J, B)$ with $J=[0, T]$. For $N \in C_{*}$, let us consider the problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=N(t, x(t)), \quad t \in J \tag{1}\\
x(0)=x_{0}
\end{array}\right.
$$

Recently, the method of quasilinearization has been used so as to be applicable to a much larger class of nonlinear problems, (see, for example [9]). In this paper, we apply this method to differential problems of type (1) in a normal cone of the Banach space B (see, for example $[3,4,6,7,9]$). In $[4,7]$, some properties of measure of noncompactness are used to show that corresponding monotone sequences are convergent to the unique solution of (1). Quadratic and superlinear convergence of monotone iterations for problem (1) are obtained in $[3,9]$. The purpose of this paper is to generalize that results when $N=f+g+h$. We assume that $f_{x}+\Phi_{x}$ is nondecreasing and $g_{x}+\Psi_{x}$ is nonincreasing for some nondecreasing function Φ_{x} and for some nonincreasing function Ψ_{x}. If h satisfies the Lipschitz condition, then corresponding monotone sequences converge to the unique solution of (1) and this convergence is superlinear or semi-superlinear. Note that, problem (1) is considered in [3] when $h=g=\Psi=0$, and in [9] if $h=\Phi=g=\Psi=0$.
2. Assumptions. A function $v \in C_{1}$ is said to be a lower solution of problem (1) if

$$
\left\{\begin{array}{l}
v^{\prime}(t) \leq N(t, v(t)), \quad t \in J \\
v(0) \leq x_{0}
\end{array}\right.
$$

and an upper solution of (1) if the inequalities are reversed.
Let us introduce some assumptions for later use.
$\left(A_{1}\right) f, g, h, \Phi, \Psi \in C_{*}$,
$\left(A_{2}\right) N$ is quasimonotone nondecreasing in the second variable relative to K for each $t \in J$ i.e. if $u_{1} \leq u_{2}$ and $\phi\left(u_{2}-u_{1}\right)=0$ for some $\phi \in K^{*}$, then $\phi\left(N\left(t, u_{1}\right)\right) \leq \phi\left(N\left(t, u_{2}\right)\right)$,
$\left(A_{3}\right) y_{0}, z_{0} \in C_{1}$ are lower and upper solutions of (1) such that $y_{0}(t) \leq z_{0}(t)$, $t \in J$,
$\left(A_{4}\right)\|f(t, x)-f(t, y)\| \leq L_{1}\|x-y\|, L>0, y \in \delta K$, where δK denotes the boundary of K,
$\left(A_{5}\right) K$ is a distance set,
$\left(A_{6}\right)$ the Frechet derivative h_{x} exists, is continuous and $\left\|h_{x}(t, x)\right\| \leq \bar{M}$ for $(t, x) \in J \times \Omega$ with $\bar{M}>0$, where $\Omega=\left\{u \in B: y_{0}(t) \leq u \leq z_{0}(t), t \in J\right\}$,
$\left(A_{7}\right)$ the Frechet derivatives $f_{x}, g_{x}, \Phi_{x}, \Psi_{x}$ exist, are continuous, and
(a) F_{x}, Φ_{x} are nondecreasing in the second variable, [i.e. $F_{x}(t, u) v \leq F_{x}(t, \bar{u}) v$ for $u, \bar{u} \in \Omega, v \in K$ and $u \leq \bar{u}], G_{x}, \Psi_{x}$ are nonincreasing in the second variable with $F=f+\Phi, G=g+\Psi$,
(b) $\left\|f_{x}(t, x)\right\| \leq B_{1}, \quad\left\|g_{x}(t, x)\right\| \leq B_{2},\left\|\Phi_{x}(t, x)\right\| \leq B_{3},\left\|\Psi_{x}(t, x)\right\| \leq$ $B_{4}, x \in \Omega$,
(c) $\left\|f_{x}(t, x)-f_{x}(t, y)\right\| \leq A_{1}\|x-y\|^{\alpha},\left\|g_{x}(t, x)-g_{x}(t, y)\right\| \leq A_{2}\|x-y\|^{\beta}$, $\left\|\Phi_{x}(t, x)-\Phi_{x}(t, y)\right\| \leq A_{3}\|x-y\|^{\gamma}, \quad\left\|\Psi_{x}(t, x)-\Psi_{x}(t, y)\right\| \leq A_{4}\|x-y\|^{\delta}$ for $(t, x),(t, y) \in J \times \Omega$ with $A_{i}, B_{i}>0, i=1,2,3,4$ and $\alpha, \beta, \gamma, \delta \in[0,1]$,
$\left(A_{8}\right)$ there exists a constant $M \geq 0$ such that for $x, y \in \Omega$

$$
h(t, x)-h(t, y) \leq M[y-x] \text { if } x \leq y
$$

$\left(A_{9}\right)\left[h_{x}\left(t, \alpha_{1}\right)+F_{x}\left(t, \alpha_{2}\right)+G_{x}\left(t, \alpha_{3}\right)-\Phi_{x}\left(t, \alpha_{3}\right)-\Psi_{x}\left(t, \alpha_{2}\right)\right] v$ is quasimonotone nondecreasing in v relative to K for each $t \in J$, where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in C(J, B)$.

Remark 1. Clearly when assumption A_{8} holds, then h is quasimonotone nondecreasing in the second variable relative to K.

Remark 2. In assumtion A_{9} it is assumed, for example, that $F_{x}\left(t, \alpha_{2}\right) v$ is quasimonotone nondecreasing in v. Instead of it, by Lemma 4.5.2 [6], if we assume that F_{x} exists, F is convex and F is quasimonotone nondecreasing in the second variable, then $F_{x}\left(t, \alpha_{2}\right) v$ is quasimonotone nondecreasing in v for $\left(t, \alpha_{2}\right) \in J \times C(J, B)$.

3. Superlinear convergence.

Theorem 1 [6]. Let K be a cone in B. Assume that $f \in C_{*}$, and $1^{\circ} u, v \in C_{1}, u, v \in \Omega$ satisfy $u^{\prime}(t) \leq f(t, u), v^{\prime}(t) \geq f(t, v), \quad t \in J$,
$2^{\circ} f$ is a quasimonotone nondecreasing in the second variable relative to K for each $t \in J$, and f satisfies assumption A_{4},
$3^{\circ} K$ is a distance set.
Then $u(0) \leq v(0)$ implies $u(t) \leq v(t)$ on J.
Now, we can formulate main results. The first theorem gives supelinear convergence while the second theorem semi-superlinear one.

