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A CHARACTERIZATION OF VARIETIES OF ASSOCIATIVE

ALGEBRAS OF EXPONENT TWO
∗
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Communicated by V. Drensky

Abstract. It was recently proved that any variety of associative algebras
over a field of characteristic zero has an integral exponential growth. It is
known that a variety V has polynomial growth if and only if V does not
contain the Grassmann algebra and the algebra of 2 × 2 upper triangular
matrices. It follows that any variety with overpolynomial growth has ex-
ponent at least 2. In this note we characterize varieties of exponent 2 by
exhibiting a finite list of algebras playing a role similar to the one played by
the two algebras above.

Let F be a field of characteristic zero and V a variety of associative al-

gebras over F . Let F 〈X〉 be the free algebra of countable rank over F and

F 〈X〉/Id(V) the corresponding free algebra of the variety V where Id(V) is the
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T-ideal of polynomial identities of V. The exponent of a variety V is defined as

follows: for every n ≥ 1 let Pn be the space of multilinear polynomials in the

variables x1, . . . , xn. If cn(V) = dim Pn/(Pn∩Id(V)) is the n-th codimension of V

and V has at least one non-trivial identity it is well known ([8]) that the sequence

of codimensions is exponentially bounded. Then one defines the exponent of V

as Exp(V) = lim
n→∞

n

√

cn(V). Hence if V is nilpotent, then Exp(V) = 0. It has been

shown in [1] and [2] that for every non-nilpotent variety V, Exp(V) exists and is

a positive integer.

Kemer in [4] described in various ways the T-ideals (or varieties) of poly-

nomial growth. Later [5] he proved that a variety V has a polynomially bounded

codimension sequence if and only if G 6∈ V and UT2(F ) 6∈ V where G is the

infinite dimensional Grassmann algebra and UT2(F ) is the algebra of 2×2 upper

triangular matrices over F . From its characterization (see also [3]) it follows that

if Exp(V) = 1 then the codimensions of V are polynomially bounded.

In this note we shall characterize the varieties V of exponent two. To

this end, we view G = G(0) + G(1) with its natural Z2-grading where G(0) and

G(1) are the spaces generated by the monomials of even degree and odd degree

respectively. We then define the following five algebras over F :

1) A1 =

(

G G
0 G(0)

)

;

2) A2 =

(

G(0) G
0 G

)

;

3) A3 = UT3(F ), the algebra of 3 × 3 upper triangular matrices over F ;

4) A4 = M2(F ), the algebra of 2 × 2 matrices over F ;

5) A5 = M1,1(G) =

(

G(0) G(1)

G(1) G(0)

)

equipped with the Z2-grading

M
(0)
1,1 =

(

G(0) 0
0 G(0)

)

, M
(1)
1,1 =

(

O G(1)

G(1) 0

)

.

The main result of this note is the following

Theorem 1. Let F be a field of characteristic zero and V a variety

of associative F -algebras. Then Exp(V) > 2 if and only if Ai ∈ V for some

i ∈ {1, . . . , 5}.
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For every i = 1, . . . , 5 let Vi = var(Ai) be the variety generated by the

algebra Ai. The above list of algebras cannot be reduced; in fact we shall prove

the following

Proposition 1. For all i 6= j, Vi 6⊆ Vj.

Hence V1, . . . ,V5 are the only minimal varieties of exponent > 2 in the

sense that, for every i, Exp(Vi) > 2 and for every subvariety W of Vi,Exp(W) ≤

2. From the proof of Theorem 1 it will be clear that Exp(V1) = Exp(V2) =

Exp(V3) = 3 and Exp(V4) = Exp(V5) = 4.

Invoking the result of Kemer mentioned above we get

Corollary 1. Let V be a variety of algebras over a field of characteristic

zero. Then Exp(V) = 2 if and only if A1, . . . , A5 6∈ V and either G ∈ V or

UT2(F ) ∈ V.

P r o o f o f Th e o r e m 1. Suppose Exp(V) = p > 2. By a result of Kemer

([6]) there exists a finite dimensional Z2-graded algebra B = B(0)+B(1) such that

V = var(G(B)) where G(B) = G(0)⊗B(0)+G(1)⊗B(1) is the Grassmann envelope

of B. Let B = B1 ⊕ · · · ⊕Bk + J be the Wedderburn-Malcev decomposition of B

where J is the Jacobson radical of B and B1, . . . , Bk are simple subalgebras that

are homogeneous in the Z2-grading. For each i = 1, . . . k, let Bi = B
(0)
i + B

(1)
i

and J = J (0) + J (1) be the induced Z2-grading (see [6, p. 21]).

