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ABSTRACT. A boundary-value problems for almost nonlinear singularly
perturbed systems of ordinary differential equations are considered. An as-
ymptotic solution is constructed under some assumption and using boundary
functions and generalized inverse matrix and projectors.

1. Formulation of the problem. A construction of the solution of
singularly perturbed systems of ordinary differential equations is connected with
application of different asymptotic methods. The works of A. Tikhonov [11], [12],
N. Levinson [2], [6], W. Wazov [17] are fundamental in this direction.

The method and results of A. B. Vasil’eva [13], [14] and A. B. Vasil’eva,
V. F. Butuzov [15], [16] give a possibility to construct asymptotic solution of
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singularly perturbed systems using boundary functions. This method will use in
a present paper.

Another asymptotic method for solving singularly perturbed systems is
the method of the regularization, described from S. A. Lomov in [7]. Singularly
perturbed systems of integro-differential equations are considered in [3].

Let it is given a system

dx

(1) sE:Am—I—sf(t,a:,s)—l—go(t), t€la,b], 0<exk1l,

with a boundary condition
(2) l(x) =h, heR™.

It is assumed that the coefficients of the boundary-value problem (1), (2) are
satisfied the next conditions:

H1: A is n X n matrix with constant coefficients. Its eigenvalues have a
negative real parts, Re\; < 0, \; € 0(A), i = 1,n.

H2: f(t,z,e) € C*(Q) is n-dimensional vector-function, where Q =
{(t,z,e)la <t <b,|x| < p,e€(0,e0]}, i.e. there exist positive constants k; such,
that ||f@(t,z, )| < k;.

H3: p(t) € C*[a,b] is n-dimensional vector-function.

H4: [ is m-dimensional linear bounded functional, I = col(ly,...,1y),
l € (z:Cla,b] — R™",R™), [[I(¢)]| < b|j2)]|, b = const, b > 0.

If e = 0, from (1) is obtained the degenerate system Ax(t) + ¢(t) =
0, which under conditions H1, H3 has an unique continuous solution z¢(t) =
—A7Yp(t), for Vo(t) € C*[a, b].

The asymptotic series of the solution of the nonlinear problem (1), (2)
will be constructed basing on the conditions H1-H4, the method of boundary
functions and some additional assumptions

If instead of function f(¢,z,¢) in (1) is placed (n x n) matrix A;(t), then
it is obtained a boundary-value problem which is investigated in [5], [4].

The construction of the asymptotic solution of (1), (2) is based on gener-
alized inverse matrices and projectors too. [1], [9], [10], [8].

2. Formally asymptotic expansion. The formally asymptotic expan-
sion of the solution of the boundary-value problem (1), (2) is sought in the form

3) 2(t,8) = Y& (@ilt) + (). 7= t-a

IS
=0



Boundary-value problems for almost nonlinear systems. . . 311

The coefficients x;(t), II;(7) of expansion (3) are unknown n-dimensional vector
functions and its determination is accomplished by substitution of (3) in the
system (1).
S dl‘z(t) 1dHi(7')
? —
FLE < @ T ar

= AY & (ai(t) + (7)) +
(4

=0

e (t, Sl (a(t) + Him),e) T ol)

=0

The function f(t,> 50, (z;(t) + II;(7)) is presented in the form [15].

(5) f <t, isi(xi(t) + IL; (7)), 5> = f(t,e) +IIf(r,¢),

where

F(t,e) = f (ti Eixi(t),€>

Mf(r,e) = f <ET +a,> ci(ay(er +a) + Hi(T)),g) _

i=0
) .
—f <€T +a, Y e'wi(er + a),z-:)
i=0

The function f(t,¢) is expanded in the series of Taylor in neighbourhood of points
(t,zo(t),0). The coefficients before the same powers of € are grouped and the last
function takes on the form

= | Ft20(2),0), 1=0,
(7) fz(t) - { fé(t,xo(t),o)ii(t) +gi(t7$0(t), . ,xifl(t)% 1= 1’2" o

Derivatives of (i — 1)-th order with respect to € and x of the function f take part
in the functions g;.