Theorem 2. Let K be a normal cone. Let assumptions A_{1}, A_{2}, A_{3}, $A_{5}, A_{6}, A_{7}, A_{9}$ hold for $N=f+g+h$. Then there exist monotone sequences which converge uniformly and monotonically to the unique solution x of problem (1) and the convergence is superlinear.

Proof. First observe that, for $u, v \in \Omega, u \leq v$, in view of $A_{7}(a)$,

$$
\left\{\begin{aligned}
f(t, u) & \leq f(t, v)+\left[F_{x}(t, u)-\Phi_{x}(t, v)\right][u-v] \\
g(t, u) & \leq g(t, v)+\left[G_{x}(t, v)-\Psi_{x}(t, u)\right][u-v]
\end{aligned}\right.
$$

and

$$
\begin{equation*}
\mathcal{F}(t, u)-\mathcal{F}(t, v) \leq V(t, u, v)(u-v) \tag{2}
\end{equation*}
$$

with $\mathcal{F}=f+g$ and $V(t, u, v)=F_{x}(t, u)+G_{x}(t, v)-\Phi_{x}(t, v)-\Psi_{x}(t, u)$.
Using (2) and a mean value theorem we see that

$$
\begin{align*}
& \mathcal{F}(t, u)+h(t, w)-\mathcal{F}(t, v)-h(t, v)+V(t, u, v)(w-u) \\
& \quad \leq \int_{0}^{1}\left[h_{x}(t, s w+(1-s) v) d s+V(t, u, v)\right](w-v) \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{F}(t, u)+h(t, u)-\mathcal{F}(t, v)-h(t, w)-V(t, u, v)(w-v) \\
& \quad \leq \int_{0}^{1}\left[h_{x}(t, s u+(1-s) w) d s+V(t, u, v)\right](u-w) \tag{4}
\end{align*}
$$

for $u, v, w \in C_{1}, u, v \in \Omega$ and $u \leq v$.
Let y_{n+1}, z_{n+1} be the solutions of IVPs

$$
\begin{cases}y_{n+1}^{\prime}(t)=\mathcal{F}\left(t, y_{n}\right)+h\left(t, y_{n+1}\right)+V_{n}(t)\left[y_{n+1}(t)-y_{n}(t)\right], & y_{n+1}(0)=x_{0} \\ z_{n+1}^{\prime}(t)=\mathcal{F}\left(t, z_{n}\right)+h\left(t, z_{n+1}\right)+V_{n}(t)\left[z_{n+1}(t)-z_{n}(t)\right], & z_{n+1}(0)=x_{0}\end{cases}
$$

for $n=0,1, \cdots$, where $V_{n}(t)=V\left(t, y_{n}, z_{n}\right)$. Note that y_{n+1} is a solution of the
following nonlinear problem

$$
\begin{equation*}
y^{\prime}(t)=\mathcal{F}\left(t, y_{n}\right)+h(t, y)+V_{n}(t)\left[y(t)-y_{n}(t)\right] \equiv A y(t), \quad y(0)=x_{0} \tag{5}
\end{equation*}
$$

By A_{6} and $A_{7}(b)$, it is easy to conclude that the operator A satisfies a Lipschitz condition in y, and consequently there exists a unique solution y_{n+1} of (5). It means that the members y_{n+1} and z_{n+1} are well-defined.

In the first step, we need to show that

$$
\begin{equation*}
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t) \text { on } J \tag{6}
\end{equation*}
$$

To show (6) it is convenient to introduce $p=y_{0}-y_{1}$ on J, so $p(0) \leq 0$. Using the mean value theorem for h we obtain

$$
\begin{aligned}
p^{\prime}(t) & \leq \mathcal{F}\left(t, y_{0}\right)+h\left(t, y_{0}\right)-\mathcal{F}\left(t, y_{0}\right)-h\left(t, y_{1}\right)-V_{0}(t)\left[y_{1}(t)-y_{0}(t)\right] \\
\quad= & {\left[\int_{0}^{1} h_{x}\left(t, s y_{0}+(1-s) y_{1}\right) d s+V_{0}(t)\right] p(t), \quad t \in J }
\end{aligned}
$$

Assumptions $A_{9}, A_{7}(b)$ and Theorem 1 yield $p(t) \leq 0$ on J proving that $y_{0}(t) \leq$ $y_{1}(t)$ on J. Now, let $p=y_{1}-z_{0}$ on J. Then, by (3), we get

$$
\begin{aligned}
& p^{\prime}(t) \leq \mathcal{F}\left(t, y_{0}\right)+h\left(t, y_{1}\right)+V_{0}(t)\left[y_{1}(t)-y_{0}(t)\right]-\mathcal{F}\left(t, z_{0}\right)-h\left(t, z_{0}\right) \\
& \quad \leq\left[\int_{0}^{1} h_{x}\left(t, s y_{1}+(1-s) z_{0}\right) d s+V_{0}(t)\right] p(t), t \in J, \quad p(0) \leq 0 .
\end{aligned}
$$

Hence, by Theorem 1, $y_{1}(t) \leq z_{0}(t), t \in J$ showing that $y_{0}(t) \leq y_{1}(t) \leq z_{0}(t)$ on J.

