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General Remarks to the
Dissertation

We provide the main features of the present Dissertation.

Timeliness and relevance of scientific problems addressed by

the Dissertation

Infectious diseases account for many millions of deaths every year and are
the main reason for human mortality. The well know deadly diseases are
pneumonia, tuberculosis, diarrheal diseases, malaria, measles, HIV/AIDS,
and more recently, the COVID-19. The control of epidemic outbreaks may
be considered as the main driver for the development of the modern Epi-
demiology, in particular of the development of the new area of Digital and
Computational Epidemiology.

During the last decade, an intensive worldwide effort is speeding up the
developments in the establishment of a global surveillance network provid-
ing epidemiological Big Data, for combating pandemics of emergent and
re-emergent infectious diseases. This trend has developed recently very
strongly due to the Covid-19 pandemic.

Scientists from different fields extending from medicine, virology, im-
munology, genetics, molecular biology to computer science, statistics and
applied mathematics have teamed up for rapid assessment of potentially ur-
gent situations. Towards this aim mathematical modeling plays a central
role in efforts that focus on forecasting, assessing, and controlling poten-
tial outbreaks. To better understand and model the spread of the con-
tagious diseases the impact of numerous variables ranging from the micro
host–pathogen level to host-to-host interactions, as well as prevailing eco-
logical, social, economic, and demographic factors across the globe have to
be analyzed and thoroughly studied. For that reason it is important to be
aware of the main approaches that are used for the surveillance and mod-
eling of infectious disease dynamics, and the basic concepts underpinning
their implementation and practice in the area of available Big Data. See Liu
et al. [2020], Kuhl [2021], Siettos and Russo [2013].
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ii GENERAL REMARKS TO THE DISSERTATION

The present Dissertation represents a contribution to the newly emergent
area of Digital and Computational Epidemiology. The last is a ”Big Data”-
Driven Modeling of contagious diseases, in particular of COVID-19, and
may be defined as the building and study of new mathematical models for
analyzing of epidemic outbreaks including their computer implementations
and simulations in the framework of Big Data.

State of the Art of the problem studied

One of the main objectives of the present Dissertation is to build mod-
els for the analysis of Covid-19 disease spread as well as to provide their
Web-based implementations, as instruments for interactive real time data
analysis. There exists a list of popular world wide instruments for analysis
of the COVID-19 spread, supplied with Web-based (free) online Analytical
Tools. To name a few of the most popular:

1. The tool ”Projections” by the IHME Institute is available at the link
https://covid19.healthdata.org/bulgaria?view=total-deaths

tab=trend

2. Tool Delphi from the Massachussets Institute of Technology, https:
//www.covidanalytics.io/home

3. Tool at Imperial College London, https://www.covidsim.org

4. The Los Alamos National Laboratory (LANL), https://covid-19.b
svgateway.org/

5. The SI-KJalpha model from the University of Southern California,
https://github.com/scc-usc/ReCOVER-COVID-19)

Objectives of the present work

The main objective of the Dissertation is to develop new mathematical mod-
els and to provide their computer implementations in the form of Web-based
instruments. The tasks which have been solved for achieving the above ob-
jective are:

1. The building of a model for short-term forecast of the epidemiological
curves, TVBG-SEIR, based on splines with four nodes representing
the transmission and the removal coefficients of the SEIR model. It
analyses the short-term global evolution of the epidemics controlled
by the introduction of lockdown/open up measures by the authorities.
The incorporation of different lockdown prediction scenarios varying
in time permits to analyze not only the primary epidemic wave but

https://covid19.healthdata.org/bulgaria?view=total-deathstab=trend 
https://covid19.healthdata.org/bulgaria?view=total-deathstab=trend 
https: //www.covidanalytics.io/home 
https: //www.covidanalytics.io/home 
https://www.covidsim.org 
https://covid-19.bsvgateway.org/ 
https://covid-19.bsvgateway.org/ 
https://github.com/scc-usc/ReCOVER-COVID-19) 
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also the arising secondary wave and any further waves. See Chapter
2.

