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ABSTRACT. It is shown that a Banach space X admits an equivalent uni-
formly Gateaux differentiable norm if it has an unconditional basis and X*
admits an equivalent norm which is uniformly rotund in every direction.

Let (X, ||.||) be a Banach space. Let Sx and Bx denote the unit sphere
and the unit ball respectively, i. e. Sx = {x € X;||z|]| = 1} and Bx = {z €
X;||z]] < 1}. Let N,Q and R denote the sets of positive integers, rational numbers
and real numbers respectively. Let X™* denote the dual to the Banach space X and
let ||.||* denote the norm on X* that is dual to the norm ||.|| on X. A biorthogonal
system {z~, fy},er1X x X* is called an unconditional basis for a Banach space X

if for each x € X = ) f,(x)x, and the sum converges unconditionally. The
yel’
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norm ||.|] on a Banach space X is said to be uniformly rotund in every direction
(URED for short), if lim ||z, — yn|| = O whenever z,,y, € Sx are such that
lim ||z, + ynl| = 2 and z,, — yn, = A\pz for some z € X, A, € R. The norm ||.|| on

X is called uniformly Gateaux differentiable (UG) if
o1
lim — < sup ||x + th|| + [z — th|| — 2) =0
t—0 t $€SX

for every h € Sx. A compact space K is called a uniform Eberlein compact (UEC)
if K is homeomorphic to a weakly compact subset of a Hilbert space in its weak
topology. The space (X(RY),7) is a subspace of a product space R with the
product topology, such that x € (X(RD),7) iff 2(vy) # 0 for at most countably
many v € I'.

The main result in this paper is the following theorem.

Theorem 1. Let X be a Banach space with an unconditional basis
{2y, fytyer. If X* admits an equivalent (not necessarily dual) URED norm,
then Bx« in its weak™ topology is a UEC.

By putting this implication together with other already known results
(we refer to [3], [4], [5, Chap. II], we obtain Theorem 2. Note that, except (i) =
(ii), all the remaining implications hold without the assumption of existence of
an unconditional Schauder basis.

Theorem 2. Let X be a Banach space with an unconditional basis
Ty, cr. Then the following are equivalent
v Jysy

(i) X* admits an equivalent (not necessarily dual) URED norm.
(ii) Bx= in its weak™ topology is a UEC.

(ili) X admits an equivalent UG norm.

In the proof of Theorem 1 we shall use the following statements.

Fact 3. Let (X,|.||) be a Banach space and let {x~, fy},er be a norma-

lized unconditional basis for X. For x € X put ||z|1 = sup || > ayfy(x)z,||.
Oz»\/:il "{EF

Then

(i) ||-lli is an equivalent norm on X,
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(@) || 5wy < | S ovas s and | S ants| < || S 00y
1 YEF 1 yeEF 1 YEF
F CT is finite and a,by € R satisfy |ay| < |by| for every v € F,

*
, whenever
1

(iii) ||Palli =1 for ACT finite, where Pa(z) = ) fy(x)x,,
yEA

(V) [lzylle = 1517 = 1.

Proof. The proof is based on the similar ideas as [9, p. 499-505], where
analogous statements for a countable set I' are proved. O

The following lemma is due to Troyanski [10].

Lemma 4. Let X be a Banach space and let ||.|| be an equivalent URED
norm on X. Then for any e > 0 there exists a decomposition {st)}fil of the unit

sphere Sx such that for distinct {xj}é-:l C SZ-(E) we have maicl‘
aj=

J
We shall use the following topological characterization of uniform Eberlein
compacts which can be found in [3].

i
(Ijl‘jH >e 1
=1

Lemma 5. A compact space K is UEC iff there exists a family {Vs,6 €
A} of open F, subsets of K such that

(i) The family {Vs,0 € A} separates points of K, i. e. for x # y € K there
exists 6 € A such that x € Vs andy ¢ Vs, or x & Vs and y € Vj.

(ii) There exists a decomposition of A into a sequence {A,}72, and natural
numbers {k(n)}o2; such that {V5,6 € A,} is k(n)-finite, i. e. any v € K
belongs to at most k(n) sets of the family {Vs,0 € A,}.