Let $p=y_{0}-z_{1}$. Then $p(0) \leq 0$, and, by (4),

$$
\begin{aligned}
p^{\prime}(t) & \leq \mathcal{F}\left(t, y_{0}\right)+h\left(t, y_{0}\right)-\mathcal{F}\left(t, z_{0}\right)-h\left(t, z_{1}\right)-V_{0}(t)\left[z_{1}(t)-z_{0}(t)\right] \\
& \leq\left[V_{0}(t)+\int_{0}^{1} h_{x}\left(t, s y_{0}+(1-s) z_{1}\right) d s\right] p(t), \quad t \in J
\end{aligned}
$$

Hence, $y_{0}(t) \leq z_{1}(t), t \in J$. Now, we put $p=z_{1}-z_{0}$. Then

$$
\begin{aligned}
p^{\prime}(t) & \leq \mathcal{F}\left(t, z_{0}\right)+h\left(t, z_{1}\right)+V_{0}(t)\left[z_{1}(t)-z_{0}(t)\right]-\mathcal{F}\left(t, z_{0}\right)-h\left(t, z_{0}\right) \\
& =\left[\int_{0}^{1} h_{x}\left(t, s z_{1}+(1-s) z_{0}\right) d s+V_{0}(t)\right] p(t), \quad t \in J, \quad p(0) \leq 0
\end{aligned}
$$

so $z_{1}(t) \leq z_{0}(t), t \in J$ showing that $y_{0}(t) \leq z_{1}(t) \leq z_{0}(t), t \in J$. Obviously, basing on (2) and assumption $A_{7}(a)$, we have

$$
\begin{equation*}
V(t, u, \bar{v}) w \leq V(t, \bar{u}, v) w \quad \text { if } u \leq \bar{u}, v \leq \bar{v}, u, \bar{u}, v, \bar{v} \in \Omega, w \in K \tag{7}
\end{equation*}
$$

Next, we have to show that $y_{1}(t) \leq z_{1}(t), t \in J$. We do this by showing that y_{1} and z_{1} are lower and upper solutions of (1), respectively. Basing on (2) and (7), we have

$$
\begin{aligned}
y_{1}^{\prime}(t) & =\mathcal{F}\left(t, y_{0}\right)+h\left(t, y_{1}\right)+V_{0}(t)\left[y_{1}(t)-y_{0}(t)\right]-\mathcal{F}\left(t, y_{1}\right)+\mathcal{F}\left(t, y_{1}\right) \\
& \leq N\left(t, y_{1}\right)+\left[V_{0}(t)-V\left(t, y_{0}, y_{1}\right)\right]\left[y_{1}(t)-y_{0}(t)\right] \leq N\left(t, y_{1}\right), \quad t \in J
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1}^{\prime}(t) & =\mathcal{F}\left(t, z_{0}\right)+h\left(t, z_{1}\right)+V_{0}(t)\left[z_{1}(t)-z_{0}(t)\right]-\mathcal{F}\left(t, z_{1}\right)+\mathcal{F}\left(t, z_{1}\right) \\
& \geq N\left(t, y_{1}\right)+\left[V\left(t, z_{1}, z_{0}\right)-V_{0}(t)\right]\left[z_{0}(t)-z_{1}(t)\right] \geq N\left(t, y_{1}\right), \quad t \in J
\end{aligned}
$$

Hence, by Theorem 1, $y_{1}(t) \leq z_{1}(t), t \in J$. It proves that (6) holds.
Now, we assume that

$$
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{k}(t) \leq z_{k}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

and let y_{k}, z_{k} be lower and upper solutions of (1) for some $k>1$. We shall prove that

$$
\begin{equation*}
y_{k}(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq z_{k}(t), \quad t \in J \tag{8}
\end{equation*}
$$

Hence setting $p=y_{k}-y_{k+1}$ on J it follows as before

$$
\begin{aligned}
p^{\prime}(t) & \leq \mathcal{F}\left(t, y_{k}\right)+h\left(t, y_{k}\right)-\mathcal{F}\left(t, y_{k}\right)-h\left(t, y_{k+1}\right)-V_{k}(t)\left[y_{k+1}(t)-y_{k}(t)\right] \\
& =\left[\int_{0}^{1} h_{x}\left(t, s y_{k}+(1-s) y_{k+1}\right) d s+V_{k}(t)\right] p(t), \quad t \in J, \quad p(0)=0
\end{aligned}
$$

which again implies that $p(t) \leq 0$ on J proving that $y_{k}(t) \leq y_{k+1}(t)$ on J. On the other hand, letting $p=y_{k+1}-z_{k}$ on J, yields

$$
\begin{aligned}
p^{\prime}(t) & \leq \mathcal{F}\left(t, y_{k}\right)+h\left(t, y_{k+1}\right)+V_{k}(t)\left[y_{k+1}(t)-y_{k}(t)\right]-\mathcal{F}\left(t, z_{k}\right)-h\left(t, z_{k}\right) \\
& \leq\left[\int_{0}^{1} h_{x}\left(t, s y_{k+1}+(1-s) z_{k}\right) d s+V_{k}(t)\right] p(t), t \in J, \quad p(0)=0
\end{aligned}
$$

This proves that $y_{k+1}(t) \leq z_{k}(t), t \in J$ and hence $y_{k}(t) \leq y_{k+1}(t) \leq z_{k}(t)$ on J. Similarly as before we can show that $y_{k}(t) \leq z_{k+1}(t) \leq z_{k}(t), t \in J$.

Moreover, by (2) and (7), we have

$$
\begin{aligned}
y_{k+1}^{\prime}(t) & =\mathcal{F}\left(t, y_{k}\right)+h\left(t, y_{k+1}\right)+V_{k}(t)\left[y_{k+1}-y_{k}(t)\right]-\mathcal{F}\left(t, y_{k+1}\right)+\mathcal{F}\left(t, y_{k+1}\right) \\
& \leq N\left(t, y_{k+1}\right)+V\left(t, y_{k}, y_{k+1}\right)\left[y_{k}(t)-y_{k+1}(t)\right]+V_{k}(t)\left[y_{k+1}(t)-y_{k}(t)\right] \\
& \leq N\left(t, y_{k+1}\right), t \in J,
\end{aligned}
$$

and

$$
\begin{aligned}
& z_{k+1}^{\prime}(t)=\mathcal{F}\left(t, z_{k}\right)+h\left(t, z_{k+1}\right)+V_{k}(t)\left[z_{k+1}(t)-z_{k}(t)\right]-\mathcal{F}\left(t, z_{k+1}\right)+\mathcal{F}\left(t, z_{k+1}\right) \\
& \geq N\left(t, z_{k+1}\right)-V\left(t, z_{k+1}, z_{k}\right)\left[z_{k+1}(t)-z_{k}(t)\right]+V_{k}(t)\left[z_{k+1}(t)-z_{k}(t)\right] \\
& \quad \geq N\left(t, z_{k+1}\right), \quad t \in J
\end{aligned}
$$

showing that y_{k+1}, z_{k+1} are lower and upper solutions of (1), respectively. Hence, by Theorem $1, y_{k+1}(t) \leq z_{k+1}(t), t \in J$. It proves that (8) holds which means that

$$
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

for all n, by mathematical induction.

