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BOUNDARY-VALUE PROBLEMS FOR ALMOST

NONLINEAR SINGULARLY PERTURBED SYSTEMS OF

ORDINARY DIFFERENTIAL EQUATIONS

L. I. Karandjulov, Y. P. Stoyanova

Communicated by J.-P. Françoise

Abstract. A boundary-value problems for almost nonlinear singularly
perturbed systems of ordinary differential equations are considered. An as-
ymptotic solution is constructed under some assumption and using boundary
functions and generalized inverse matrix and projectors.

1. Formulation of the problem. A construction of the solution of
singularly perturbed systems of ordinary differential equations is connected with
application of different asymptotic methods. The works of A. Tikhonov [11], [12],
N. Levinson [2], [6], W. Wazov [17] are fundamental in this direction.

The method and results of A. B. Vasil’eva [13], [14] and A. B. Vasil’eva,
V. F. Butuzov [15], [16] give a possibility to construct asymptotic solution of
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singularly perturbed systems using boundary functions. This method will use in
a present paper.

Another asymptotic method for solving singularly perturbed systems is
the method of the regularization, described from S. A. Lomov in [7]. Singularly
perturbed systems of integro-differential equations are considered in [3].

Let it is given a system

ε
dx

dt
= Ax+ εf(t, x, ε) + ϕ(t), t ∈ [a, b], 0 < ε≪ 1,(1)

with a boundary condition

l(x) = h, h ∈ R
m.(2)

It is assumed that the coefficients of the boundary-value problem (1), (2) are
satisfied the next conditions:

H1: A is n × n matrix with constant coefficients. Its eigenvalues have a
negative real parts, Reλi < 0, λi ∈ σ(A), i = 1, n.

H2: f(t, x, ε) ∈ C∞(Ω) is n-dimensional vector-function, where Ω ≡
{(t, x, ε)|a ≤ t ≤ b, |x| ≤ ρ, ε ∈ (0, ε0]}, i.e. there exist positive constants ki such,
that ‖f (i)(t, x, ε)‖ ≤ ki.

H3: ϕ(t) ∈ C∞[a, b] is n-dimensional vector-function.
H4: l is m-dimensional linear bounded functional, l = col(l1, . . . , lm),

l ∈ (x : C[a, b] → R
n,Rm), ‖l(ψ)‖ ≤ b‖ψ‖, b = const, b > 0.

If ε = 0, from (1) is obtained the degenerate system Ax0(t) + ϕ(t) =
0, which under conditions H1, H3 has an unique continuous solution x0(t) =
−A−1ϕ(t), for ∀ϕ(t) ∈ C∞[a, b].

The asymptotic series of the solution of the nonlinear problem (1), (2)
will be constructed basing on the conditions H1–H4, the method of boundary
functions and some additional assumptions

If instead of function f(t, x, ε) in (1) is placed (n×n) matrix A1(t), then
it is obtained a boundary-value problem which is investigated in [5], [4].

The construction of the asymptotic solution of (1), (2) is based on gener-
alized inverse matrices and projectors too. [1], [9], [10], [8].

2. Formally asymptotic expansion. The formally asymptotic expan-
sion of the solution of the boundary-value problem (1), (2) is sought in the form

x(t, ε) =
∞
∑

i=0

εi(xi(t) + Πi(τ)), τ =
t− a

ε
.(3)
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The coefficients xi(t), Πi(τ) of expansion (3) are unknown n-dimensional vector
functions and its determination is accomplished by substitution of (3) in the
system (1).

ε
∞
∑

i=0
εi
(

dxi(t)

dt
+

1

ε

dΠi(τ)

dτ

)

= A
∞
∑

i=0
εi(xi(t) + Πi(τ))+

+ εf

(

t,
∞
∑

i=0
εi(xi(t) + Πi(τ)), ε

)

+ ϕ(t)

(4)

The function f(t,
∑∞

i=0 ε
i(xi(t) + Πi(τ)) is presented in the form [15].

f

(

t,
∞
∑

i=0
εi(xi(t) + Πi(τ)), ε

)

= f(t, ε) + Πf(τ, ε),(5)

where

f(t, ε) = f

(

t,
∞
∑

i=0
εixi(t), ε

)

Πf(τ, ε) = f

(

ετ + a,
∞
∑

i=0
εi(xi(ετ + a) + Πi(τ)), ε

)

−

− f

(

ετ + a,
∞
∑

i=0
εixi(ετ + a), ε

)

The function f(t, ε) is expanded in the series of Taylor in neighbourhood of points
(t, x0(t), 0). The coefficients before the same powers of ε are grouped and the last
function takes on the form

f(t, ε) =

∞
∑

i=0

εif i(t),(6)

where

f i(t) =

{

f(t, x0(t), 0), i = 0,

f ′x(t, x0(t), 0)xi(t) + gi(t, x0(t), . . . , xi−1(t)), i = 1, 2, . . .
(7)

Derivatives of (i− 1)-th order with respect to ε and x of the function f take part
in the functions gi.

The function Πf(τ, ε) is expanded in the series of Taylor too in neighbour-
hood of the point (a, x0(a) + Π0(τ), 0), and xi(t) – in neighbourhood of t = a.
Then Πf(τ, ε) takes on the representation

Πf(τ, ε) =
∞
∑

i=0

εiΠif(τ),(8)
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where

Πif(τ)=















f(a, x0(a) + Π0(τ), 0) − f(a, x0(a), 0),
i = 0,

f ′x(a, x0(a) + Π0(τ), 0)Πi(τ) +Gi(τ,Π0(τ), . . .,Πi−1(τ)),

i=1, 2, 3, . . .