2. Developed a web-based Scenario Building Tool for COVID-19 (shortly,
SBT-COVID-19), based on the software platforms Jupyter and Bokeh;
it uses Jupyter Notebooks Architecture: Jupyter Notebooks work with
a two-process model based on a kernel- client infrastructure. The tool
may be used as a decision support software by (health) policy makers
to explore various scenarios, by controlling/changing the scale of the
containment measures (home and social isolation/quarantine, travel
restrictions and other) and to assess their effectiveness. The SBT-
COVID-19 Tool permits to assess how long the lockdown measures
should be maintained. See Chapter 2 for the description of the func-
tionalities of the tool and Chapter 4 for description of the software
solution.

3. The building of a model for long-term forecast, ATVBG-SEIR, based
on estimation of the duration of the Epidemic of COVID-19 in a single
country, accounting for different scenarios. We included vaccinations
in the model which are carried out according to a vaccination plan
provided on a monthly basis. We have modeled the seasonal effect
as well. The algorithm takes into account the main constraint of the
health system which is the number of Intensive Care Units (ICU) in-
tended for COVID-19 patients. See Chapter 3.

4. We have developed a web-based Lockdown Scenarios Tool based on
the software platforms Jupyter and Bokeh; the tool is available online
at http://atvbg-seir.eu. It is using the algorithm implementing
the methodology of the ATVBG-SEIR model. Results are demon-
strating the effciency of the tool by applying it to COVID-19 data
from Austria, Bulgaria, Germany, Italy, UK and USA. See Chapter 3
for the description of the functionalities of the tool and Chapter 4 for
description of the software solution.

http://atvbg-seir.eu
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Chapter 1

Introduction

In the present Chapter we discuss the role of Big data in Medicine and in
particular in Epidemiology related to Covid-19. We also introduce some
basic concepts of modeling in Mathematical Epidemiology.

Historically, mathematical modeling in Epidemiology has appeared al-
ready in the works of Bernoulli about 1766, Straif-Bourgeois et al. [2014],
but until recently, it was not much used as a broadly accepted tool for public
health policies, but was considered a specialized research area for applied
mathematicians and theoretical biologists. Things have changed with the
advent of the HIV pandemic, when mathematical models were first used
to predict future epidemic spread, and to analyze the impact of behavior
change on HIV incidence.

The real breakthrough for mathematical modeling as a public health
tool came with the concerns that smallpox virus could be used in a deliber-
ate release and lead to devastating outbreaks in the only partially immune
populations of present societies.

How can public health policy be developed against threats with pathogens
that are not circulating at present? There is no way to conduct epidemiolog-
ical investigations, and the only available data in the case of smallpox were
from before the eradication era. Therefore, to design policy, knowledge from
historical smallpox outbreaks had to be combined with data about present-
day society, and possible interventions had to be tested on the basis of this
available information. Mathematical modeling provided a flexible tool to
solve the problem, and was used to analyze possible vaccination strategies
and other interventions. Mathematical modeling has shaped the present
paradigms of infectious disease epidemiology. In modern terms, for analyz-
ing the smallpox spread, the epidemiologists and the modellers have solved
the epidemiological problem by applying an approach which belongs to the
Big Data paradigm and Machine learning – massive use of historical data
from various countries, generation of projections (or, prediction scenarios)
by different alternative models, and by ”Machine learning” from the histor-

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Image courtesy: S.M. Shamimul Hasan, Virginia Tech.

ical data.

In the Appendix, section 7.1 we provide a more detailed account of the
role of the modern mathematical modeling in Epidemiology following Straif-
Bourgeois et al. [2014].