In the next step we need to show that the sequences $\left\{y_{n}, z_{n}\right\}$ converge uniformly and monotonically on J. Note that the sequences are uniformly bounded on J since K is a normal cone. It remains to show that these sequences are Cauchy. For $M_{0}=2\left(B_{1}+B_{2}+B_{3}+B_{4}\right), \quad L=\bar{M}+B_{1}+B_{2}+2 B_{3}+2 B_{4}, \quad m_{n}(t)=$ $\left\|y_{n+1}(t)-y_{n}(t)\right\|$, we put

$$
u_{n}=\max _{t \in J}\left[e^{-P t} m_{n}(t)\right] \quad \text { with } P>L \text { and } \frac{M_{0}}{P-L} \leq q<1
$$

Note that $m_{n}(0)=0$. By assumptions A_{6} and $A_{7}(b)$, we have

$$
\begin{aligned}
D^{+} m_{n}(t) \leq & \left\|y_{n+1}^{\prime}(t)-y_{n}^{\prime}(t)\right\| \\
= & \| \mathcal{F}\left(t, y_{n}\right)+h\left(t, y_{n+1}\right)+V_{n}(t)\left[y_{n+1}(t)-y_{n}(t)\right]-\mathcal{F}\left(t, y_{n-1}\right)-h\left(t, y_{n}\right) \\
& -V_{n-1}(t)\left[y_{n}(t)-y_{n-1}(t)\right] \| \\
\leq & L m_{n}(t)+M_{0} m_{n-1}(t), \quad t \in J .
\end{aligned}
$$

Here $D^{+} m$ denotes the right-hand upper Dini's derivative of m. Hence

$$
m_{n}(t) \leq M_{0} \int_{0}^{t} e^{L(t-s)} m_{n-1}(s) d s, \quad t \in J
$$

and finally

$$
u_{n} \leq M_{0} \max _{t \in J}\left[e^{-P t} \int_{0}^{t} e^{L(t-s)} m_{n-1}(s) d s\right]<q u_{n-1}, \quad n=1,2, \cdots
$$

Basing on the above, we obtain

$$
\begin{aligned}
\max _{t \in J}\left[e^{-P t}\left\|y_{n+k+1}(t)-y_{n+1}(t)\right\|\right] & \leq \sum_{i=1}^{k} \max _{t \in J}\left[e^{-P t} m_{n+i}(t)\right]=\sum_{i=1}^{k} u_{n+i} \\
& <\sum_{i=1}^{k} q^{n+i} u_{0} \leq \frac{q}{q-1} q^{n} u_{0}
\end{aligned}
$$

which proves that $\left\{y_{n}\right\}$ is a Cauchy sequence on J. Hence $\left\{y_{n}\right\}$ converges monotonically and uniformly on J to $y \in \Omega$, where y is a solution of problem (1). Similarly, we can prove that $z_{n} \rightarrow z \in \Omega$, where z is a solution of (1). Note that problem (1) has a unique solution x since N satisfies a Lipschitz condition and therefore $y=z=x$.

It remains to show that convergence is superlinear. Put $p_{n+1}=x-y_{n+1} \geq$ $0, q_{n+1}=z_{n+1}-x \geq 0$, so $p_{n+1}(0)=q_{n+1}(0)=0$. Note that

$$
\begin{aligned}
& \int_{0}^{1}\left[\mathcal{F}_{x}\left(t, s x+(1-s) y_{n}\right)-V_{n}(t)\right] d s=\int_{0}^{1}\left[f_{x}\left(t, s x+(1-s) y_{n}\right)-f_{x}\left(t, y_{n}\right)\right. \\
&+g_{x}\left(t, s x+(1-s) y_{n}\right)-g_{x}(t, x)+g_{x}(t, x)-g_{x}\left(t, z_{n}\right) \\
&+\Phi_{x}\left(t, z_{n}\right)-\Phi_{x}(t, x)+\Phi_{x}(t, x)-\Phi_{x}\left(t, y_{n}\right) \\
&\left.+\Psi_{x}\left(t, y_{n}\right)-\Psi_{x}(t, x)+\Psi_{x}(t, x)-\Psi_{x}\left(t, z_{n}\right)\right] d s
\end{aligned}
$$

Hence, by assumption $A_{7}(c)$, we have

$$
\begin{equation*}
\left\|\int_{0}^{1}\left[\mathcal{F}_{x}\left(t, s x+(1-s) y_{n}\right)-V_{n}(t)\right] d s p_{n}(t)\right\| \leq A \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
A=\max _{t \in J}[& A_{1}\left\|p_{n}(t)\right\|^{\alpha+1}+A_{2}\left\|p_{n}(t)\right\|^{\beta+1}+A_{2}\left\|q_{n}(t)\right\|^{\beta}\left\|p_{n}(t)\right\|+A_{3}\left\|p_{n}(t)\right\|^{\gamma+1} \\
& \left.+A_{3}\left\|q_{n}(t)\right\|^{\gamma}\left\|p_{n}(t)\right\|+A_{4}\left\|p_{n}(t)\right\|^{\delta+1}+A_{4}\left\|q_{n}(t)\right\|^{\delta}\left\|p_{n}(t)\right\|\right] .
\end{aligned}
$$

Using this and assumptions $A_{6}, A_{7}(b)$, we see that

$$
\begin{aligned}
D^{+}\left\|p_{n+1}(t)\right\| \leq & \left\|p_{n+1}^{\prime}(t)\right\|=\| \mathcal{F}(t, x)+h(t, x)-\mathcal{F}\left(t, y_{n}\right)-h\left(t, y_{n+1}\right) \\
& -V_{n}(t)\left[y_{n+1}(t)-y_{n}(t)\right] \| \\
= & \| \int_{0}^{1}\left[\mathcal{F}_{x}\left(t, s x+(1-s) y_{n}\right)-V_{n}(t)\right] d s p_{n}(t) \\
& +\left[\int_{0}^{1} h_{x}\left(t, s x+(1-s) y_{n+1} d s+V_{n}(t)\right] p_{n+1}(t) \|\right. \\
\leq & A+L\left\|p_{n+1}(t)\right\|, \quad t \in J
\end{aligned}
$$

