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UNIFORMLY GÂTEAUX DIFFERENTIABLE NORMS IN

SPACES WITH UNCONDITIONAL BASIS

Jan Rychtář∗

Communicated by S. L. Troyanski

Abstract. It is shown that a Banach space X admits an equivalent uni-
formly Gâteaux differentiable norm if it has an unconditional basis and X∗

admits an equivalent norm which is uniformly rotund in every direction.

Let (X, ‖.‖) be a Banach space. Let SX and BX denote the unit sphere
and the unit ball respectively, i. e. SX = {x ∈ X; ‖x‖ = 1} and BX = {x ∈
X; ‖x‖ ≤ 1}. Let N, Q and R denote the sets of positive integers, rational numbers
and real numbers respectively. Let X∗ denote the dual to the Banach space X and
let ‖.‖∗ denote the norm on X∗ that is dual to the norm ‖.‖ on X. A biorthogonal
system {xγ , fγ}γ∈ΓıX ×X∗ is called an unconditional basis for a Banach space X
if for each x ∈ X x =

∑

γ∈Γ
fγ(x)xγ and the sum converges unconditionally. The
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norm ‖.‖ on a Banach space X is said to be uniformly rotund in every direction
(URED for short), if lim ‖xn − yn‖ = 0 whenever xn, yn ∈ SX are such that
lim ‖xn + yn‖ = 2 and xn − yn = λnz for some z ∈ X, λn ∈ R. The norm ‖.‖ on
X is called uniformly Gâteaux differentiable (UG) if

lim
t→0

1

t

(

sup
x∈SX

‖x + th‖ + ‖x − th‖ − 2

)

= 0

for every h ∈ SX . A compact space K is called a uniform Eberlein compact (UEC)
if K is homeomorphic to a weakly compact subset of a Hilbert space in its weak
topology. The space (Σ(RΓ), τ) is a subspace of a product space RΓ with the
product topology, such that x ∈ (Σ(RΓ), τ) iff x(γ) 6= 0 for at most countably
many γ ∈ Γ.

The main result in this paper is the following theorem.

Theorem 1. Let X be a Banach space with an unconditional basis
{xγ , fγ}γ∈Γ. If X∗ admits an equivalent (not necessarily dual) URED norm,
then BX∗ in its weak∗ topology is a UEC.

By putting this implication together with other already known results
(we refer to [3], [4], [5, Chap. II], we obtain Theorem 2. Note that, except (i) ⇒
(ii), all the remaining implications hold without the assumption of existence of
an unconditional Schauder basis.

Theorem 2. Let X be a Banach space with an unconditional basis
{xγ , fγ}γ∈Γ. Then the following are equivalent

(i) X∗ admits an equivalent (not necessarily dual) URED norm.

(ii) BX∗ in its weak∗ topology is a UEC.

(iii) X admits an equivalent UG norm.

In the proof of Theorem 1 we shall use the following statements.

Fact 3. Let (X, ‖.‖) be a Banach space and let {xγ , fγ}γ∈Γ be a norma-

lized unconditional basis for X. For x ∈ X put ‖x‖1 = sup
αγ=±1

∥

∥

∥

∑

γ∈Γ
αγfγ(x)xγ

∥

∥

∥
.

Then

(i) ‖.‖1 is an equivalent norm on X,
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(ii)
∥

∥

∥

∑

γ∈F
aγxγ

∥

∥

∥

1
≤
∥

∥

∥

∑

γ∈F
bγxγ

∥

∥

∥

1
, and

∥

∥

∥

∑

γ∈F
aγfγ

∥

∥

∥

∗

1
≤
∥

∥

∥

∑

γ∈F
bγfγ

∥

∥

∥

∗

1
, whenever

F ⊂ Γ is finite and aγ , bγ ∈ R satisfy |aγ | ≤ |bγ | for every γ ∈ F ,

(iii) ‖PA‖1 = 1 for A ⊂ Γ finite, where PA(x) =
∑

γ∈A

fγ(x)xγ ,

(iv) ‖xγ‖1 = ‖fγ‖
∗
1 = 1.

P r o o f. The proof is based on the similar ideas as [9, p. 499–505], where
analogous statements for a countable set Γ are proved. �

The following lemma is due to Troyanski [10].

Lemma 4. Let X be a Banach space and let ‖.‖ be an equivalent URED

norm on X. Then for any ε > 0 there exists a decomposition {S
(ε)
i }∞i=1 of the unit

sphere SX such that for distinct {xj}
i
j=1 ⊂ S

(ε)
i we have max

aj=±1

∥

∥

∥

i
∑

j=1
ajxj

∥

∥

∥
> ε−1.

We shall use the following topological characterization of uniform Eberlein
compacts which can be found in [3].

Lemma 5. A compact space K is UEC iff there exists a family {Vδ, δ ∈
∆} of open Fσ subsets of K such that

(i) The family {Vδ, δ ∈ ∆} separates points of K, i. e. for x 6= y ∈ K there
exists δ ∈ ∆ such that x ∈ Vδ and y 6∈ Vδ, or x 6∈ Vδ and y ∈ Vδ.

(ii) There exists a decomposition of ∆ into a sequence {∆n}
∞
n=1 and natural

numbers {k(n)}∞n=1 such that {Vδ, δ ∈ ∆n} is k(n)-finite, i. e. any x ∈ K
belongs to at most k(n) sets of the family {Vδ, δ ∈ ∆n}.

The core of our note is the following lemma.