(9)

The expansions (6) and (8) are substituted in the system (4) through (5). It is
separated the variables with respect to t and τ . The coefficients before identical
powers of ε are equalized. Thus the elements of the regular series take on the
form

xi(t) =















−A−1ϕ(t), i = 0,

A−1

(

dxi−1(t)

dt
− f i−1(t)

)

, i = 1, 2, 3, . . .
(10)

The boundary functions are obtained successively as solutions of the next linear
differential equations

dΠi(τ)

dτ
= AΠi(τ) + fi(τ), τ ∈

[

0,
b− a

ε

]

(11)

where

fi(τ) =

{

0, i = 0,

Πi−1f(τ), i = 1, 2, 3, . . .
(12)

The series (3) is substituted in the boundary condition (2), the coefficients before
the same powers of ε are equalized and it is obtained the following equations

l(xi(·)) + l

(

Πi

(

(·) − a

ε

))

=

{

h, i = 0,
0, i = 1, 2, 3, . . .

(13)

It is considered a linear system

dx

dτ
= Ax, τ ∈

[

0,
b− a

ε

]

and let X(τ) = exp(Aτ) is its normal fundamental matrix of solutions.

Lemma 1 [15]. If eigenvalues λi, i = 1, n of n× n matrix A satisfy an

inequality Reλi < −2α1, α1 > 0, α1 = const, then exists constant c1, c1 > 0,
such that:

‖ exp(At)‖ ≤ c1 exp(−α1t), t ≥ 0,
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where under norm of the matrix B = [bij(t)]
i=1,n

j=1,n
, t ∈ [a, b] is understood

‖B‖ = max
1≤i≤n

n
∑

j=1

|bij(t)|, t ∈ [a, b].

Let by D(ε) is denoted the following m× n matrix:

D(ε) = l

(

X

(

(·) − a

ε

))

(14)

In dependence of structure of the functional l will be considered two cases for the
form of D(ε).

2.1. D(ε) = D0+O

(

εs exp

(

−
α

ε

))

, α > 0, s ∈ N. In this case D0

is constant m× n matrix. The elements O(εsexp(−α
ε
)) are exponentially small.

Let for the matrix D0 is fulfilled the condition:
H5: rankD0 = n1 < min(m,n).
Then rankP = n − n1 = r, and rankP ∗ = m − n1 = d, here P and P ∗

are projectors

P : R
n → ker(D0), P ∗ : R

m → ker(D∗
0), D∗

0 = DT .

Dimensions of P and P ∗ are n×n and m×m respectively. Let by Pr is denoted
n× r matrix, which consist of r in number arbitrary linear independent columns
of the matrix P , and by P ∗

d – d×m matrix, consisting of d in number arbitrary
linear independent rows of the matrix P ∗.

The boundary-value problem with respect to Π0(τ) is considered, i.e. the
system (11) with boundary condition (13) when i = 0

dΠ0(τ)

dτ
= AΠ0(τ), l

(

Π0

(

(·) − a

ε

))

= h− l(x0(·)).(15)

The general solution of the homogeneous system Π0(τ) = X(τ)c0, c0 ∈ R
n is

substituted in the boundary condition (15) and the following system about c0 is
obtained.

D(ε)c0 = h0, h0 = h− l(x0(·)).(16)

Because of ignoring the exponentially small elements in the matrix D(ε) the last
system takes on the form

D0c0 = h0.(17)
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In accordance with H5 this system has r-parametric solution

c0 = Prc
r
0 +D+

0 h0, c
r
0 ∈ R

n(18)

if and only if
P ∗

dh0 = 0.

By D+
0 is denoted an unique Moore-Penrose inverse matrix of the matrix D0.

The equality (18) is substituted in the general solution of the problem (15) and
the next expression for Π0(τ) is obtained

Π0(τ) = Xr(τ)c
r
0 + q0(τ),(19)

where the denotations Xr(τ) = X(τ)Pr and q0(τ) = X(τ)D+
0 h0 are introduced.

In (19) the vector cr0 is unknown. It will be found from the condition for
solvability when the next boundary function Π1(τ) is defined from the system
(11) and the condition (13) under i = 1, i.e.

dΠ1(τ)

dτ
= AΠ1(τ) + f1(τ), l

(

Π1

(

(·) − a

ε

))

= −l(x1(·)).(20)

Here the function f1(τ) has the form from (12) — f1(τ) = f(a, x0(a)+Π0(τ), 0)−
f(a, x0(a), 0). The function f(a, x0(a) + Π0(τ), 0) is expanded in the series of
Taylor in neighbourhood of point (a, x0(a), 0), to the second order, for instance. In
the obtained series is substituted Π0(τ) from (19) and the following representation
is received for f1(τ)

f1(τ) = f ′x(a, x0(a), 0)(Xr(τ)c
r
0 + q0(τ)) +

1

2!
f ′′x (a, x0(a) + θ(Xr(τ)c

r
0+

+ q0(τ)), 0)(Xr(τ)c
r
0 + q0(τ))

2, 0 < θ < 1

(21)

The general solution of nonhomogeneous system (20) is determinate by the for-
mula of Cauchy