In view of the above observations the modern Epidemiology supplied
with the appropriate mathematical modeling may be considered as a science
based on Big Data in all aspects of this notion.1 We refer to Pyne et al.
[2015] for a detailed discussion of the role of Big Data in solving the urgent
problems of Epidemiology related to the modern societies’ preparedness for
controlling the spread of pandemics, ironically published in 2015. We provide
the following Figure visualizing the Big data issues in Epidemiology: variety,
volume, velocity, and veracity.

In order to give an idea about how big the Big data are in the range
of problems which we deal with, we mention the following facts about the
formats and volume of the daily data on Covid-19: The data provided by
majority of sources and World Health Organization (WHO) are prevailing
Time series in CSV format and are in a raw format. However they are
usually transformed in some Relational Database but this normally happens
after some time, not immediately. The popular Institute for Health Metrics
and Evaluation (IHME) which maintain the popular Projections Tool, has
a detailed description of their datasets containing data for all countries in

1About the recent concepts of Open Data and Big Data we refer to Stanchev et al.
[2020] and Srebrov et al. [2020].



1.1. BIG DATAAPPLICATIONS IN HEALTH SCIENCES AND EPIDEMIOLOGY3

the world: COVID-19 estimate downloads are available at the link http:

//www.healthdata.org/covid/data-downloads . The decompressed daily
dataset is about 600 MB, which means that the size of a three month period
(normally used for the models TVBG-SEIR and ATVBG-SEIR) is about 54
GB of data.

1.1 Big Data Applications in Health Sciences and
Epidemiology

Infectious diseases account for more than 13 million deaths a year and are
the main reason for human mortality. The well know deadly diseases are
pneumonia, tuberculosis, diarrheal diseases, malaria, measles, HIV/AIDS,
and more recently, the COVID-19.

An epidemic is an occurrence in a region or a country, of large number of
cases of a disease, which exceeds a certain measure of normality. A pandemic
is an epidemic that spans a large portion of the world, such as the H1N1
outbreak in 2009.

Epidemiology is the study of the distribution and determinants of health-
related states or events in specified populations, and the application of this
study to the prevention and control of health problems, Last [2001]. Unlike
the medical sciences, the main concern of Epidemiology is on population-
level issues. Epidemiologists are primarily concerned with public health,
which includes the design of studies, evaluation and interpretation of public
health data, and the maintenance of Big Data collection systems.

The control of epidemic outbreaks may be considered as the main driver
for the development of the modern Epidemiology. It is remarkable that
the collection of Big Data in Epidemiology was one of the main sources
for the new science, when the medical Dr. John Snow’s has discovered in
1854 the causes for the Broad Street cholera outbreak (currently, Broadwick
Street), in the Soho district of the City of Westminster, London, England.
Earnestly, and risking his life, Dr. Snow, walking from door to door in
the Soho district, has collected the data about the fatalities. He put on
the map all locations (houses) where death cases have occurred, which may
be considered as the very first model with Big Data in Epidemiology. Dr.
Snow proved using his map that germ-contaminated water was the source of
cholera, rather than particles in the air (referred to as ”miasma”), see Wiki
page https://en.wikipedia.org/wiki/John Snow for more details.

With the advent of modern science, pharmaceutical measures have been
widely used to control and prevent outbreaks. For example, vaccines have
become a critical method of controlling, preventing, and possibly eradicating
infectious diseases in host populations. Despite their success, nonpharma-
ceutical methods, such as quarantining and social distancing, continue
to play a central role in controlling infectious disease outbreaks; they are

http://www.healthdata.org/covid/data-downloads
http://www.healthdata.org/covid/data-downloads
https://en.wikipedia.org/wiki/John_Snow


4 CHAPTER 1. INTRODUCTION

especially important during an outbreak caused by an emerging pathogen,
when pharmaceutical methods are still not available.

Public health authorities have made significant strides in reducing the
burden of infectious diseases. Nevertheless, infectious diseases continue to be
an important source of concern. A number of global trends further amplify
these concerns: increased urbanization, increased global travel, denser ur-
ban regions, climate change, and increased older and immunocompromised
population.