Lemma 6. Let (X, ‖.‖1) be a Banach space, {xγ , fγ}γ∈Γ be a normal-
ized unconditional basis, ‖.‖1 be a norm as in Fact 3, ‖.‖2 be an equivalent URED
norm on X∗. Then there is a bounded linear, weak∗ to pointwise continuous, and
one-to-one operator T : (X∗, w∗) → (Σ(RΓ), τ) such that for any ε > 0 there

exists a decomposition {Γ
(ε)
i }∞i=1 of Γ such that

card {γ ∈ Γ
(ε)
i , |T (x∗)(γ)| > ε} < i.

for all x∗ ∈ S(X∗,‖.‖∗
1
) and i ∈ N.
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P r o o f. Let k > 1 be such that k‖x∗‖2 ≥ ‖x∗‖∗1 ≥ k−1‖x∗‖2. Let

f̃γ =
fγ

‖fγ‖2
for all γ ∈ Γ. Put Γ

(ε)
i = {γ ∈ Γ, f̃γ ∈ S

(ε/k2)
i }, where according to

Lemma 4, {S
(ε/k2)
i }∞i=1 is the decomposition of S(X∗,‖.‖2) such that for all distinct

{x∗
j}

i
j=1 ⊂ S

(ε/k2)
i we have max

aj=±1

∥

∥

∥

i
∑

j=1
ajx

∗
j

∥

∥

∥
> k2/ε. Let T (X∗, w∗) → (RΓ, τ) be

defined for x∗ ∈ X∗ by T (x∗) = {x∗(xγ)}γ∈Γ. Clearly, the operator T is weak∗ to

pointwise continuous and one-to-one. Put U
(ε)
x∗,i = {γ ∈ Γ

(ε)
i ; |T (x∗)(γ)| > ε} and

let us suppose that there is ε > 0, x∗ ∈ BX∗ and i ∈ N such that |U
(ε)
x∗,i| ≥ i. Let

A ⊂ U
(ε)
x∗,i be such that card A = i. Then

1 ≥ ‖x∗‖∗1 ≥ ‖P ∗
A(x∗)‖∗1 =

∥

∥

∥

∑

γ∈A
x∗(xγ)fγ

∥

∥

∥

∗

1

≥ min
γ∈A

|x∗(xγ)|
∥

∥

∥

∑

γ∈A
fγ

∥

∥

∥

∗

1
> ε
∥

∥

∥

∑

γ∈A
fγ

∥

∥

∥

∗

1
= ε max

aγ=±1

∥

∥

∥

∑

γ∈A
aγfγ

∥

∥

∥

∗

1

≥ εk−1 max
aγ=±1

∥

∥

∥

∑

γ∈A
aγ f̃γ

∥

∥

∥

∗

1
≥ εk−2 max

aγ=±1

∥

∥

∥

∑

γ∈A
aγ f̃γ

∥

∥

∥

2
> 1,

which is a contradiction. Hence, in particular, T (X∗, w∗) → (Σ(RΓ), τ). �

P r o o f o f t h e Th e o r e m 1. We shall use the notation of Lemma
6. According to Lemma 5, in order to prove that (BX∗ , w∗) is UEC, we put
∆ = {(γ, r); γ ∈ Γ, r ∈ Q \ {0}}. We put V(γ,r) = {f ∈ BX∗ ;T (f)(γ) > r}
for r > 0 and V(γ,r) = {f ∈ BX∗ ;T (f)(γ) < r} for r < 0. Clearly, each V(γ,r)

is weak∗-open and Fσ-set. If f, g ∈ BX∗ , f 6= g then there is γ ∈ Γ such that
f(xγ) 6= g(xγ). Assume that f(xγ) < g(xγ). We choose 0 6= r ∈ Q such that
f(xγ) < r < g(xγ). If r > 0, then g ∈ V(γ,r) and f 6∈ V(γ,r). If r < 0, then
f ∈ V(γ,r) and g 6∈ V(γ,r). The case when f(xγ) > g(xγ) can be treated similarly.

Hence the family {V(γ,r); (γ, r) ∈ ∆} separates points of (BX∗ , w∗). Let {Γ
(ε)
i }∞i=1

be the decomposition of Γ by Lemma 6. For r ∈ Q \ {0} and i ∈ N put

∆(r,i) = Γ
|r|
i × {r}.

Now fix one such (r, i) and consider any f ∈ BX∗ . If (γ, r) ∈ ∆(r,i) and f ∈ V(γ,r),
then |T (f)(γ)| > |r|. Therefore, by Lemma 6,

card {V(γ,r); (γ, r) ∈ ∆(i,r), V(γ,r) ∋ f} ≤ card {γ ∈ Γ
|r|
i ; |T (f)(γ)| > |r|} < i.
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It means that the family {V(γ,r); (γ, r) ∈ ∆(r,i)} is (i− 1)–finite. Hence (BX∗ , w∗)
is UEC by Lemma 5. �

Remarks.

1) The condition of the existence of an unconditional basis can not be
dropped. Indeed, consider the space X = C[0, ω1] of all continuous functions on
the ordinal segment [0, w1]. The space X∗ is isometric to l1([0, ω1]) and hence
admits an equivalent URED norm (see e.g. [5], Proposition II.7.7 and II.6.7).
However, due to Talagrand’s result (see e.g. [5], Theorem VII.5.2 and Theorem
2.6.7), X∗ admits no dual strictly convex norm, hence X admits no equivalent
UG norm.

2) There is a Banach space X with an unconditional basis such that the
dual space X∗ admits an equivalent (non dual) strictly convex norm and X admits
no equivalent Gâteaux smooth norm. See [2].

3) There is a Banach space X with no equivalent UG norm such that the
dual space X∗ admits an equivalent dual URED norm. See [7].
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