The core of our note is the following lemma.

Lemma 6. Let (X,|.|1) be a Banach space, {x~, fy} er be a normal-
ized unconditional basis, ||.||1 be a norm as in Fact 3, ||.||2 be an equivalent URED
norm on X*. Then there is a bounded linear, weak® to pointwise continuous, and
one-to-one operator T : (X*,w*) — (B(RY),7) such that for any ¢ > 0 there

exists a decomposition {FEE)};’; of I such that
card{y e T |T(x*)(y)| > ¢} < i.

for all * € S(x+ |z and i € N.



356 Jan Rychtar

Proof. Let k > 1 be such that k|z*|s > ||z*||7 > k7 !|a*|]2. Let

fW = HJ{WH for all v € T. Put I‘Z(-a) ={y ¢ I‘,f; € Si(a/kQ)}, where according to
Y112
Lemma 4, {5, (e/k?) o, is the decomposition of S(x+|.,) such that for all distinct

{1‘}‘};:1 - Si(s/k ) we have max Z% Je. Let T (X*, w*) — (R',7) be

aj=%1 j=
defined for z* € X* by T'(z*) = {z* (l"y)}'yep Clearly, the operator T is weak® to
pointwise continuous and one-to-one. Put U, (5 - ={y¢€ T HER \T( “)(v)| > ¢} and

let us suppose that there is ¢ > 0, * € Bx+ and t € N such that |U£i)z\ > 4. Let
AcC Uéi)ﬂ be such that card A = i. Then

*

L2l 2 P30 = | S o @)h |

j>5‘ wa

yEA

=€ max HZ aq,f«,

a»y:il ’YEA

>m1na: x H
minfo* ()] || 2,

> ek~ max H > avf,y
ay=F1ly e

> ek~? max H > avaH > 1,
ay=% NEA 2

which is a contradiction. Hence, in particular, T (X*,w*) — (S(RV), 7). O

Proof of the Theorem 1. We shall use the notation of Lemma
6. According to Lemma 5, in order to prove that (Bx«,w*) is UEC, we put
A= {(1r)y € Tor € Q\ {0} We put Vippy = {f € Bx-iT())(7) > 7}
for > 0 and Vi, .y = {f € Bx«;T(f)(y) < r} for r < 0. Clearly, each V(,
is weak*-open and F,-set. If f,g € Bx+,f # g then there is v € T" such that
f(zy) # g(xy). Assume that f(z,) < g(x,). We choose 0 # r € Q such that
flzy) <7 < g(zy). Ifr >0, then g € V(,,yand f & V(). If r <0, then
f €V and g € Vi, ;). The case when f(x,) > g(z,) can be treated similarly.
Hence the family {V{, ,y; (7,7) € A} separates points of (Bx»,w"). Let {FEE)
be the decomposition of I" by Lemma 6. For r € Q \ {0} and ¢ € N put

A(r,i) = FLH X {7“}

Now fix one such (r,7) and consider any f € Bx«. If (y,7) € A ;) and f € V(. ,y,
then |T'(f)(7)| > |r|. Therefore, by Lemma 6,

card {Viy i (1,7) € D)y Vigy 2 3 < card {y € TV [T(F) ()] > Ir]} <.
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It means that the family {V{, .y; (7,7) € A5} is (i —1)-finite. Hence (Bx«,w")
is UEC by Lemma 5. O

Remarks.

1) The condition of the existence of an unconditional basis can not be
dropped. Indeed, consider the space X = C[0,w;] of all continuous functions on
the ordinal segment [0,w;]. The space X* is isometric to {1(][0,w:]) and hence
admits an equivalent URED norm (see e.g. [5], Proposition I1.7.7 and 11.6.7).
However, due to Talagrand’s result (see e.g. [5], Theorem VII.5.2 and Theorem
2.6.7), X* admits no dual strictly convex norm, hence X admits no equivalent
UG norm.

2) There is a Banach space X with an unconditional basis such that the
dual space X* admits an equivalent (non dual) strictly convex norm and X admits
no equivalent Gateaux smooth norm. See [2].

3) There is a Banach space X with no equivalent UG norm such that the
dual space X* admits an equivalent dual URED norm. See [7].
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