The function IIf (7, €) is expanded in the series of Taylor too in neighbour-
hood of the point (a,z¢(a) 4+ IIy(7),0), and x;(¢) — in neighbourhood of ¢ = a.
Then IIf(7,¢) takes on the representation

(8) f(r,e) =Y Tf(7),
=0
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where
f(a7$0(a)+HO(7_)>0) _f(awTO(a)vO)v i—0
(9) Hif(T): fé(a,xo(a) + Ho(T),O)HZ'(T) + Gi(T, Ho(T), .. .,Hi_l(T)),
i=1,2,3,. ..

The expansions (6) and (8) are substituted in the system (4) through (5). It is
separated the variables with respect to ¢t and 7. The coefficients before identical
powers of € are equalized. Thus the elements of the regular series take on the
form

—A_IQO(t)7 1= 07

(10) zi(t) = - B
AL (d’Tl(t) — fil(t)> . i=1,2,3,...

The boundary functions are obtained successively as solutions of the next linear
differential equations

(11) di(7) _ AL (1) + fi(1), T € [0, b ; a]

dr

where

- o i=0,
12) TO=Y o), i=123...

The series (3) is substituted in the boundary condition (2), the coefficients before
the same powers of ¢ are equalized and it is obtained the following equations

(13) I(zi(-) +1 <Hi <(')E_a>> Z{ g :?23

It is considered a linear system

d—x:Am, T € [O,b_—a}
dr €

and let X (7) = exp(Ar) is its normal fundamental matrix of solutions.

Lemma 1 [15]. If eigenvalues \;, i = 1,n of n x n matriz A satisfy an
mequality Reh; < —2aq, a; > 0, oy = const, then exists constant c1, ¢1 > 0,
such that:

|lexp(At)|| < ¢pexp(—agt), t >0,
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i=1,n

where under norm of the matriz B = [b;; (t)]j:1 t € [a,b] is understood

)
N3

n
121 = xS 1650, ¢ € lo.t)
]:

Let by D(e) is denoted the following m x n matrix:

(14) D(e) =1 <X <(')€_a>)

In dependence of structure of the functional [ will be considered two cases for the
form of D(e).
«a

2.1. D(e) = Do+O <ss exp|(—— ] ), @ > 0,s € N. In this case D
€

is constant m x n matrix. The elements O(e’exp(—<)) are exponentially small.

Let for the matrix Dy is fulfilled the condition:

H5: rankDy = ny < min(m,n).

Then rankP = n —ny = r, and rankP* = m — n; = d, here P and P*
are projectors

P:R" - ker(Dy), P*:R™ — ker(Dy), D§ = D".

Dimensions of P and P* are n x n and m x m respectively. Let by P, is denoted
n X r matrix, which consist of r in number arbitrary linear independent columns
of the matrix P, and by P; — d x m matrix, consisting of d in number arbitrary
linear independent rows of the matrix P*.

The boundary-value problem with respect to II(7) is considered, i.e. the
system (11) with boundary condition (13) when i = 0

(15) dHC?T(T) — Ally(r), I (Ho <(')E_ a>> — h— I(zo(-).

The general solution of the homogeneous system Ilp(7) = X (7)co, co € R™ is
substituted in the boundary condition (15) and the following system about ¢y is

obtained.
(16) D(E)Co = ho, ho =h— l(xo())

Because of ignoring the exponentially small elements in the matrix D(e) the last
system takes on the form
(17) D(]Co = ho.
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In accordance with H5 this system has r-parametric solution
(18) co = Py + Dy ho,cy € R"
if and only if

Piho = 0.

By DE)F is denoted an unique Moore-Penrose inverse matrix of the matrix Dy.
The equality (18) is substituted in the general solution of the problem (15) and
the next expression for IIy(7) is obtained

(19) Iy(7) = Xy (7)ch + qo(T),

where the denotations X,.(7) = X(7)P, and qo(7) = X (7)Dg ho are introduced.

In (19) the vector ¢ is unknown. It will be found from the condition for
solvability when the next boundary function II;(7) is defined from the system
(11) and the condition (13) under ¢ =1, i.e.