Π1(τ) = X(τ)c1 +

∫ τ

0
X(τ)X−1(s)f1(s)ds(22)

The solution (22) is substituted in the boundary condition of (20) and for c1 ∈ R
n

is obtained the next system

D(ε)c1 = h1(ε), h1(ε) = −l(x1(·))− l

(

∫
(·)−a

ε

0
X

(

(·) − a

ε

)

X−1(s)f1(s)ds

)

.(23)
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If in h1(ε) is substituted the expression for f1(τ) from (21), thus h1(ε) will depend
on cr0 nonlinearly.

h1(ε) = D1(ε)c
r
0 + b1(ε, c

r
0),

where

D1(ε) = −l

(

∫
(·)−a

ε

0
X

(

(·) − a

ε

)

X−1(s)f ′x(a, x0(a), 0)Xr(s)ds

)

,

b1(ε, c
r
0) = P (ε, cr0) + s1(ε),

P (ε, cr0) = −l

(

∫
(·)−a

ε

0
X

(

(·) − a

ε

)

X−1(s)
1

2!
f ′′x (a, x0(a)+

+ θ(Xr(s)c
r
0 + q0(s)), 0)(Xr(s)c

r
0 + q0(s))

2ds

)

,

s1(ε) = −l(x1(·)) − l

(

∫
(·)−a

ε

0
X

(

(·) − a

ε

)

X−1(s)f ′x(a, x0(a), 0)q0(s)ds

)

,

Then the system (23) takes on the form

D(ε)c1 = D1(ε)c
r
0 + b1(ε, c

r
0)(24)

The exponentially small elements in the matrix D(ε) are rejected. The
system (24) becomes the following

D0c1 = D1(ε)c
r
0 + b1(ε, c

r
0)

and has a solution

c1 = Prc
r
1 +D+

0 (D1(ε)c
r
0 + b1(ε, c

r
0))(25)

if and only if

P ∗
d (D1(ε)c

r
0 + b1(ε, c

r
0)) = 0.(26)

Analysis of D1(ε) and b1(ε, c
r
0) from nonlinear with respect to cr0 equation (26)

shows, that the coefficients before cr0 are exponentially small. Because of this cr0
will seek in the form

cr0 = cr00 + cr01ε
−1 + cr02ε

−2 + · · · ,
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as the coefficients cr0j , j = 0, 1, 2, . . . are determinate by the method of indefi-
nite coefficients from the equality (26) under some conditions. On this way the
function Π0(τ) is defined completely and has the form

Π0(τ) = Xr(τ)(c
r
00 + cr01ε

−1 + cr02ε
−2 + · · ·) + q0(τ).

The vector cr1 must be determined from (25) to define function Π1(τ). For
this purpose the boundary-value problem with respect to Π2(τ) is considered, i.e.
(11) and (13) under i = 2. Continuing this process for determining cri−1, which
participates in Πi−1(τ) it is sufficiently to consider the problem

dΠi(τ)

dτ
= AΠi(τ) + fi(τ), l

(

Πi

(

(·) − a

ε

))

= −l (xi(·)) .

It has general solution of the form Πi(τ) = X(τ)ci+
∫ τ

0 X(τ)X−1(s)fi(s)ds, which
is substituted in the boundary condition and the system D(ε)ci = hi(ε, c

r
i−1) is

obtained. In the case under consideration the last system takes on the form

D0ci = hi(ε, c
r
i−1)(27)

In accordance with condition H5, the system (27) has solution

ci = Prc
r
i +D+

0 hi(ε, c
r
i−1),

if and only if
P ∗

d hi(ε, c
r
i−1) = 0(28)

The vector hi(ε, c
r
i−1) has the representation

hi(ε, c
r
i−1) = D2(ε)c

r
i−1 − bi(ε),

where

D2(ε) = −l

(

∫
(·)−a

ε

0
X

(

(·) − a

ε

)

X−1(s)f ′x(a, x0(a) + Π0(s), 0)Xr(s)ds

)

,

bi(ε) = l(xi(·)) + l

(

∫
(·)−a

ε

0
X

(

(·) − a

ε

)

X−1(s)

(

f ′x(a, x0(a)+

+ Π0(s), 0)X(s)D+
0 hi−1(ε) +Gi−1(s,Π0(s), . . . ,Πi−2(s))+

+ f ′x(a, x0(a) + Π0(s), 0)

∫ s

0
X(s)X−1(p)fi−1(p)dp

)

ds

)

.
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The system (28) becomes the next

P ∗
dD2(ε)c

r
i−1 = P ∗

d bi(ε).(29)

It is important to remark that the system (26) is nonlinear with respect to cr0, but
the systems (29) are linear with respect to cri−1. It is due to the form of Πi−1f(τ),
i = 2, 3, . . . from (9), where Πi−1(τ) do not participate in the argument of f ′x but
participates as a multiplier. Availability of the only infinitely small functions in
(29), shows that the vector cri−1 is sought in the form

cri−1 = cri−1,0 + cri−1,1ε
−1 + cri−1,2ε

−2 + · · · ,

as the coefficients ci−1,j, j = 0, 1, 2, . . . are defined from (29).
Thus the function Πi−1(τ) is determinate completely and has the repre-

sentation

Πi−1(τ) = Xr(τ)(c
r
i−1,0 + cri−1,1ε

−1 + cri−1,2ε
−2 + · · ·) +X(τ)D+

0 hi(ε)+

+

∫ τ

0
X(τ)X−1(s)fi−1(s)ds,

(30)

Remark 1. According to the form of functions Πif(τ) the matrices
Di(ε), i = 3, 4, . . . are obtained D2(ε) ≡ Di(ε), i = 3, 4, . . ..