Hence

$$
\left\|p_{n+1}(t)\right\| \leq A \int_{0}^{t} e^{L(t-s)} d s \leq A S \quad \text { with } \quad S=\frac{1}{L} e^{L T}
$$

and finally

$$
\begin{aligned}
\max _{t \in J}\left\|p_{n+1}(t)\right\| \leq & S \max _{t \in J}\left[A_{1}\left\|p_{n}(t)\right\|^{\alpha+1}+A_{2}\left\|p_{n}(t)\right\|^{\beta+1}+A_{2}\left\|q_{n}(t)\right\|^{\beta}\left\|p_{n}(t)\right\|\right. \\
& +A_{3}\left\|p_{n}(t)\right\|^{\gamma+1}+A_{3}\left\|q_{n}(t)\right\|^{\gamma}\left\|p_{n}(t)\right\|+A_{4}\left\|p_{n}(t)\right\|^{\delta+1} \\
& \left.+A_{4}\left\|q_{n}(t)\right\|^{\delta}\left\|p_{n}(t)\right\|\right] .
\end{aligned}
$$

Similarly, we can show that

$$
\begin{aligned}
\max _{t \in J}\left\|q_{n+1}(t)\right\| \leq & S \max _{t \in J}\left[A_{1}\left\|q_{n}(t)\right\|^{\alpha+1}+A_{2}\left\|q_{n}(t)\right\|^{\beta+1}+A_{1}\left\|p_{n}(t)\right\|^{\alpha}\left\|q_{n}(t)\right\|\right. \\
& +A_{3}\left\|q_{n}(t)\right\|^{\gamma+1}+A_{3}\left\|p_{n}(t)\right\|^{\gamma}\left\|q_{n}(t)\right\|+A_{4}\left\|q_{n}(t)\right\|^{\delta+1} \\
& \left.+A_{4}\left\|p_{n}(t)\right\|^{\delta}\left\|q_{n}(t)\right\|\right] .
\end{aligned}
$$

The proof is complete.
Remark 3. If $\alpha=\beta=\gamma=\delta=1$, then the convergence is quadratic.
4. Semi-superlinear convergence. Note that Theorem 2 gives superlinear convergence if the members of sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are unique solutions of corresponding nonlinear problems of type (5). It is disadvantage in practice to construct them. If we do the linearization of those previous iterates, then we lost the superlinear convergence obtaing only semi-superlinear convergence. The next theorem deals with this case.

Theorem 3. Let all assumptions of Theorem 2 with $h_{x}=0$ in as-
sumption A_{9} hold. Moreover, we assume that assumption A_{8} is satisfied. Then there exist monotone sequences which converge uniformly and monotonically to the unique solution x of problem (1) and the convergence is semi-superlinear.

Proof. Let I denote the unit element in B such that $I u=u$ for any $u \in B$. Note that

$$
\begin{equation*}
N(t, u)-N(t, v) \leq[V(t, u, v)-M I][u-v], \text { if } u \leq v, u, v \in \Omega \tag{10}
\end{equation*}
$$

where V is defined as in Theorem 2. To prove (10) use (2) and Assumption A_{8} to the following relation

$$
\begin{equation*}
N(t, u)-N(t, v)=\mathcal{F}(t, u)-\mathcal{F}(t, v)+h(t, u)-h(t, v) \tag{11}
\end{equation*}
$$

Let

$$
\begin{cases}y_{n+1}^{\prime}(t)=N\left(t, y_{n}\right)+\left[V_{n}(t)-M I\right]\left[y_{n+1}(t)-y_{n}(t)\right], & y_{n+1}(0)=x_{0} \\ z_{n+1}^{\prime}(t)=N\left(t, z_{n}\right)+\left[V_{n}(t)-M I\right]\left[z_{n+1}(t)-z_{n}(t)\right], & y_{n+1}(0)=x_{0}\end{cases}
$$

where $V_{n}(t)$ is defined as in Theorem 2. Note that the elements y_{n+1} and z_{n+1} are well defined.

We shall show that

$$
\begin{equation*}
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t) \text { on } J \tag{12}
\end{equation*}
$$

Let $p=y_{0}-y_{1}$, so $p(0) \leq 0$. Then
$p^{\prime}(t) \leq N\left(t, y_{0}\right)-N\left(t, y_{0}\right)-\left[V_{0}(t)-M I\right]\left[y_{1}(t)-y_{0}(t)\right]=\left[V_{0}(t)-M I\right] p(t), t \in J$.
Theorem 1 gives $p(t) \leq 0$ on J proving that $y_{0} \leq y_{1}$ on J. Let $p=y_{1}-z_{0}$ on J, so $p(0) \leq 0$. Then, by (10),

$$
\begin{aligned}
p^{\prime}(t) & \leq N\left(t, y_{0}\right)+\left[V_{0}(t)-M I\right]\left[y_{1}(t)-y_{0}(t)\right]-N\left(t, z_{0}\right) \\
& \leq\left[V_{0}(t)-M I\right]\left[y_{0}(t)-z_{0}(t)\right]+\left[V_{0}(t)-M I\right]\left[y_{1}(t)-y_{0}(t)\right]=\left[V_{0}(t)-M I\right] p(t)
\end{aligned}
$$

Hence $y_{1}(t) \leq z_{0}(t), t \in J$ proving that $y_{0}(t) \leq y_{1}(t) \leq z_{0}(t), t \in J$.
Put $p=y_{0}-z_{1}$, hence $p(0) \leq 0$. Then
$p^{\prime}(t) \leq N\left(t, y_{0}\right)-N\left(t, z_{0}\right)-\left[V_{0}(t)-M I\right]\left[z_{1}(t)-z_{0}(t)\right] \leq\left[V_{0}(t)-M I\right] p(t), t \in J$
showing that $y_{0}(t) \leq z_{1}(t), t \in J$. Put $p=z_{1}-z_{0}$, so $p(0) \leq 0$.