(20) dlzlf) _ AL () + fi(7), <n1 (”; “>> — i),

Here the function fi(7) has the form from (12) — f1(7) = f(a,xzo(a)+1y(7),0)—
fla,z0(a),0). The function f(a,z¢(a) + y(7),0) is expanded in the series of
Taylor in neighbourhood of point (a, z(a),0), to the second order, for instance. In
the obtained series is substituted Ily(7) from (19) and the following representation
is received for fi(7)

fi(7) = fala, zo(a), 0)(Xr (7)ch + qo(7)) + %fé’(aa zo(a) + 0(X, (1)co+

+qo(7)),0)( X, (7)ch + qo(7))?, 0<0<1

(21)

The general solution of nonhomogeneous system (20) is determinate by the for-
mula of Cauchy

(22) My (r) = X(r)er + / X(r)X 1 (3) 1 (s)ds

The solution (22) is substituted in the boundary condition of (20) and for ¢; € R"
is obtained the next system

()—a

T X (” — “> Xl(s)fl(s)d5>.

(23) D(e)er = ha (&), hae) =~ () 1 ( /

0
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If in hq () is substituted the expression for f1(7) from (21), thus hq(g) will depend
on ¢y nonlinearly.
hi(e) = Di(e)cy + bi(e, cp),

where

()-a

Ple,c) = —1 (/0 T X (“ — “> X‘l(s)% " (a, zo(a)+

9

()—a

sl<s>=—z<x1<->>—5< |- X<(')‘“)X1<s>f;<a,xo<a>,o>qo<s>ds),

5
Then the system (23) takes on the form
(24) D(e)er = Di(e)ep + e, cp)

The exponentially small elements in the matrix D(e) are rejected. The
system (24) becomes the following

D001 = El(E)CS + bl(E, 66)
and has a solution
(25) c1 = Prci + Df (D1(e)ch + bi(e, cp))

if and only if
(26) Pi(Di(g)cy + bi(e, cp)) = 0.

Analysis of Dj(g) and by (g, cly) from nonlinear with respect to ¢ equation (26)
shows, that the coefficients before ¢f are exponentially small. Because of this ¢
will seek in the form

-1 -2
062060+661€ +662€ +7
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as the coeflicients ¢f;, j = 0,1,2,... are determinate by the method of indefi-
nite coefficients from the equality (26) under some conditions. On this way the
function IIy(7) is defined completely and has the form

o(7) = X, (7)(chy + chie L 4 choe 2 4+ --2) + qo(7).

The vector ¢} must be determined from (25) to define function II; (7). For
this purpose the boundary-value problem with respect to Ily(7) is considered, i.e.
(11) and (13) under ¢ = 2. Continuing this process for determining ¢}, which
participates in II;_1(7) it is sufficiently to consider the problem

T _ Ao + fi), 1 (Hi (“; a)) — 1(i().

It has general solution of the form IT;(7) = X (7)¢;+ [y X (7)X 1 (s) fi(s)ds, which
is substituted in the boundary condition and the system D(e)c; = hi(e,c]_y) is
obtained. In the case under consideration the last system takes on the form

(27) Doc; = hi(e, ¢i_y)
In accordance with condition H5, the system (27) has solution
¢ = P.ci + Dérhi(s,cg_l),

if and only if
(28) Pihi(e,ci_1) =0

The vector h;(e,c]_;) has the representation

hi(e, ci_1) = Da(e)ci_q — bi(e),

) (s).fz(a, zo(a )+Ho(8)70)Xr(8)d8> :

—a

) X1(s) (f;(a, xo(a)+

—I—HO X D h;_ 1( )—I—GZ 1(8 Ho( ) ,Hi_g(s))-F

+ fr(a, 20(a) + Mo(s / X ()X (p) fir(p )dp)ds).
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The system (28) becomes the next
(29) PjDs(e)ci_y = Pibi(e).

It is important to remark that the system (26) is nonlinear with respect to cf, but
the systems (29) are linear with respect to ¢]_;. It is due to the form of II;_; f(7),
i=2,3,... from (9), where IT;_1(7) do not participate in the argument of f/ but
participates as a multiplier. Availability of the only infinitely small functions in
(29), shows that the vector ¢]_; is sought in the form

r _.r r —1 r —2
Ci1=Ci 10T CG_11€ T C_198 "~ + -,

as the coefficients ¢;_1j, j =0,1,2,... are defined from (29).
Thus the function II;_;(7) is determinate completely and has the repre-
sentation

Ii—1(7) = Xp(7)(cf_10 + C§71,1571 + 01771725*2 + )+ X(1)Dg hi(e)+

/X () fi1(s)ds

B Remark 1. According to the form of functions II; f(7) the matrices
Dj(g), i = 3,4,... are obtained Ds(c) = D;(¢), i = 3,4,.