Theorem 1. Let the conditions H1-H5, P ∗
dh0 = 0 are fulfilled and the

matrix D(ε) has the form D(ε) = D0 + O
(

εsexp
(

−
α

ε

))

, where s ∈ N, α > 0.

Then the boundary-value problem (1), (2) has formally asymptotic expansion of

the solution in the form (3). The elements of the regular series xi(t) have the

form (10) and the coefficients of the singular series Πi(τ), τ =
t− a

ε
, i = 0, 1, 2 . . .

have the representation (30), as cri satisfy the equation (26) under i = 0 and the

equation (29) under i = 1, 2, 3, . . .. The following inequalities are real for the

boundary functions

‖Πi(τ)‖ ≤ c∗exp(−α∗τ), τ ∈

[

0,
b− a

ε

]

, i = 0, 1, . . . ,(31)

where c∗ and α∗ are positive constants.

P r o o f. The exposition above shows that it is sufficiently to prove the
exponentially decreasing of the boundary functions.

From (19) is known that Π0(τ) = Xr(τ)c
r
0+q0(τ), whereXr(τ) = X(τ)Pr ,

and q0(τ) = X(τ)D+
0 h0. From Lemma 1 and H1 is obtained

‖X(τ)‖ ≤ c1 exp(−α1τ).
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It is known that lim
ε→0

exp
(

− t−a
ε

)

εn
= 0, when t is fixed in [a, b]. Therefore positive

constants c2 and α2 exist such that the following bound is fulfilled

‖Xr(τ)c
r
0‖ ≤ c2 exp(−α2τ).

Let ‖D+
0 h0‖ ≤ c3, where c3 is positive consrtant. Then

‖Π0(τ)‖ ≤ ‖X(τ)Prc
r
0‖ + ‖X(τ)‖‖D+

0 h0‖) ≤ c∗0 exp(−ατ),

where α = min(α1, α2), c
∗
0 = c2 + c1c3. This shows that the exponential bound

(31) is true for Π0(τ)

Further the proof is done inductively. Keeping in mind

fl(s) = f ′x(a, x0(a) + Π0(s), 0)Πl−1(s) +Gl(s,Π0(s), . . . ,Πl−2(s)),

0 ≤ s ≤ τ, t ∈

[

0,
b− a

ε

]

,

done bound for Π0(τ) and Lemma1 the bound (31) is proved for every i.

Corollary 1. If rankD0 = n1 = n, then the boundary value problem (1),
(2) has an unique formally asymptotic expansion in the form (3). The coefficients

xi(t) have the form (10) and the boundary functions are the following

Πi(τ) = X(τ)D+
0 hi(ε) +

∫ τ

0
X(τ)X−1(s)fi(s)ds, i = 0, 1, . . . ,

if and only if the conditions (26) and (28) are fulfilled. In this case rankP =
0 => rankPr = 0 and ci = D+

0 hi, i = 0, 1, . . . , h0 = −l(x0) + h, hi(ε) =
bi(ε) i = 1, 2, . . ..

Corollary 2. If m = n and detD0 6= 0, then the boundary value prob-

lem (1), (2) has an unique formally asymptotic expansion in the form (3). The

coefficients xi(t) have the form (10) and the boundary functions are the next

Πi(τ) = X(τ)D−1
0 hi(ε) +

∫ τ

0
X(τ)X−1(s)fi(s)ds, i = 0, 1, . . . .

Remark 2. If m 6= n, but rankD0 = n1 = m, then P ∗ = 0 and all
systems of the form D0c

r
i = hi, i = 0, 1, . . . are always solvable. A families of

boundary functions is obtained in this case.
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2.2. D(ε) = D0 + εD1 + · · · + εsDs + O

(

εq exp

(

−
α

ε

))

, α > 0,

q ∈ N. Here Di, i = 0, 1, . . . , s are constant m× n matricies. The exponentially
small elements in the matrix D(ε) are ignored then the systems (17), (23) and
(27) can rewritten as follows

(D0 + εD1 + · · · + εsDs) ci = hi(ε), i = 0, 1, 2 . . . ,

hi(ε) =

{

h0, i = 0
hi(ε), i = 1, 2, 3, . . .

(32)

In this case the constants ci are sought in the form ci = ci0 + εci1 + · · · + εscis,
cij ∈ R

n, j = 0, s. It is introduced denotations c0 = [c00 c01 . . . c0s]
T − (s + 1)n-

dimensional vector, b0 = [h0 0 0 . . . 0]T − (2s + 1)m-dimensional vector and

Q =















































D0

D1 D0 0

D2 D1 D0

...
...

...
. . .

Ds Ds−1 Ds−2 . . . D0

Ds Ds−1 . . . D1

Ds . . . D2

0 . . .
...

Ds















































,

thus the system (32) becomes the following

Qc0 = b0, b0 = [h0 0 0 . . . 0]T(33)

If it is considered the system (32) under i = 1, 2, . . . , assumption that hi(ε) has
the form

hi(ε) = hi0 + εhi1 + · · · + εshis +O
(

εmexp
(

−
α

ε

))

, i = 1, 2, . . . ,

m ∈ N, α > 0, α = const

and the exponentially small elements in hi(ε) are rejected then systems analogous
to systems from (33) is obtained, i.e.