Many of the changes that we see around us are, to a large extent, an-
thropogenic and are happening at a scale wider and faster than ever before
in human history. Further, new pathogens are emerging regularly, which
raises the importance of societies’ need to understand and be prepared
to systematically address the challenge of emerging infectious dis-
eases at different levels. In particular, it is necessary to develop adequate
Mathematical models for the spread of the new infectious diseases, which
are able to coop with the large size of the data, arising from the potential
pandemic character of the disease spread.

There is a growing concern about our preparedness for controlling the
spread of pandemics such as COVID-19 and similar viral infections. The
dynamics of epidemic spread in large-scale populations is very complex. On
the other hand, human behavior, social contact networks, and pandemics
are closely intertwined and evolve as the epidemic spreads. Very often the
normal social interactions are changing drastically in response to the pub-
lic policies undertaken by the health authorities which makes the model-
ing of the pandemics even more complicated. The planning and response
strategies by the authorities must take these complicated interactions into
account. Mathematical models are key to understanding the spread of
epidemics. In the present work we consider newly developed mathemati-
cal models for studying the complex dynamics of epidemics in large-scale
populations, based on the classical SIR/SEIR models in Epidemiology.

Using these models for creating scenario predictions (called sometimes
nowadays projections) for the epidemic spread and developing public health
policies leads to problems that are typical for the Big Data applications.
Thus our methods are applicable to Big Data in Epidemiology.

The role of epidemiologists is central in the pandemic and the mathe-
matical models they produce are instrumental in understanding how the
virus might impact populations, helping to inform government policy around
the world, Czyzewski [2020]. The modern epidemiologists view themselves
as mathematical modellers working in isolation from the wider public
health community; when actually they are epidemiologists first, who hap-
pen to have a more quantitative background and they work quite closely
across disciplines, as Immunology, and Clinical medicine. Therefore math-
ematical modelling isn’t just a case of producing these projections, but
it’s a way of formalising a lot of the information exchange that the modern
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epidemiologists have with their public health colleagues.

The importance of the concept of Big Data in Epidemiology may be
demonstrated by examples. The attempts to explain the phenomenon of
epidemics peak out of season of the COVID-19 in India shows that Epi-
demiology has to be a science based on Big Data if a reasonable explanation
has to be found. Indeed, in order to give a scientifically argumented explana-
tion, one needs to extrapolate from the data for Flu season in previous years
since no genuine summer COVID-19 summer season existed in 2020. In a
similar way, the attempts to model the summer season low of the COVID-19
in Bulgaria has to be based on data about the flu summer season in other
countries.

1.2 Compartmental and Mathematical SIR/SEIR
Models in Epidemiology

The main focus of the present work are the models which belong to the
family of the so-called Compartmental models. Before providing the State-
of-the-Art models we will introduce the concept of Compartmental models
as well as the basic notions and notations which will be used lateron.

Compartmental models are a framework used to model in an adequate
way the dynamics of infectious disease. The population is divided into com-
partments, with the assumption that every individual in the same compart-
ment has the same characteristics. This framework has been developed for
the first time in the paper of Kermack and McKendrick in 1927 Kermack
and Mckendrick [1927]. One may use a deterministic approach using a sys-
tem of ODEs or the framework of the stochastic models. In the present work
we devote our studies to the deterministic approach, and we will be focused
primarily on the so-called SEIR model. The main reason for choosing SEIR
model against its simpler relative SIR model, is the long incubation period
of COVID-19, hence, the large “exposed cases” compartment to be defined
properly below.

For a detailed and excellent and concise introduction to the compartmen-
tal models we refer to the monograph Keeling-Rohani, Keeling and Rohani
[2008], and to Straif-Bourgeois et al. [2014]. For completeness sake, we pro-
vide a description of the deterministic SEIR model which will be the main
approach in our research. Let us remark that during the modeling process
one needs to consider several (four) different settings of the disease spread.
The setting based on the direct reference to the physical / medical side
is the model which we describe below – we call it Realistic model. Then,
we have the official sources of data, which represent the so-called Official
model. Finally, we have the Ideal model which is meant to provide the best
Mathematical approximation to the Realistic model.