Theorem 1. Let the conditions HI1-HJ, Pjho = 0 are fulfilled and the

matriz D(g) has the form D(e) = Do + O (Esexp (—g)), where s € N, a > 0.
£

Then the boundary-value problem (1), (2) has formally asymptotic expansion of
the solution in the form (3). The elements of the regular series x;(t) have the

(30)

form (10) and the coefficients of the singular series I;(7), 7 = — a} 1=0,1,2...
have the representation (30), as ¢} satisfy the equation (26) under i = 0 and the
equation (29) under i = 1,2,3,.... The following inequalities are real for the

boundary functions

b—a

(31) ITL(7)|| < c*exp(—a*T), T € [O, } , 1=0,1,...,

where c* and o are positive constants.

Proof. The exposition above shows that it is sufficiently to prove the
exponentially decreasing of the boundary functions.

From (19) is known that IIo(7) = X,.(7)cg+qo(7), where X, (1) = X(7)F;,
and qo(7) = X (7)Dg ho. From Lemma 1 and H1 is obtained

[X ()] < e1 exp(=ar).
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It is known that lim

exp (—£2) . . .
1 = 0, when t is fixed in [a, b]. Therefore positive
£—
constants co and aso exist such that the following bound is fulfilled
[ (7)epll < 2 exp(—aqT).
Let HDSr ho|| < c3, where c3 is positive consrtant. Then

Mo (r)Il < 1X () Pregll + IX ()| Dg holl) < cf exp(—ar),

where o = min(ay, a2), ¢ = ¢z + c1c3. This shows that the exponential bound
(31) is true for IIp(7)
Further the proof is done inductively. Keeping in mind

fi(s) = fola,zo(a) + Mo(s),0)IL_1(s) + Gi(s,o(s), ..., I_o(s)),

0<s<rT te [O,b_a],
€

done bound for IIy(7) and Lemmal the bound (31) is proved for every i.

Corollary 1. If rankDy = ny = n, then the boundary value problem (1),
(2) has an unique formally asymptotic expansion in the form (3). The coefficients
x;(t) have the form (10) and the boundary functions are the following

IL; (1) = X(7)Dg hi(e /X (s)fi(s)ds, i=0,1,...,
if and only if the conditions (26) and (28) are fulfilled. In this case rankP =
0 => rankP. =0 and ¢; = D{h;, i=0,1,..., ho= —l(z0) +h, hi(e) =
bZ(E) 1= 1,2,....

Corollary 2. If m = n and detDy # 0, then the boundary value prob-
lem (1), (2) has an unique formally asymptotic expansion in the form (3). The
coefficients x;(t) have the form (10) and the boundary functions are the next

IL(7) = X(7) / X(r (s)fi(s)ds, i=0,1,....

Remark 2. If m # n, but rankDy = n; = m, then P* = 0 and all
systems of the form Dgc] = h;, ¢ = 0,1,... are always solvable. A families of
boundary functions is obtained in this case.
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a
2.2. D(e) = Dg+eDy+---+€°Ds+ O <sqexp (——>>, a >0,
€
q € N. Here D;, 1 =0,1,...,s are constant m x n matricies. The exponentially

small elements in the matrix D(e) are ignored then the systems (17), (23) and
(27) can rewritten as follows

(D0+ED1+"'—|—ESDS)CZ':hi(E), 1=0,1,2...,
(32) ney = { o i=0
TN hile), i=1,2,3,...

In this case the constants ¢; are sought in the form ¢; = ¢;o + ecj1 + - - - + €%¢s,
cij € R, j =0,s. It is introduced denotations ¢y = [coo co1 - - - cos)? — (s + 1)n-
dimensional vector, bg = [hg 00...0]7 — (25 + 1)m-dimensional vector and

- Dy -
Dy Dy O

D, Dr Dy

Q= D, D,y Ds o ... Dy ;

Ds Dsfl Dl

0

thus the system (32) becomes the following
(33) Qco =bg, bo=1[ho00...07

If it is considered the system (32) under i = 1,2,..., assumption that h;(e) has
the form

hi(E):hio—i-f:‘hil+"'+€Shis+0(5m€xp(—%>), iZl,Q,...,
méeN, a>0, a=const

and the exponentially small elements in h;(g) are rejected then systems analogous
to systems from (33) is obtained, i.e.