Qci = bi,(34)
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where
ci = [ci0 ci1 . . . cis]

T , cij ∈ R
n, j = 0, s, i = 1, 2, . . . ,

bi = [hi0 hi1 . . . his 0 0 . . . 0]T , i = 1, 2, . . .

Let the following condition is fulfilled
H6: rankQ = (s + 1)n, (2s+ 1)m > (s+ 1)n.
Then rankP1 = 0, and rankP ∗

1 = d1 = (2s + 1)m − (s + 1)n, where P1

and P ∗
1 are projectors

P1 : R
(s+1)n → ker(Q), P ∗

1 : R
(2s+1)m → ker(Q∗), Q∗ = QT ,

The algebraic systems (33), (34) have an unique solution

ci = Q+bi, i = 0, 1, 2, . . . ,(35)

if and only if
H7: P ∗

1 bi = 0 => P ∗
1d1
bi = 0,

where Q+ is the unique Moore-Penrose inverse matrix of the matrix Q and the
matrix P ∗

1d1
is consisted of d1 in number linear undependence rows of the matrix

P ∗
1 .

It is known that the vector ci has the form ci = [ci0 ci1 . . . cis]
T , i =

0, 1, 2, . . ., from (35) is obtained that the first n components of the vector Q+bi
are components of the vector ci0 in effect, the next n components of the vector
Q+bi are components of the vector ci1 and etc., the last n components of the
vector Q+bi are components of cis. Then constants ci, i = 0, 1, 2, . . . take on the
form

ci =

s
∑

j=0

εj
[

Q+bi
]

nj
,

where the index nj shows which n in number components of the vector Q+bi are
taken. Then the systems (11) have the next solutions

Πi(τ) = X(τ)

s
∑

j=0

εj
[

Q+bi
]

nj
+

∫ τ

0
X(τ)X−1(s)fi(s)ds, i = 0, 1, 2 . . .(36)

According to Lemma 1 it is followed

‖X(τ)‖ = ‖ exp(Aτ)‖ ≤ c1 exp(−α1τ), τ ∈

[

0,
b− a

ε

]

,

‖X(τ)X−1(s)‖ ≤ c1 exp(−α1(τ − s)), 0 ≤ s ≤ τ, τ ∈

[

0,
b− a

ε

]

.
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Keeping in mind Theorem 1 it is obtained

‖fi(s)‖ ≤ cfi
exp(−αfi

s), 0 ≤ s ≤ τ, τ ∈

[

0,
b− a

ε

]

.

The vectors
∑s

j=0 ε
j [Q+bi]nj

, j = 0, s, i = 0, 1, . . . under ε→ 0 are limited. Let

‖

s
∑

j=0

εj
[

Q+bi
]

nj
‖ ≤ a1, a1 = const, a1 > 0.

Thus

‖Πi(τ)‖ ≤ a1c1 exp(−α1τ) +

∫ τ

0
c1 exp(−α1(τ − s))cf1 exp(−αf1s)ds =

= a1c1 exp(−α1τ) + c1cf1 exp(−α1τ)

∫ τ

0
exp(−(αf1 − α1)s)ds =

= a1c1 exp(−α1τ) +
c1cf1

(αf1 − α1)
exp(−α1τ) (1 − exp(−(αf1 − α1)τ)

or

‖Πi(τ)‖ ≤ c∗exp(−α∗τ), τ ∈

[

0,
b− a

ε

]

, i = 0, 1, 2, . . . ,

where

c∗ = max

(

c1a1 +
c1cf1

αf1 − α1
,

c1cf1

α1 − αf1

)

, α∗ = min(α1, αf1),

are positive constants.

On this way the following theorem is proved.

Theorem 2. Let the conditions H1-H4, H6, H7 are fulfilled and the

matrix D(ε) =
s
∑

i=0

Diε
i. Then the boundary-value problem (1), (2) has an unuque

formally asymptotic expansion of the solution in the form (3). The coefficients

xi(t) have the form (10) and the boundary functions Πi(τ)- the form (36). For

the last are real the inequalities (31).

Remark 3. If rankQ < (s + 1)n, then ci is obtained under defining of
the boundary function Πi+1(τ) from the condition for solvability of the system
with respect to ci+1, analogously to the case 2.1.
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3. Bound of the remaider term of the asymptotic series. Let exact
solution of the problem (1), (2) has the form

x(t, ε) = Xn(t, ε) + εn+1ξ(t, ε),(37)

where Xn(t, ε) =

n
∑

i=0

εi(xi(t) + Πi(τ)), τ =
t− a

ε
, t ∈ [a, b], ξ(t, ε) is the remain-

der term of the asymptotic series and for this function will prove an inequality
‖ξ(t, ε)‖ ≤ K, where K is positive constant, when t ∈ [a, b] and ε ∈ (0, ε0]. It
is substituted (37) in the system (1) and the boundary condition (2) and for the
remainder term is obtained the problem