$$
p^{\prime}(t) \leq N\left(t, z_{0}\right)+\left[V_{0}(t)-M I\right]\left[z_{1}(t)-z_{0}(t)\right]-N\left(t, z_{0}\right)=\left[V_{0}(t)-M I\right] p(t)
$$

hence $z_{1}(t) \leq z_{0}(t)$ on J showing that $y_{0}(t) \leq z_{1}(t) \leq z_{0}(t), t \in J$.
In the next step we will show that y_{1}, z_{1} are lower and upper solutions of (1), respectively. Indeed, we have

$$
\begin{aligned}
y_{1}^{\prime}(t) & =N\left(t, y_{0}\right)+\left[V_{0}(t)-M I\right]\left[y_{1}(t)-y_{0}(t)\right]-N\left(t, y_{1}\right)+N\left(t, y_{1}\right) \\
& \leq N\left(t, y_{1}\right)+\left[V_{0}(t)-V\left(t, y_{0}, y_{1}\right)\right]\left[y_{1}(t)-y_{0}(t)\right] \leq N\left(t, y_{1}\right), t \in J
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1}^{\prime}(t) & =N\left(t, z_{0}\right)+\left[V_{0}(t)-M I\right]\left[z_{1}(t)-z_{0}(t)\right]-N\left(t, z_{1}\right)+N\left(t, z_{1}\right) \\
& \geq N\left(t, z_{1}\right)+\left[V\left(t, z_{1}, z_{0}\right)-V_{0}(t)\right]\left[z_{0}(t)-z_{1}(t)\right] \geq N\left(t, z_{1}\right), t \in J
\end{aligned}
$$

Again, by Theorem 1, $y_{1}(t) \leq z_{1}(t), t \in J$. It means that (12) holds.
Let us assume that

$$
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{k}(t) \leq z_{k}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

and let y_{k}, z_{k} be lower and upper solutions of (1) for some $k>1$. We shall prove that

$$
\begin{equation*}
y_{k}(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq z_{k}(t), \quad t \in J . \tag{13}
\end{equation*}
$$

Let $p=y_{k}-y_{k+1}$ on J, so $p(0)=0$. Then

$$
\begin{aligned}
p^{\prime}(t) & \leq N\left(t, y_{k}\right)-N\left(t, y_{k}\right)-\left[V_{k}(t)-M I\right]\left[y_{k+1}(t)-y_{k}(t)\right] \\
& =\left[V_{k}(t)-M I\right] p(t), \quad t \in J .
\end{aligned}
$$

Theorem 1 gives $p(t) \leq 0$ on J proving that $y_{k}(t) \leq y_{k+1}(t)$ on J.
Now, let $p=y_{k+1}-z_{k}$ on J. Then, by (10),

$$
\begin{aligned}
p^{\prime}(t) & \leq N\left(t, y_{k}\right)+\left[V_{k}(t)-M I\right]\left[y_{k+1}(t)-y_{k}(t)\right]-N\left(t, z_{k}\right) \\
& \leq\left[V_{k}(t)-M I\right]\left[y_{k}(t)-z_{k}(t)\right]+\left[V_{k}(t)-M I\right]\left[y_{k+1}(t)-y_{k}(t)\right] \\
& =\left[V_{k}(t)-M I\right] p(t), t \in J .
\end{aligned}
$$

Hence, $y_{k+1}(t) \leq z_{k}(t), t \in J$ showing that $y_{k}(t) \leq y_{k+1}(t) \leq z_{k}(t)$ on J. By the similar argument, we can obtain $y_{k}(t) \leq z_{k+1}(t) \leq z_{k}(t), t \in J$.

Obviously,

$$
\begin{aligned}
y_{k+1}^{\prime}(t) & =N\left(t, y_{k}\right)+\left[V_{k}(t)-M I\right]\left[y_{k+1}-y_{k}(t)\right]-N\left(t, y_{k+1}\right)+N\left(t, y_{k+1}\right) \\
& \leq N\left(t, y_{k+1}\right)+\left[V\left(t, y_{k}, y_{k+1}\right)-M I\right]\left[y_{k}(t)-y_{k+1}(t)\right] \\
& +\left[V_{k}(t)-M I\right]\left[y_{k+1}(t)-y_{k}(t)\right] \leq N\left(t, y_{k+1}\right), t \in J
\end{aligned}
$$

and

$$
\begin{aligned}
z_{k+1}^{\prime}(t) & =N\left(t, z_{k}\right)+\left[V_{k}(t)-M I\right]\left[z_{k+1}(t)-z_{k}(t)\right]-N\left(t, z_{k+1}\right)+N\left(t, z_{k+1}\right) \\
& \geq N\left(t, z_{k+1}\right)-\left[V\left(t, z_{k+1}, z_{k}\right)-M I\right]\left[z_{k+1}(t)-z_{k}(t)\right] \\
& +\left[V_{k}(t)-M I\right]\left[z_{k+1}(t)-z_{k}(t)\right] \geq N\left(t, z_{k+1}\right), \quad t \in J
\end{aligned}
$$

showing that y_{k+1}, z_{k+1} are lower and upper solutions of (1), respectively. Hence, by Theorem $1, y_{k+1}(t) \leq z_{k+1}(t), t \in J$. It proves that (13) holds. It means that

$$
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

for all n, by mathematical induction.

Using the method from Theorem 2 , we see that the sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge uniformly and monotonically to the unique solution x of (1). It remains to show that this convergence is semi-superlinear. Put $p_{n+1}=x-y_{n+1} \geq$ $0, q_{n+1}=z_{n+1}-x \geq 0$, so $p_{n+1}(0)=q_{n+1}(0)=0$. Then, by (9) and assumptions $A_{6}, A_{7}(b)$,

$$
\begin{aligned}
D^{+}\left\|p_{n+1}(t)\right\| \leq & \left\|p_{n+1}^{\prime}(t)\right\|=\| \mathcal{F}(t, x)+h(t, x)-\mathcal{F}\left(t, y_{n}\right)-h\left(t, y_{n}\right) \\
& +\left[V_{n}(t)-M I\right]\left[p_{n+1}(t)-p_{n}(t)\right] \| \\
\leq & \left\|\int_{0}^{1}\left[\mathcal{F}_{x}\left(t, s x+(1-s) y_{n}\right)-V_{n}(t)+M I\right] d s p_{n}(t)\right\| \\
& +\bar{M}\left\|p_{n}(t)\right\|+\left\|V_{n}(t)-M I\right\|\left\|p_{n+1}(t)\right\| \\
\leq & A_{0}+L\left\|p_{n+1}(t)\right\|, \quad t \in J
\end{aligned}
$$