We start with the description of the Realistic (Compartment) SEIR
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model.

The classical SEIR model considers the society of individuums subdi-
vided into four compartments: CS , CE , CI and CR which are described as
follows:

1. Compartment CS : it has size Sr (t), and contains the number of
”susceptible” people at time t. Usually, at the start, S (0) = N is the
whole population of the country under consideration. It is supposed
that nobody has automatic immunity against the virus, i.e. everybody
is susceptible. However, it is also possible to assume that a part of
the population is not susceptible and this is a serious assumption in
some models which needs to consider an additional parameter as the
percentage of the susceptible proportion of the whole population.

2. Compartment CE : its has size Er (t), which is the number of ”ex-
posed” people at time t - these are the people who have come in a con-
tact with virus spreaders, and are ”virus carriers” but are not ”virus
spreaders”; the virus is in a latent form, and usually they do not show
symptoms of sickness. For different viruses the incubation (latent) pe-
riod is very different – for the coronavirus it was recently statistically
estimated from empirical data, that for 99% of the cases, the mean
incubation period is 5.9 days, while the minimum is 3 days and the
maximum is 14 days, (see the references Mcaloon et al. [2020], [Da-
ley et al., 2020, Bibliography to chapter 2]). Not everybody in CE
may become ”virus spreader”, i.e. move to the next compartment CI .
Practically, the compartment CE does not enter the official statistics
since it is not observable, but it is very important for the modeling of
the dynamics of the virus spread. This compartment is missing in the
simpler SIR model.

Here it is important to distinguish three categories: persons who never
becomes sick, persons who are in CE and become sick (virus spread-
ers) but without symptoms (asymptomatic), and the usual persons
who become sick with symptoms. The two last categories become im-
mediately members of the compartment CI . Let us remark that there
are various studies recently, which show that even if the person is still
not showing any clinical symptoms (i.e, he/she is presymptomatic),
he/she could be a source of infection spread, and lateron he/she gets
symptoms.

3. Compartment CI : its size is Ir (t), which is the number of infectious
cases at time t - these are the people who are ”virus spreaders”, ma-
jority of them show some symptoms, although they may not show
any symptoms (asymptomatic). It is important to understand in the
modeling that many people who are diagnosed positively are almost
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immediately hospitalized or quarantined. Hence, after quarantine they
go immediately to compartment CR, but they have stayed in CI only
until they have been diagnosed. The paradox is that these are the
official data which we obtain – the number of those who are officially
registered is denoted by Idata (t) .

4. Compartment CR : its size is Rr (t) – the number of recovered, quaran-
tined, immune, or deceased individuals, which are all called ”removed”.
Normally they come from compartment CI after becoming healthy (or
dead) and no more virus spreaders. Officially these data are provided
in a cumulative way.

Some models distinguish the fatalities in a variable D, hence, SEIRD
model; others distinguish symptomatic and asymptomatic, many models
also consider the natural birth and mortality rates incorporated in the equa-
tions, etc.

The simplest Compartment models are the SIR models (with missing
CE compartment) and SEIR models which are based on some simplified
assumptions:

1. Everybody in the population of size N is susceptible; those who have
an inborn immunity are considered to be out of consideration since
they do not get infected and infection spreaders. This group contains
also people who are completely isolated in the society.

2. We assume that the population of size N is perfectly and evenly (uni-
formly) mixed.

3. It is assumed that everybody who becomes infectious has the same
transmission capacity which is summarized by the transmission coef-
ficient β of the models. Obviously, this is in practice not true since
some people spend the disease heavily but others spend it even without
symptoms; hence, the last spread the viruses much less.