ε
dξ(t, ε)

dt
= Aξ(t, ε) +

1

εn+1
H(t, ξ(t, ε), ε), l(ξ(·, ε)) = 0,(38)

where

H(t, ξ(t, ε), ε) = AXn(t, ε) + εf(t,Xn(t, ε) + εn+1ξ(t, ε), ε) + ϕ(t) − ε
dXn(t, ε)

dt

The function f(t,Xn(t, ε) + εn+1ξ(t, ε), ε) is expanded in the series of Taylor

f(t,Xn(t, ε) + εn+1ξ(t, ε), 0) = f(t,Xn(t, ε), ε) +R0(t, ξ(t, ε), ε)

where

R0(t, ξ(t, ε), ε) = εn+1f ′x(t,Xn(t, ε) + θεn+1ξ(t, ε), ε), 0 < θ < 1

and the functtion f(t,Xn(t, ε), ε) is represented on the next way

f(t,Xn(t, ε), ε) = f

(

t,
n
∑

i=0
εixi(t), ε

)

+ f

(

ετ + a,
n
∑

i=0
εi(xi(ετ + a) + Π(τ)), ε

)

−

−f

(

ετ + a,
n
∑

i=0
εnxi(ετ + a), ε

)

The function f

(

t,
n
∑

i=0
εixi(t), ε

)

is expanded in the series of Taylor in neighbour-

hood of points (t, x0(t), ε) and keeping in mind (7) for the last is obtained

f

(

t,
n
∑

i=0
εixi(t), ε

)

=
n
∑

i=0
εif i(t) + εn+1g(t, x0(t), . . . , xn(t), ε)
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The function f

(

ετ+a,
n
∑

i=0
εi(xi(ετ+a)+Π(τ)), ε

)

−f

(

ετ+a,
n
∑

i=0
εnxi(ετ+a), ε

)

is expanded in the series of Taylor in neighbourhood of points (a, x0(a)+Π0(τ), ε),
as the functions xi(ετ + a) are expanded in the series of Taylor too, but in the
neighbuorhood of point t = a and keeping in mind the equalities (9) it is obtained

f

(

ετ + a,
n
∑

i=0
εi(xi(ετ + a) + Π(τ)), ε

)

− f

(

ετ + a,
n
∑

i=0
εnxi(ετ + a), ε

)

=

=
n
∑

i=0
εiΠif(τ) + εn+1ΠG(τ,Π0(τ), . . . ,Πn(τ), ε).

Then

f(t,Xn(t, ε) + εn+1ξ(t, ε), ε) =
n
∑

i=0
εi
[

f i(t) + Πif(τ)
]

+

+εn+1 [g(t, x0(t), . . . , xn(t), ε) + ΠG(τ,Π0(τ), . . . ,Πn(τ), ε)] +

+εn+1ξ(t, ε)f ′x(t,Xn(t, ε) + θεn+1ξ(t, ε), ε), 0 < θ < 1,

and the function H(t, ε) takes on the form

H(t, ε) = εn+1
[

εξ(t, ε)f ′x(t,Xn(t, ε) + θεn+1ξ(t, ε), ε) +H1(t, ε)
]

,(39)

where H1(t, ε)=ε [g(t, x0(t), . . ., xn(t), ε)+ΠG(τ,Π0(τ), . . .,Πn(τ), ε)] +Axn+1(t)
+Πnf(τ). The equality (39) is substituted in (38) and the problem for the re-
mainder term becomes the next

ε
dξ

dt
= Aξ + εξ(t, ε)f ′x(t,Xn + θεn+1ξ, ε) +H1(t, ε), l (ξ(·, ε)) = 0(40)

It is considered the function H1(t, ε). It consists of the functions g, ΠG, Axn+1,
Πnf . The function g consists of continuous and bounded in the domain Ω func-
tions, i.e it is bounded too. Let ‖g(t, x0(t), . . . , xn(t), ε)‖ ≤ η1. About function
ΠG is obtained analogously ‖ΠG(τ,Π0(τ), . . . ,Πn(τ), ε)‖ ≤ η2 under (t, x, ε) ∈ Ω.

Keeping in mind that xn(t) is countinuous function in the interval [a, b],
an inequality ‖Axn(t)‖ ≤ η3 is obtained. According to Theorem 1 the func-
tion Πnf(τ) is exponentially small therefore positive constant η4 exists such that
‖Πnf(τ)‖ ≤ η4. Then

‖H1(t, ε)‖ ≤ η, η = ε(η1 + η2) + η3 + η4
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Let W (t, s, ε) is normal fundamental matrix of the solutions of the homo-
geneous system

ε
dξ

dt
= Aξ, W (s, s, ε) = En.

Then the followig contentions are fulfilled [15, 3, 2, 6]:

Lemma 2. For the matrix W (t, s, ε) when a ≤ s ≤ t ≤ b, 0 < ε ≤ ε0 is

fulfiled the next equality

‖W (t, s, ε)‖ ≤ β exp

(

−α
t− s

ε

)

,

where α and β are positive constants.

Lemma 3. Every continuous solution of the system (40) is solution of

the integral equation

ξ(t, ε) = W (t, a, ε)ξ(a, ε)+

+

∫ t

a

W (t, s, ε)
1

ε

[

εf ′x(s,Xn + θεn+1ξ, ε)ξ(s, ε) +H1(s, ε)
]

ds.
(41)

Lemma 4. When ε → 0 the integral

∫ t

a

∥

∥

∥

∥

1

ε
W (t, s, ε)

∥

∥

∥

∥

ds is uniformly

bounded in the interval [a, b], i.e. a positive constant M exists, such that when

ε→ 0 and t ∈ [a, b] is fulfilled

∫ t

a

∥

∥

∥

∥

1

ε
W (t, s, ε)

∥

∥

∥

∥

ds ≤M.