Let now F be the algebraic closure of the field F and B = B ⊗F F .

Then G(B)⊗F F ∼= G(B ⊗F F ) = G(B) and the n-th codimension of G(B) over

F equals the n-th codimension of G(B) over F , for all n. It follows that the

exponent of G(B) over F coincides with the exponent of G(B) over F . Since

G(B) ∈ var(G(B)) = V, in order to prove that Ai ∈ V for some i, it is enough to

show that G(B) contains a copy of Ai for some i. In particular we may assume

that F is algebraically closed.

From [2] we obtain that Exp(V) is computed as follows: consider all

possible products of the form

C1JC2J · · · JCt 6= 0(1)

where C1, . . . , Ct ∈ {B1, . . . , Bk} are distinct and define

p(0) = dim(C
(0)
1 ⊕ · · · ⊕ C

(0)
t ), p(1) = dim(C

(1)
1 ⊕ · · · ⊕ C

(1)
t ).

Then p = Exp(V) is the maximal value of p(0) + p(1) where C1, . . . , Ct satisfy (1).
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Also recall that a simple finite dimensional Z2-graded algebra over F is

isomorphic to one of the following algebras:

i) Ma,b(F ) =

(

A11 A12

A21 A22

)

where A11, A12, A21, A22 are a×a, a× b, b×a and

b × b matrices respectively, a > 0, b ≥ 0, with grading

M
(0)
a,b (F ) =

(

A11 0
0 A22

)

, M
(1)
a,b (F ) =

(

0 A12

A21 0

)

.

ii) MN (F ) ⊕ cMN (F ) where c2 = 1, with grading MN (F )(0) = MN (F ),

MN (F )(1) = cMN (F ).

Now, if B contains one simple component of type i) with a + b ≥ 2 or of

type ii) with N ≥ 2, then we will get that G(B) contains an algebra isomorphic

to either A4 or A5 and in this case we will be done.

Therefore, since p > 2, we may assume that one of the following possibil-

ities occurs:

1) for some i 6= l, BiJBl 6= 0 where Bi
∼= F + cF, c2 = 1 and Bl

∼= F ;

2) for some i 6= l, BiJBl 6= 0 where Bi
∼= F and Bl

∼= F + cF, c2 = 1;

3) there exist distinct Bi, Bl, Bm such that BiJBlJBm 6= 0 and Bi
∼= Bl

∼=

Bm
∼= F.

Suppose 1) holds. Then there exists a+ cb ∈ Bi such that (a+ cb)j13 6= 0

where 13 is the unit element of Bl and j ∈ J is homogeneous. By eventually

multiplying by c on the left, we may assume that (a + cb)j013 6= 0 for some

j0 ∈ J (0). Write a+cb = u11(a+b)+u22(a−b) where u11 = (1+c)/2, u22 = (1−c)/2

and 1 = 1Bi
is the unit element of Bi. Set u33 = 13.

First consider the case when j0u33 and cj0u33 are linearly dependent over

F . Since c2 = 1 it follows that cj0u33 = ±j0u33.

Suppose cj0u33 = j0u33. Then u11j0u33 = j0u33 and u22j0u33 = 0. If we

set u13 = j0u33, then the uhk’s behave like the corresponding matrix units of 3×3

matrices and the algebra generated by u11, u22, u33, u13 over F is isomorphic to
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the Z2-graded algebra D =





F 0 F
0 F 0
0 0 F



 with grading

D(0) =











λ 0 ν
0 λ 0
0 0 µ











, D(1) =











λ 0 ν
0 −λ 0
0 0 0











.

Clearly,

G(D) =











a + b 0 z
0 a − b 0
0 0 t











where a, t ∈ G0, b ∈ G1, z ∈ G. It is easy to check that G(D) ∼=

(

G G
0 G(0)

)

= A1

and the map




a + b 0 z
0 a − b 0
0 0 t



 7→

(

a + b z
0 t

)

is an isomorphism. Hence A1 ∈ V and we are done.

Now let cj0u33 = −j0u33. Then u11j0u33 = 0, u22j0u33 = j0u33 and the

elements u11, u22, u33, u23 = j0u33 generate a Z2-graded algebra isomorphic to

D′ =





F 0 0
0 F F
0 0 F



 with Z2-grading

D
′(0) =











λ 0 0
0 λ ν
0 0 µ











, D
′(1) =











λ 0 0
0 −λ ν
0 0 0











.