4. The coefficient β which will be discussed below includes also the in-
tensity of the contacts within the population, which is also assumed
to be equal for everybody in the population.

There are many Compartment models which are a lot more complicated
than the usual SIR and SEIR models, and which enter in a lot more de-
tails, by subdividing the population according to its demographic and health
structure: age, sex, health status, employment, number of contacts, etc.
Further, one may use more detailed information on the population density,
age structure, transport links, the size of social networks and health-care
provision, etc. For completeness sake, we mention some Compartmental
Epidemic Models with their diagram representation:
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Figure 1.2: SI/SIS model

Figure 1.3: SIR model

SI / SIS Model: Some infections like those from the common cold
and influenza, do not confer any long-lasting immunity. Such infections do
not give immunity upon recovery from infection, and individuals become
susceptible again. The diagram of the model is provided in Figure 1.2.

SIR Model: SIR is an epidemic model as illustrated in Figure 1.3, the
SIR model characterizes the dynamics among the susceptible individuals (S),
infectious individuals (I) and removed individuals (R) or recovered/deceased
- individuals that are assumed cannot become susceptible again.

SEIRD Model: SEIRD stands for Susceptible Exposed Infectious
Recovered and Dead. The dead individuals are in a separate compartment.
There are some diseases for example Ebola, where dead can still be infectious
and SEIRD model may be also used to study the interactions between D
and E individuals (Weitz et al.). For more details we refer to https://www.

nature.com/articles/srep08751. The diagram of the model is provided
in Figure 1.4.

Let us focus on the description of the SEIR model used as a basis for
the spline models which we develop further here: Important ingredient of
the SEIR model is the proportion of the infected people who die, i.e. the
fatality rate. This is also very dependent on the age structure of the
population, but we consider it again as an averaged percent.

Insights into the dynamics of the SIR model have led to the definition
of a number of important concepts that are universal for all models and all
infectious diseases. The most important of these concepts is the basic re-
production number R0. It is very important indicator for an epidemic. The
number R0 is intimately related to the Compartmental models and may

https://www.nature.com/articles/srep08751 
https://www.nature.com/articles/srep08751 
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Figure 1.4: SEIRD model

be very effectively determined by them. The basic reproduction number
R0 is defined as the number of secondary cases caused by one index case
during his/her entire infectious period in a susceptible population. In other
words, the basic reproduction number is given by the product of the trans-
mission rate (number of new infections per time unit) and the duration of
the infectious period, Straif-Bourgeois et al. [2014].

Further peculiarities of the Coronavirus spread have become clear, es-
pecially after the Chinese experience (He et al. [2021], Nature [2021]), in
particular, that 80% of those who have met the virus have spent the disease
in an asymptomatic way. But these 80% still actively have spread the dis-
ease. Hence, the official data which are only available need to be considered
as no more than 20% of the whole compartment CI . These issues will be
discussed below as an important component of the modeling.

It has been a subject of numerous investigations that even people in the
incubation period before the appearance of symptoms, spread the virus for
several days. Many investigations are devoted to the spreading of the virus
several days after the disappearance of the symptoms by people who have
become sick. It has been estimated that the asymptomatic virus spreaders
are responsible for about 33% to 59% of the total spread of the Coronavirus,
Greenhalgh et al. [2021].

For the more detailed modeling of the COVID-19 infection spread, it
is important to summarize some facts about the immunity of those who
have spent the disease: the Chinese experience has shown (He et al. [2021],
Nature [2021]) that after 9 months almost 99% of the tested persons are
losing gradually their natural immunity. Until the present moment there is
no certain data about how long the immunity lasts after vaccination; it is
not clear whether the particular vaccine, the racial, sex, or other differences
really matter.2

2From the above mentioned references He et al. [2021], Nature [2021]:
”The neutralizing antibodies that the immune system produces to disable the virus

SARS-CoV-2 can last for at least nine months after infection, but not everyone makes
them in detectable quantities.”
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There exist other alternative approaches to the deterministic SIR/SEIR
models: Let us mention that there is a class of Agent-based models which
however need an enormous amount of data but the final results do not
differ essentially, Czyzewski [2020]. The Stochastic models using branching
processes also need more complicated implementations but are very useful
in the initial onset of the disease spread.