From the condition H2 is obtained that f ′x(t,Xn + θεn+1, ε) is bounded
in the domain Ω, i.e.

‖f ′x(t,Xn + θεn+1, ε)‖ ≤ k1, 0 < θ < 1

Let W (t, a, ε)ξ(a, ε) = F (t, ε). The system (40) is solved by the method of
successive approximations, i.e.

ξ0(t, ε) = 0

ξn(t, ε) = F (t, ε)+

+

∫ t

a

W (t, s, ε)
1

ε

[

εf ′x(s,Xn+θεn+1ξ, ε)ξn−1(s, ε)+H1(s, ε)
]

ds.

(42)
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Theorem 3. Let h, h1, k1, h3, b, β, ε0 and M are positive constants

such that

‖W (t, a, ε)‖ ≤ β, ‖F (t, ε)‖ ≤ h1, h1 = 2βh, 0 < 2β < 1,

‖f ′x(t,Xn + θεn+1, ε)‖ ≤ k1,

∫ t

a

∥

∥

∥

∥

1

ε
W (t, s, ε)

∥

∥

∥

∥

ds ≤M,

‖R+
0 ‖ ≤ h3, ‖l(ψ)‖ ≤ b‖ψ‖, h3b < 2, ε0 <

1

2Mk1
.

If
Mη

1 − 2β
≤ h, then the asymptotic representation of the solution of the boundary

value problem (1), (2) has the form (37), where ξ(t, ε) satisfies the condition

‖ξ(t, ε)‖ ≤ 2h,

and the vector ξ(a, ε) is defined from algebraic system

R(ε)ξ(a, ε) = g(ε),(43)

where R(ε) = l (W (·, a, ε)) is m× n matrix and

g(ε) = −l

(

∫ (·)

a

W (·, s, ε)
1

ε

(

εf ′x(s,Xn + θεn+1ξ(s, ε), ε)ξ(s, ε) +H1(s, ε)
)

ds

)

.

P r o o f. By (42) is proved (see [4]), that the system (40) has an unique
continuous solution which do not leave the domain Ω1, where
Ω1 ≡ {(t, ξ)|a ≤ t ≤ b, ‖ξ‖ ≤ 2h}, i.e. ‖ξk‖ ≤ 2h.

Let a limit of the sequence of the successive approximations is ξ(t, ε), i.e.
lim

n→∞
ξn(t, ε) = ξ(t, ε). It satisfies the integral equation (41). This shows that

when ε → 0 and t ∈ [a, b] it is fulfilled ‖ξ(t, ε)‖ ≤ 2h. Thus the system (40) has
an unique solution which do not leave the domain Ω1 and depends on arbitrary
vector ξ(a, ε). Finally, it must to showed that this vector do not leave the domain
Ω1. For this purpose the integral equation (41) is substituted in the boundary
condition l(ξ(·, ε)) = 0 and the system (43) is obtained. Let the matrix R(ε) has
the form

R(ε) = R0 +O
(

εs exp(−
γ

ε
)
)

,

where s ∈ N, γ is positive constant, R0 is m× n constant matrix. The exponen-
tially small elements in the matrix R(ε) are ignored and the system (43) takes
on the form

R0ξ(a, ε) = g(ε)
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It is assumed that rankR0 = n, i.e. the matrix R0 has a full rank then the last
algebraic system has an unique solution

ξ(a, ε) = R+
0 g(ε),

if and only if
P ∗

3 g(ε) = 0.

Here by R+
0 is denoted the unique Moore-Penrose inverse matrix of the matrix

R0 and by P ∗
3 - matrix projector P ∗

3 : R
m → ker(R∗

0).
Then

‖ξ(a, ε)‖ ≤ ‖R+
0 ‖‖g(ε)‖ ≤

≤ h3h4

∫ t

a

∥

∥

∥

∥

W (t, s, ε)
1

ε

∥

∥

∥

∥

(

‖εf ′x(s,Xn + θεn+1ξ, ε)‖‖ξ(s, ε)‖ + ‖H1(s, ε)‖
)

ds ≤

≤ h3h4M [εk12h+ η] ≤ h3h4M

[

2ε0k1h+
h(1 − β)

M

]

≤

≤ 2M

[

2k1h

2Mk1
+

h

M
−

2hβ

M

]

≤ 4h[1 − β] ≤ 4
1

2
h = 2h,

i.e. ‖ξ(a, ε)‖ ≤ 2h, which shows that the vector ξ(a, ε) do not leave the domain
Ω1. Thus the theorem is proved.

The asymptotic series of the nonlinear problem (1), (2) satisfies

lim
ε→0

x(t, ε) = x0(t), t ∈ (a, b].

4. Example. Let t ∈ [0, 1], x =
(

x1 x2

)T
and the problem (1), (2)

has the next coefficients

A =

(

1 −2
3 −4

)

, f(t, x, ε) =

(

x2
1 + 1
x2

2

)

, ϕ(t) =

(

2t− 1
2t+ 1

)

,

lx(·) ≡Mx(0)+Nx(1) = h, M =





1 2
−1 −2

2 4



 , N =





2 3
1 0
0 1



 , h =





−1
−2

2



 ,

From (10) for x0(t) and x1(t) is obtained

x0(t) =

(

2t− 3
2t− 2

)

, x1(t) =

(

4t2 − 16t+ 14
4t2 − 14t+ 11

)
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For the fundamental matrix of solutions of the system
dx

dt
= Ax is found

X(t) =

(

3 − 2e−t 2e−t − 2
3 − 3e−t 3e−t − 2

)

e−t, X−1(t) =

(

3 − 2et 2et − 2
3 − 3et 3et − 2

)

et.