In this case the isomorphism of algebras G(D′) ∼= A1 is given by the map





a + b 0 0
0 a − b z
0 0 t



 7→

(

a − b z
0 t

)

where a, t ∈ G0, b ∈ G1 and z ∈ G.

Now consider the case when j0u33 and cj0u33 are linearly independent

over F . In this case u11, u22, u33, u13 = u11j0u33 and u23 = u22j0u33 are linearly
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independent and form a subalgebra in B isomorphic to D′′ =





F 0 F
0 F F
0 0 F



 with

Z2-grading

D
′′(0) =











λ 0 ν
0 λ ν
0 0 µ











, D
′′(1) =











λ 0 ν
0 −λ −ν
0 0 0











.

Hence G(D′′) ∈ V and

G(D′′) =











a + b 0 z + w
0 a − b z − w
0 0 t











where a, z, t ∈ G0, b, w ∈ G1.

As before we construct an algebra isomorphism G(D′′) ∼= A1 by setting





a + b 0 z + w
0 a − b z − w
0 0 t



 7→

(

a − b z − w
0 t

)

where a, z, t ∈ G0, b, w ∈ G1.

In case 2) holds then the same procedure as above shows that A2 ∈ V.

Finally suppose that 3) holds. Then there exist j0, j
′

0 ∈ J (0), j1, j
′

1 ∈ J (1)

such that 11(j0 + j1)12(j
′

0 + j′1)13 6= 0 where 11, 12, 13 are the unit elements of

Bi, Bl, Bm respectively. In this case at least one of the products 11jr12j
′

s13, r, s ∈

{0, 1} is non-zero. Then, for fixed r and s set u11 = 11, u22 = 12, u33 = 13, u12 =

11jr12, u23 = 12j
′

s13, u13 = 11jr12j
′

s13 and let Drs be the Z2-graded subalgebra

of B generated by u11, u22, u33, u12, u23, u13. By taking the Grassmann envelope

of the algebra Drs, we get that V must contain at least one of the following four

algebras denoted E1, E2, E3, E4 respectively

UT3(F ),





G(0) G(0) G(1)

0 G(0) G(1)

0 0 G(0)



 ,





G(0) G(1) G(1)

0 G(0) G(0)

0 0 G(0)



 ,





G(0) G(1) G(0)

0 G(0) G(1)

0 0 G(0)



 .

It is easy to check that each Ei satisfies the identity [x1, x2][x3, x4][x5, x6] ≡ 0

and, according to [7], all the identities of UT3(F ) . On the other hand, each one

of the algebras E2, E3, E4 has a subalgebra isomorphic to UT3(F ). In the case

of E4 this subalgebra is generated by e11, e22, e33, xe12, ye23 and xye13 where x

and y are two distinct generators of G. For E3 it is the subalgebra generated
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by e11, e22, e33, e23, xe12 and xe13. For E2 we take e11, e22, e33, e12, xe13 and xe23.

Hence UT3(F ) ∈ V and we are done. From [1] and [2] it follows that Exp(V1) =

Exp(V) = Exp(V3) = 3 and Exp(V4) = Exp(V5) = 4. Hence if W ∋ Ai for some

i ∈ {1, . . . , 5} then Exp(W) > 2. �

P r o o f o f P r o p o s i t i o n 1. It is clear that if W ⊆ V are varieties,

then Exp(W) ≤ Exp(V); hence V4 6⊆ Vi and V5 6⊆ Vi for all i = 1, 2, 3.

Since UT3(F ) and M2(F ) are the only two algebras among the Ai’s satis-

fying a standard identity, we get that V1,V2,V5 6⊆ Vi, i = 3, 4. Also, the algebra

M2(F ) satisfies the standard identity S4 ≡ 0 but S4 6≡ 0 on UT3(F ), hence

V3 6⊆ V4.

The algebra M1,1(F ) ∼= G⊗G is the only algebra among the Ai’s satisfying

the identity [[x1, x2], [x3, x4], x5] ≡ 0; hence Vi 6⊆ V5 for i = 1, 2, 3, 4.

The algebra A1 satisfies the identity f1 = [x1, x2, x3][x4, x5] ≡ 0 and the

algebra A2 satisfies the identity f2 = [x1, x2][x3, x4, x5] ≡ 0. Since f1 6≡ 0 on A2

and f2 6≡ 0 on A1, we get that V1 6⊆ V2 and V2 6⊆ V1. Moreover since f1 and f2

do not vanish on UT3(F ) we get that V3 6⊆ V1,V2. �
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