(34) Qci = b’iu
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where

C; = [Cio Cil ...CZ'S]T, Cij € Rn, j=0,s, 1=1,2,...,
bi = [hio hi1 .. his 00...0]", i=1,2,...
Let the following condition is fulfilled
H6: rank@Q = (s +1)n, (2s+1)m > (s+ 1)n.
Then rankP; = 0, and rankP; = d; = (25 + 1)m — (s + 1)n, where P,
and P; are projectors

Py RE+Or ker(Q), Py : RE@s+)m _, ker(Q"), Q" = QT7
The algebraic systems (33), (34) have an unique solution
(35) ¢ =Q%b, i=0,1,2,...,

if and only if

HT: bez =0 => Pl*dlbi =0,
where QT is the unique Moore-Penrose inverse matrix of the matrix Q and the
matrix Py is consisted of d; in number linear undependence rows of the matrix
Py

It is known that the vector ¢; has the form ¢; = [cig ci1...cis)T, i =
0,1,2,..., from (35) is obtained that the first n components of the vector Q*b;
are components of the vector ¢;g in effect, the next n components of the vector
Q7Tb; are components of the vector ¢;; and etc., the last n components of the
vector Q1b; are components of ¢;s. Then constants ¢;, i = 0,1,2,... take on the

form .
= Zgj [Qﬂ)z} ny
=0

where the index n; shows which n in number components of the vector Q*b; are
taken. Then the systems (11) have the next solutions

(36) 11 ZEJ Qb / X(r (s)fi(s)ds, i=0,1,2...

According to Lemma 1 it is followed

b—
X = lexp(an)] < erexp(-anr), 7€ 0.2,

X (1) X L(s)|| < crexp(—aq(r —s)), 0<s<T, T€ [0’ b;a] ‘
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Keeping in mind Theorem 1 it is obtained

b—
I < e exp(-ags). 0<s <7 re 0.2,

The vectors Y %_ el [Q*bi]nj , j=0,54=0,1,... under € — 0 are limited. Let

S
| Zsj [Q+bi]nj | <ai, a; =const, a; > 0.
j=0

Thus

.
ITL;(7)]| < ajer exp(—aqT) +/ c1exp(—aq (T — s))cy, exp(—ayp, s)ds =
0

= ajcy exp(—aiT) + cicp exp(—aﬂ')/ exp(—(ayp —a1)s)ds =
0

ci1C
= ayey exp(—a17) + L exp(—a17) (1 — exp(—(ay, — a1)7)
(afl - al)
or
* * b—a .
ITL; ()| < cfexp(—a*T), T€ |0, — | 1=0,1,2,...,
where

Cicf C1Cf
b
ap —a1 o1 —ap

¢ = max <01a1 + > , o =min(ag, ayf),
are positive constants.
On this way the following theorem is proved.

Theorem 2. Let the conditions H1-H4, H6, H7 are fulfilled and the

S
matriz D(g) = Z Die'. Then the boundary-value problem (1), (2) has an unuque
1=0
formally asymptotic expansion of the solution in the form (3). The coefficients
x;(t) have the form (10) and the boundary functions I1;(7)- the form (36). For

the last are real the inequalities (31).

Remark 3. If rank@ < (s + 1)n, then ¢; is obtained under defining of
the boundary function IT;;1(7) from the condition for solvability of the system
with respect to c;y1, analogously to the case 2.1.
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3. Bound of the remaider term of the asymptotic series. Let exact
solution of the problem (1), (2) has the form

(37) z(t,e) = X, (t,e) + "L, e),

t—a
here X, ( () +11, = , t€la,bl, &(t,¢e) is th in-
where ZE (x; (1)), T 5 € [a,b], £(t, €) is the remain

der term of the asymptotlc series and for this function will prove an inequality
I€(t,e)|| < K, where K is positive constant, when ¢ € [a,b] and € € (0,g¢]. It
is substituted (37) in the system (1) and the boundary condition (2) and for the
remainder term is obtained the problem