where $A_{0}=A+(M+\bar{M}) \max _{t \in J}\left\|p_{n}(t)\right\|, \quad L=M+B_{1}+B_{2}+2 B_{3}+2 B_{4}$ with A defined as in the proof of Theorem 2. Hence

$$
\left\|p_{n+1}(t)\right\| \leq A_{0} \int_{0}^{t} e^{L(t-s)} d s \leq A_{0} S \quad \text { with } \quad S=\frac{1}{L} e^{L T}
$$

and finally

$$
\begin{aligned}
\max _{t \in J}\left\|p_{n+1}(t)\right\| \leq & S \max _{t \in J}\left[A_{1}\left\|p_{n}(t)\right\|^{\alpha+1}+A_{2}\left\|p_{n}(t)\right\|^{\beta+1}+A_{2}\left\|q_{n}(t)\right\|^{\beta}\left\|p_{n}(t)\right\|\right. \\
& +A_{3}\left\|p_{n}(t)\right\|^{\gamma+1}+A_{3}\left\|q_{n}(t)\right\|^{\gamma}\left\|p_{n}(t)\right\|+A_{4}\left\|p_{n}(t)\right\|^{\delta+1} \\
& \left.+A_{4}\left\|q_{n}(t)\right\|^{\delta}\left\|p_{n}(t)\right\|+(M+\bar{M}) \max _{t \in J}\left\|p_{n}(t)\right\|\right] .
\end{aligned}
$$

Similarly, we can show that

$$
\begin{aligned}
\max _{t \in J}\left\|q_{n+1}(t)\right\| & \leq S \max _{t \in J}\left[A_{1}\left\|q_{n}(t)\right\|^{\alpha+1}+A_{2}\left\|q_{n}(t)\right\|^{\beta+1}+A_{1}\left\|p_{n}(t)\right\|^{\beta}\left\|q_{n}(t)\right\|\right. \\
& +A_{3}\left\|q_{n}(t)\right\|^{\gamma+1}+A_{3}\left\|p_{n}(t)\right\|^{\gamma}\left\|q_{n}(t)\right\|+A_{4}\left\|q_{n}(t)\right\|^{\delta+1} \\
& \left.+A_{4}\left\|p_{n}(t)\right\|^{\delta}\left\|q_{n}(t)\right\|+(M+\bar{M}) \max _{t \in J}\left\|q_{n}(t)\right\|\right]
\end{aligned}
$$

It ends the proof.
Example. Consider the initial value problem of an infinite system for scalar differential equations of type

$$
\left\{\begin{array}{l}
u_{n}^{\prime}(t)=\frac{1}{4 n}\left[t-u_{n}(t)\right]^{3}+\frac{t}{4}\left[u_{n}^{3}(t)+u_{n+1}^{3}(t)\right], \quad t \in J=[0,1] \tag{14}\\
u_{n}(0)=0
\end{array}\right.
$$

for $n=1,2, \cdots$. Here $B=\left\{u=\left(u_{1}, \cdots, u_{n}, \cdots\right): u_{n} \in R\right\}$ with the norm $\|u\|=\sup _{n}\left\{\left|u_{n}(t)\right|: t \in J\right\}$ and $K=\left\{u \in B: u_{n} \geq 0, n=1,2, \cdots\right\}$. Indeed, K is a normal cone in B. In this case $N=\left(N_{1}, \cdots, N_{n}, \cdots\right), f=\left(f_{1}, \cdots, f_{n}, \cdots\right)$, $g=\left(g_{1}, \cdots, g_{n}, \cdots\right), h=\left(h_{1}, \cdots, h_{n}, \cdots\right)$ and $N_{n}(t, u)=g_{n}(t, u)+h_{n}(t, u)$ with $f_{n}(t, u)=0, \quad g_{n}(t, u)=\frac{1}{4 n}\left(t-u_{n}\right)^{3}, \quad h_{n}(t, u)=\frac{t}{4}\left(u_{n}^{3}+u_{n+1}^{3}\right) t \in J, \quad n=0,1, \cdots$. Indeed, $N \in C(J \times B, B)$. Let $y_{0}(t)=(0, \cdots, 0, \cdots), z_{0}(t)=\left(t, \frac{t}{2}, \cdots, \frac{t}{n}, \cdots\right)$. Then $y_{0}(t) \leq z_{0}(t), \quad t \in J$. Moreover $y_{0}(0)=(0, \cdots, 0, \cdots)=z_{0}(0), y_{0}^{\prime}(t)=$ $(0, \cdots, 0, \cdots), z_{0}^{\prime}(t)=\left(1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots\right)$, and

$$
N_{n}\left(t, y_{0}(t)\right)=\frac{1}{4 n}>0=y_{0 n}^{\prime}(t), \quad t \in J
$$

$$
N_{n}\left(t, z_{0}(t)\right)=\frac{t^{3}}{4 n}\left(1-\frac{1}{n}\right)^{3}+\frac{t^{4}}{4}\left(\frac{1}{n^{3}}+\frac{1}{(n+1)^{3}}\right)<\frac{1}{n}=z_{0 n}^{\prime}(t), t \in J
$$

It proves that y_{0}, z_{0} are lower and upper solutions of problem (14), respectively. Let $y_{0}(t) \leq u(t) \leq v(t) \leq z_{0}(t), t \in J$. Then

$$
\begin{aligned}
& N_{n}(t, u)-N_{n}(t, v)=\frac{1}{4 n}\left[\left(t-u_{n}\right)^{3}-\left(t-v_{n}\right)^{3}\right]+\frac{t}{4}\left[u_{n}^{3}+u_{n+1}^{3}-v_{n}^{3}-v_{n+1}^{3}\right] \\
& \quad \leq \frac{1}{4 n}\left(v_{n}-u_{n}\right)\left[\left(t-u_{n}\right)^{2}+\left(t-u_{n}\right)\left(t-v_{n}\right)+\left(t-v_{n}\right)^{2}\right] \leq \frac{3}{4}\left(v_{n}-u_{n}\right)
\end{aligned}
$$