The SIR/SEIR type models alow for a simple incorporation of the health
policy measures, e.g. when large parts of the population start to work
from home (online). Unlike the SIR/SEIR models, the Stochastic models
and the Agent-based models one needs to incorporate enormous amount of
information for tracking each individual separately, but the final effect will
be the same.

Remark 1 Due to the lack of sufficient data for the COVID-19 epidemic,
in particular for modeling the so-called seasonal effects, it is very important
that influenza epidemics may be used as suitable for use as a model for the
COVID-19 epidemic, given that they are respiratory diseases with similar
modes of transmission. However, data directly comparing the two diseases
are scarce, Piroth [2020].

1.2.1 Further assumptions and characteristics of the Com-
parment and SIR/SEIR models

1. The simplest SIR/SEIR models make basic assumptions, such as that
everyone has the same chance of catching the virus from an infected
person because the population is perfectly and evenly mixed, and that
people with the disease are all equally infectious until they die or
recover. More-advanced models, which make the quantitative pre-
dictions policymakers need during an emerging pandemic, subdivide
people into smaller groups — by age, sex, health status, employment,
number of contacts, and so on — to set who meets whom, when and in
which places (see section ‘Measuring social mixing’ in Adam [2020]).

2. Another assumption is that there is no natural immunity to COVID-19
— so the entire population starts out in the susceptible group — and
that people who recover from COVID-19 are immune to reinfection in
the short term.

3. An alternative to the SIR/SEIR models are the Agent-based models
which build the same kinds of model, but each person can behave
differently on a given day or in an identical situation. However these
very specific models are extremely data hungry. One needs to collect

”The researchers found that only 7% of the population had been infected with the
virus, of whom more than 80% had had no symptoms. Around 40% of the infected people
produced neutralizing antibodies that could be detected for the entire study period.”
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information on households, how individuals travel to work and what
they do at the weekend.

4. Let us note that in favour of our choice of the SEIR model speaks the
fact that the team at Imperial College which has a very long experi-
ence in the application of mathematical models in Epidemiology, has
switched from the agent based model to the SEIR model in March
2020, due to its simplicity and the fact that both type of models ”give
broadly similar overall numbers”, Adam [2020].

5. An important feature of the algorithms which we consider, is a param-
eter which is the percentage of the severe cases (hospitalized) which
need Intensive Care Units (ICUs). A curious story about how this per-
centage has been adaptively found in UK is available in Adam [2020],
and shortly retold in Appendix ??.

6. The range of the main epidemiological parameter, the basic repro-
duction number R0, was not clear at the beginning of the COVID-19
pandemic; initially it was estimated upwards to between 2.4 and 3.3;
at the end of March 2020, in a report on the spread of the virus in 11
European countries, the researchers put it somewhere in the range of
3 to 4.7.

In the practice of the SIR and SEIR models the value of R0 is found
after fitting of the model to the data.

7. Another important feature, are the unreported cases. In Germany
these are called Dark numbers. The example of China has shown that
in a very representative sample of 9500 persons, the percentage of
those who have been sick with COVID-19 and have not shown symp-
toms are 80%. Hence, a rough estimate shows that we have to multiply
the number of officially infectied data by 5. On the other hand, for find-
ing the Dark numbers, the Robert Koch institute in Berlin is using a
coefficient between 4 and 6; cf. also the website of an independent
organization in Germany studying the dark numbers, using a specific
model: https://covid19.dunkelzifferradar.de/, and an academic publi-
cations, Anguelov et al. [2020].