68) B+ LHtene.0), UeC2) =0
where
H(LE(1,2),6) = AXa(2) £ (1 Xalt,2) 4 €™ E(L,€),2) (1) — Do)

The function f(t, X, (t,e) + " T1&(¢,€), €) is expanded in the series of Taylor
ft, Xt e) +™T(t,€),0) = f(t, Xn(t,€),€) + Ro(t, &(t,€),€)
where
Ro(t,€(t,e),e) = "L fL(t, Xn(t,e) + 0" T2E(t,e),e), 0<B <1

and the functtion f(t, X,,(¢,¢),¢) is represented on the next way

£t Xn(t,2),2) = f <t, Zf%sixi(t), s> +f <57 ta, Zf:osi(xi(sT +a) + (1)), 5) -

—f <57 +a, i&“nl‘i(€7' +a), 5)

=0

The function f <t, 3 el (t ) is expanded in the series of Taylor in neighbour-
hood of points (¢, zg t), ¢) and keeping in mind (7) for the last is obtained

f <t, ieixi(t),&) = iéiﬁ(t) + "Gt mo(t), ..., wn(t),€)
=0 =0
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no n
The function f <5T+a, > 5’(@(57—1—(1)—1—1‘[(7)),5) —f <5T+a, > 5”@(67—1—@),6)
i=0 =0

i=
is expanded in the series of Taylor in neighbourhood of points (a, z¢(a)+1Iy(7), ),
as the functions z;(eT + a) are expanded in the series of Taylor too, but in the
neighbuorhood of point ¢ = a and keeping in mind the equalities (9) it is obtained

/ <€T—i—a, i el(zi(eT + a) +H(r)),s> —f (ET+a, i E”xi(sr+a),5> =

=0 =0

= Z EZHZf(T) + En+1HG(7—7 HO (T)7 e 7Hn(T)7 E)'
1=0
Then

F(t, Xn(t,e) + €t 2),0) = 3 & [Fut) + TLf(r)] +

1=0
+e" T gt o(t), - -, n(t), €) + IG(r, Ho(7), ..., Hn(7), )] +

+e" (L ) it Xn(t €) + 0" E(t ) €), 0 <0 <1,
and the function H(t,¢) takes on the form
(39)  H(t,e) =™ [e€(t,e)fut, Xn(t€) + 0" IE(t €), €) + H(t€)]

where Hi(t,e)=¢c[g(t,zo(t),...,xn(t),e)+UG(T, o (7),.. ., (7)) +Axpi1(t)
+II,, f(7). The equality (39) is substituted in (38) and the problem for the re-
mainder term becomes the next

d§

(40) = 0

= AL+ e€(t,e) fu(t, Xn + 0" T1E €) + Hi(t,e), L(£(-€)) =0

It is considered the function Hi(t,e). It consists of the functions g, IIG, Axyy1,

II,,f. The function g consists of continuous and bounded in the domain €2 func-

tions, i.e it is bounded too. Let ||g(t, zo(t),. .., zn(t),€)|| < m1. About function

I1G is obtained analogously ||[IIG(7, I (7), ..., I1,(7),&)|| < n2 under (¢, x,e) € Q.
Keeping in mind that z,,(¢) is countinuous function in the interval [a, b],

an inequality || Az, (t)|] < n3 is obtained. According to Theorem 1 the func-

tion II,, f(7) is exponentially small therefore positive constant n, exists such that
L, f(7)|| < 74. Then

|Hi(t,e)|| <m, n=elm+mn2)+n3+m
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Let W(t, s,¢) is normal fundamental matrix of the solutions of the homo-
geneous system

E% = A¢, W(s,s,e) = E,.

Then the followig contentions are fulfilled [15, 3, 2, 6]:

Lemma 2. For the matriz W (t,s,e) when a < s<t<b, 0<e<eggis
fulfiled the next equality

t_
IW(t,5,)]| < Bexp (—a )

where o and B are positive constants.