so assumption A_{2} holds. Moreover, $\bar{M}=\frac{3}{2}$ and $\Phi_{n}(t, u)=0, t \in J, n=1,2, \cdots$. Put $\Psi_{n}(t, u)=-\frac{3 t}{4 n} u_{n}^{2}, t \in J, n=1,2, \cdots$. Let $y_{0}(t) \leq u \leq \bar{u} \leq z_{0}(t), t \in J$ and $v \in K$. Then

$$
\begin{aligned}
\Psi_{n x}(t, u) v_{n}-\Psi_{n x}(t, \bar{u}) v_{n} & =\frac{6 t}{4 n}\left(\bar{u}_{n}-u_{n}\right) v_{n} \geq 0 \\
G_{n x}(t, u) v_{n}-G_{n x}(t, \bar{u}) v_{n} & =\frac{3}{4 n} v_{n}\left[\left(\bar{u}_{n}-t\right)^{2}-\left(u_{n}-t\right)^{2}+2 t\left(\bar{u}_{n}-u_{n}\right)\right] \\
& =\frac{3}{4 n}\left(\bar{u}_{n}-u_{n}\right)\left(\bar{u}_{n}+u_{n}\right) \geq 0
\end{aligned}
$$

for $t \in J, n=1,2, \cdots$. It proves that assumption $A_{7}(a)$ holds. Moreover, it is simple to see that $B_{1}=0, B_{2}=\frac{3}{4}, B_{3}=0, B_{4}=\frac{3}{2}, A_{1}=\alpha=A_{3}=\gamma=0$, $A_{2}=A_{4}=\frac{3}{2}, \beta=\delta=1$.

Put
$(15)\left\{\begin{array}{l}V_{k}(t)=g_{x}\left(t, z_{k}\right)+\Psi_{x}\left(t, z_{k}\right)-\Psi_{x}\left(t, y_{k}\right), \\ y_{k+1}^{\prime}(t)=g\left(t, y_{k}\right)+h\left(t, y_{k+1}\right)+V_{k}(t)\left[y_{k+1}(t)-y_{k}(t)\right], \quad y_{k+1}(0)=y_{0}(0), \\ z_{k+1}^{\prime}(t)=g\left(t, z_{k}\right)+h\left(t, z_{k+1}\right)+V_{k}(t)\left[z_{k+1}(t)-z_{k}(t)\right], \quad z_{k+1}(0)=z_{0}(0)\end{array}\right.$
for $t \in J, \quad k=0,1, \cdots$. Then, by Theorem 2, the monotone sequences $\left\{y_{k}, z_{k}\right\}$, $y_{k}=\left(y_{1 k}, \cdots, y_{n k}, \cdots\right) \in B, z_{k}=\left(z_{1 k}, \cdots, z_{n k}, \cdots\right) \in B$ converge (if $k \rightarrow \infty$) to the unique solution x of problem (14) and this convergence is quadratic i.e.

$$
\left\|p_{k+1}\right\| \leq a_{1}\left\|p_{k}\right\|^{2}+a_{2}\left\|q_{k}\right\|^{2}, \quad\left\|q_{k+1}\right\| \leq a_{3}\left\|p_{k}\right\|^{2}+a_{4}\left\|q_{k}\right\|^{2}, \quad k=0,1, \cdots
$$

for some nonnegative constants $a_{1}, a_{2}, a_{3}, a_{4}$.
Note that, by Theorem 3, the convergence of sequences $\left\{y_{k}, z_{k}\right\}$ to x is
semi-superlinear, i.e.

$$
\begin{aligned}
& \left\|p_{k+1}\right\| \leq b_{1}\left\|p_{k}\right\|^{2}+b_{2}\left\|q_{k}\right\|^{2}+b_{0}\left\|p_{k}\right\|, \\
& \left\|q_{k+1}\right\| \leq b_{3}\left\|p_{k}\right\|^{2}+b_{4}\left\|q_{k}\right\|^{2}+b_{0}\left\|q_{k}\right\|, \quad b_{s} \geq 0, s=0,1,2,3,4, k=0,1, \cdots
\end{aligned}
$$

where
(16) $\begin{cases}y_{k+1}^{\prime}(t)=g\left(t, y_{k}\right)+h\left(t, y_{k}\right)+V_{k}(t)\left[y_{k+1}(t)-y_{k}(t)\right], & y_{k+1}(0)=y_{0}(0), \\ z_{k+1}^{\prime}(t)=g\left(t, z_{k}\right)+h\left(t, z_{k}\right)+V_{k}(t)\left[z_{k+1}(t)-z_{k}(t)\right], & z_{k+1}(0)=z_{0}(0)\end{cases}$
for $t \in J, \quad k=0,1, \cdots$. Note that the rate of convergence for sequences (15) is higher than the corresponding one for (16) but to apply (15) we need to find the members of y_{k+1}, z_{k+1} solving corresponding nonlinear equations.

REFERENCES

[1] R. Bellman. Methods of Nonlinear Analysis, Vol. II. Academic Press, New York, 1973.
[2] R. Bellman, R. Kalaba. Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York 1965.
[3] S. G. Deo, Z. Drici. Method of generalized quasilinearization in abstract cones. Nonlinear Stud. 5 (1998), 25-33.
[4] S. W. Du, V. Lakshmikantham. Monotone Iterative Technique for Differential Equations in a Banach Space. J. Math. Anal. Appl. 87 (1982), 454-459.
[5] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala. Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985.
[6] V. Lakshmikantham, S. Leela. Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, Oxford, 1981.
[7] V. Lakshmikantham, S. Leela. On the method of upper and lower solutions in abstract cones. Ann. Polon. Math. XLII (1983), 159-164.
[8] V. Lakshmikantham, S. Leela, F. A. McRae. Improved Generalized Quasilinearization Method. Nonlinear Anal. 24 (1995), 1627-1637.
[9] V. Lakshmikantham, A. S. Vatsala. Generalized Quasilinearization for Nonlinear Problems. Kluwer Academic Publishers, Derdrecht - Boston London, 1998.

Technical University of Gdańsk
Department of Differential Equations
11/12 G.Narutowicz Str.
80-952 Gdańsk, POLAND
Received April 4, 2000
e-mail: tjank@mif.pg.gda.pl

[^0]: 2000 Mathematics Subject Classification: 34A45, 34K99.
 Key words: Quasilinearization, monotone iterations, superlinear and semi-superlinear convergence.