The matrix D(ε) from (14) has the form D(ε) = MX(0) + NX

(

1

ε

)

= D0 +

O
(

exp
(

−
α

ε

))

, where

D0 ≡M =





1 2
−1 −2

2 4



 , then D+
0 =

1

30

(

1 −1 2
2 −2 4

)

, P =
1

5

(

4 −2
−2 1

)

,

P ∗ =
1

6





5 1 −2
1 5 2

−2 2 2



 . It is clearly that rankP = 1 and rankP ∗ = 2,

then Pr ≡ P1 =
1

5

(

−2
1

)

, P ∗
d ≡ P ∗

2 =
1

6

(

5 1 −2
1 5 2

)

.

The system (16), where h0 = (8 − 8 16)T , is solvable (in this case P ∗
2 h0 = 0) and

its solution is

c0 = P1c
1
0 +D+

0 h0 =
1

5

(

−2
1

)

c10 +
8

5

(

1
2

)

.

Then Π0(τ) from (19 ) takes on the form

Π0(τ) =
e−τ

5

(

−8 − 8c10 + 2e−τ (8 + 3c10)
−8 − 8c10 + 3e−τ (8 + 3c10)

)

=

(

ae−τ + 2be−2τ

ae−τ + 3be−2τ

)

,

where a =
−8 − 8c10

5
, b =

8 + 3c10
5

.

Through (26) and ignoring the exponentially small elements O

(

e−
1
ε

ε

)

, O
(

e−
2
ε

)

,

O
(

e−
3
ε

)

, O
(

e−
4
ε

)

the nonlinear system for defining cr0 is obtained

−
2

15
e−

1
ε

(

−460
−224

)

c10 =
1

6

(

35
19

)

+
8

15
e−

1
ε

(

−205
−101

)

+
1

6
e−

1
ε

(

24a2 − 48b2

12a2 − 24b2

)

,



328 L. I. Karandjulov, Y. P. Stoyanova

and it is found c10 = −1, 66888 + 0, 05843ε−1 .(44)

Thus Π0(τ) is defined completely.
By the linear system

e−
1
ε

30

(

384a + 288b+ 1840

192a+ 144b + 896

)

c11 =
1

6

(

61

29

)

+
1

6
e

1
ε







223

15
(48b + 24a + 42)−

223

15
(24b + 12a + 101)−

−96b3 − 120ab2 − 884b2 − 672ab + 72a3 + 362a2 − 3370b + 210a

−48b3 − 60ab2 − 436b2 − 33ab+ 36a3 + 178a2 − 1478b + 108a

)

,

where a and b are the expression indicated above after c10 from (44) is substituted
and c11 is determined

c11 = −0, 905432 − 0, 082926ε−1 .

This shows that for Π1(τ) is found

Π1(τ) =
1

5

(

6e−τ − 8
9e−τ − 8

)

e−τ (−0, 905432−0, 082926ε−1)+

(

2e−τ − 1
3e−τ − 1

)

e−τB+

+





−3b2e−3τ − 4abe−2τ + (5b2 − a2 + 12b+ 4ab− 4a)e−τ−

−
11

2
b2e−3τ − 6abe−2τ + (

15

2
b2 − a2 + 12b+ 6ab− 6a)e−τ−

−10aτ + a2 − 2b2 − 12b+ 4a

−10aτ + a2 − 2b2 − 12b+ 6a

)

e−τ ,

where

B =
1

30

(

−223 +

(

61

2
b2e−

3
ε + 34abe−

2
ε −

(

85

2
b2 − 6a2 + 72b+ 34ab − 34a

)

e−
1
ε +

+
60a

ε
− 6a2 + 12b2 + 72b− 34a

)

e−
1
ε

)

.

For the solution is obtained

x(t, ε) =

(

2t− 3
2t− 2

)

+
1

5

(

6e−
t
ε − 8

9e−
t
ε − 8

)

e−
t
ε (−1, 66888 + 0, 05843ε−1)+
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+
8

5

(

2e−
t
ε − 1

3e−
t
ε − 1

)

e−
t
ε + ε

((

4t2 − 16t+ 14
4t2 − 14t+ 11

)

+
1

5

(

6e−
t
ε − 8

9e−
t
ε − 8

)

e−
t
ε (−0, 905432 − 0, 082926ε−1) +

(

2e−
t
ε − 1

3e−
t
ε − 1

)

e−
t
εB+

+

(

−3b2e−3 t
ε − 4abe−2 t

ε + (5b2 − a2 + 12b+ 4ab− 4a)e−
t
ε−

−11
2 b

2e−3 t
ε − 6abe−2 t

ε + (15
2 b

2 − a2 + 12b+ 6ab− 6a)e−
t
ε−

+

−10aτ + a2 − 2b2 − 12b+ 4a
−10aτ + a2 − 2b2 − 12b+ 6a

)

e−
t
ε

)

+O(ε2),

where a = 1, 0702 − 0, 0934928ε−1 , b = 0, 5986864 + 0, 0350598ε−1 .
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