Lemma 3. FEwvery continuous solution of the system (40) is solution of
the integral equation

E(t,e) =Wi(t,a,e)é(a,e)+
(41) t 1
+/ W (t, s,s)g [ef2(s, Xy + 0c"T1E, )E(s, ) + Hi(s, €)] ds.

t
1
Lemma 4. When € — 0 the integral / —W (t,s,e)|| ds is uniformly
5
a

bounded in the interval [a,b], i.e. a positive constant M exists, such that when

e — 0 andt € [a,b] is fulfilled
/t

From the condition H2 is obtained that f.(¢, X,, + 0""! ¢) is bounded
in the domain €2, i.e.

1
EW(t,s,e) ds < M.

I fa(t, X + 0™ 6)|| < ki, 0<O<1

Let W(t,a,e)é(a,e) = F(t,e). The system (40) is solved by the method of
successive approximations, i.e.

&(t,e) =0
(42) &nltie) = F(t.e)+

t
+/ W(t,s,z-:)é [efo(s, Xn+0" 1, )61 (5,8)+Hi(s,€)] ds.
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Theorem 3. Let h, hi, ki, hs, b, 3, o and M are positive constants
such that

HW(t?a>€)|| < Ba ||F(t75)H < h1> h‘l = 2Bh> 0< 23 < 1’

t

1
||f;<t,Xn+ee"+1,s>||<kl,/ YWt,s0)| as < o,

a

IR || < hs, [L()|| < Bl[Y|l, hsb<2, <

2Mky "

Ui
value problem (1), (2) has the form (37), where £(t,€) satisfies the condition

— < h, then the asymptotic representation of the solution of the boundary

1€(E,€)[| < 2h,
and the vector (a,€) is defined from algebraic system

(43) R(e)¢(a, ) = 7(e),

where R(e) =1 (W (-,a,€)) is m x n matriz and

=1 (/ W(-,s,e€) 1 (efi(s, Xn + 0" T1E(s,€),6)&(s,€) + Hi(s,€)) d5> :

9

Proof. By (42) is proved (see [4]), that the system (40) has an unique
continuous solution which do not leave the domain €2y, where
01 = {(L,E)]a < t <b,[€]| < 2R}, ie. &l < 2h.

Let a limit of the sequence of the successive approximations is £(¢, ¢), i.e.
nll—>H<>lo Enlt,e) = &(t,e). It satisfies the integral equation (41). This shows that

when € — 0 and t € [a, b] it is fulfilled ||£(t,€)|| < 2h. Thus the system (40) has
an unique solution which do not leave the domain €2; and depends on arbitrary
vector £(a, ). Finally, it must to showed that this vector do not leave the domain
Q. For this purpose the integral equation (41) is substituted in the boundary
condition [(£(+,€)) = 0 and the system (43) is obtained. Let the matrix R(e) has
the form

R(s) = Ry + O (es exp(—g)) ,

where s € N, « is positive constant, Ry is m X n constant matrix. The exponen-
tially small elements in the matrix R(e) are ignored and the system (43) takes
on the form

Rog(a,€) =7(e)
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It is assumed that rankRg = n, i.e. the matrix Ry has a full rank then the last
algebraic system has an unique solution

£(a,e) = Ryg(e),

if and only if
P;F(s) = 0.

Here by R(J{ is denoted the unique Moore-Penrose inverse matrix of the matrix
Ry and by Pj - matrix projector P5 : R™ — ker(R}).
Then

1€ (e, )l < [IRg g (o) <

t
smm/

< h3h4M [Ek12h + 7]] < h3h4M |:2€0k1h +

1
W 0,5.6) | et o + 06, e(o,0)] + (s 2 s <
h1-B)]
=D
2kih  h  2h0

1
— — 22 <4h[1 - B <4=h =2h
oME M M]_ 1=hAl=43 ’

§2M[

ie. ||€(a,e)|| < 2h, which shows that the vector {(a,c) do not leave the domain
Q4. Thus the theorem is proved.
The asymptotic series of the nonlinear problem (1), (2) satisfies

lir%x(t,f;‘) =x0(t), t € (a,b].

E—

4. Example. Let t € [0,1], z = (21 22 )T and the problem (1), (2)
has the next coeflicients

_ 2 _
a=(3 03) sewa=(T00) w0 =(577).

12 2 3 ~1
lz() = Mz(0)+Nz(1) =h, M= |-1 -2 |, N=[1 0 |, h=| -2
2 4 0 1 2

From (10) for zo(t) and x;(t) is obtained

2t — 3 At% — 16t + 14
@o(t) = ( 21 — 2 > xl(t):<4t2—14t+11>
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. ) dx .
For the fundamental matrix of solutions of the system i Ax is found
3—2et 27t -2 _ _1 3—2¢et 2et -2 ¢
Xt = ( 3—3¢t 3et—2 )6 XM= 3 3¢ 32 )¢
1
The matrix D(e) from (14) has the form D(e) = MX(0) + NX < > = Dy +

0 (exp (—%)) , where )

1 2
1 1 -1 2 4 =2
= = —_ —_ +:— = —
Do=M 1 —2 |, then D 30<2 _24>,P 5<_2 1),
2 4
1 5 1 =2
P*:E 1 5 2 |. Itis clearly that rankP = 1 and rankP* = 2,
-2 2 2

thenPT:P1—3< 1>7Pd:P2—6<1 5 2>

The system (16), where hg = (8 — 8 16)7, is solvable (in this case Pjhg = 0) and

its solution is
1/ -2 8 /(1
COZP10(1)+D(J]Fh0:g< 1>C(l)+g<2>
Then IIy(7) from (19 ) takes on the form

() = eT [ —8—8ch+2eT(843c)) \ _ [ aeT +2be "
O™ 75\ —8—8ch+3¢7(8+3c)) )~ \ae ™ +3be > )7

—8 — 8¢} b_8+30(1)
5.7 5

where a =

_1
Through (26) and ignoring the exponentially small elements O <6 ) , 0 (e_2>,
€

0] (6*2), O (e*§> the nonlinear system for defining cf, is obtained

_ 2,1 460 4 1350 8 1 (=205 1 1 ( 24a”— 4807
15°¢ —994 975\ 19 )15 —101 ) "g° 1242 — 2402 )
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(44)

and it is found ¢ = —1,66888 4 0,05843¢ !
Thus IIy(7) is defined completely.
By the linear system

6

m =

993
ot [ 3840+ 288D +1840 \ 1 (61 (486 + 24a + 42)—
30 “ T | 223
1924 + 144b + 896 29

_ 1 _
T (24b + 12a 4 101)
—96b% — 120ab? — 884b% — 672ab + 724> + 362a% — 3370b + 210a

=

—48b3 — 60ab? — 436b* — 33ab + 36a> + 178a® — 1478b + 108a > ’
where a and b are the expression indicated above after ¢} from (44) is substituted
and c} is determined

cf =

0,905432 — 0, 082926
This shows that for IT;(7) is found

1 -7 _
y(r) = 5 ( SE,T B} 2 > e~T(—0,905432 — 0, 082926 1) + (

)

—3b%e™3" — dabe™? + (5b% — a® + 12b + 4ab — 4a)e T —
+ Hoo 57 —27 2 2 -7
—?b e " — 6abe —i—(?b —a” +12b + 6ab — 6a)e™ " —
—10a7 +a® = 20" — 12b+4a \
—10ar + a® — 2b* — 12b + 6a ) ©
where

B=—
30

60a

1
<—223 + (7192@3 + 34abe”F — (875192 — 6a2 + 72b + 34ab — 34a> e+
+_ —

&

6a2 + 120 + 72b — 34a> ei>
For the solution is obtained

2% —3 1( 6es—8 Y\ _¢ .
x(t,s)—<2t_2>+g<9€_§_8>e = (—1,66888 + 0,05843c 1)+
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(Sf2eE o1 e (42— 164 14
5 lseto1 ) T \la2— 14t 4+ 11

( G e =8 ) e~ £(—0,905432 — 0,082926 1) + ( 2e e -1 > e tBy

1
5\ 9 f—8 3 —1

+ < —3b%e %% — dabe”2% 4 (562 — a® + 12b + 4ab — da)e < — +

—%626_3§ — Gabe 2 + (£2b% — a? + 12b + 6ab — 6a)e = —

—10at + a® — 2b*> — 12b + 4a _t 2
—10ar + a® — 26 — 12b + 6a > c > +0(),

where a = 1,0702 — 0,0934928:~L, b = 0, 5986864 + 0, 0350598 ~!.

1]
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