8. Further curious facts about the containment measures and the Efficacy
of Masks wearing : study in 401 regions in Germany (see Peeples [2021])
has shown that requiring people to wear face masks decreases the daily
growth rate of reported COVID-19 cases by more than 40% . In USA,
Canada: In a similar study published in January, 2021, researchers
found that a national mandate for employees to wear face masks early
in the pandemic could have reduced the weekly growth rate of cases
and deaths by more than 10% in late April 2020. This could have
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reduced deaths by as much as 47% (or by nearly 50,000) across the
country by the end of May 2020.

9. A more sophisticated approach to the definition of the basic reproduc-
tion number is provided in Van Den Driessche and Watmough [2002],
the basic reproduction number R0 is the spectral radius of the next-
generation matrix, see also Feng et al. [2021].

10. In some versions of the SEIR model (Radulescu et al. [2020]) re-
searchers account separately for presymptomatic and asymptomatic
transmission, by introducing two new compartments.

1.3 Official data available for modeling purposes

In practice, we do not have the ”reality data” Sr (t), Er (t), Ir (t), Rr (t)
which correspond to the Compartments of the SEIR model, described in
section 1.2. It will be very helpful for somebody willing to fit a model, to
know precisely what are the official data on the day t which are available,
and how reliable they are. The daily data available are as follows:

1. The official (observed) data Idata (t) which represent the daily ”new
infected cases” with COVID-19, and these are normally people with
serious symptoms. These are the cases which have been tested and
registered officially at the hospitals. The majority of them are almost
immediately hospitalized or quarantined, hence, they are almost im-
mediately moved from compartment CI to compartment CR. However
it is well known that the number of the asymptomatic cases having
COVID-19 represents about 80% of all infectious cases (see He et al.
[2021], Nature [2021]), and they are in fact the most active infection
spreaders. Thus, the size of the compartment CI is much bigger than
that indicated by the official data Idata (t), and we have for that rea-
son the inequality

Idata (t) ≤ Ir (t) . (1.1)

We denote by TotalInf (t) the total number of reported infectious
cases, which is a cumulative sum of the above daily data Idata (t) .

2. The officially announced data of recovered data, Rdata (t), contains
the cumulative number of recovered cases. It is important to remark
that not all health authorities provide these data regularly. For exam-
ple, in USA they have stopped to provide them since December 2020,
and the main reason was explained to be the lack of proper precise
definition of the meaning of “recovered”. Also, in UK there is a lack
of data about the recovered cases.
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3. Data on the total number of fatalities due to Covid-19 - the precise
diagnose of those who have died really by the Covid-19 infection is not
well defined. We denote these data by Ddata (t) which represents the
cumulative number of fatalities until the date t.

4. Although not from the very start of the epidemy, the authorities pro-
vide the data about the cases in the Intensive Care Units (ICUs), but
again not in all countries. The number of severe cases accommodated
in Intensive Care Units (ICU) seems to be the easiest to categorize of
all the data listed. We denote these data as ICU (t) .

A main point of the modeling paradigm for COVID-19 (and similar virus
infections) is that, for a certain segment of the society (in this case, the
younger people), the infection symptoms do not differ essentially from a
seasonal flu, hence the number of unreported cases (those which are in com-
partment CI but not in Idata (t) for every time t) may be much bigger, thus
in the above inequality (1.1) more appropriate is to use the symbol ”�”,
which denotes roughly speaking ”much less”. In the case of the seasonal flu
it may be even 100 times less.

One has to know that the large number of quarantined at home, many
mild cases (also asymptomatic) do not reach the hospitals, and are not duly
reported. On Figure 1.5, we provide an example of a typical list of data for
Bulgaria in the period 29.11.2020-13.12.2020 : with red we have indicated
the columns with the Infected (the total number of infectious persons un-
til Today), ICU critical (the current number of people on ICUs Today),
Recovered (the total number of recovered until Today), and Deaths (the
total number of fatalities until Today).
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Figure 1.5: Example of Bulgarian dataset.

1.4 Section: Data sources for COVID-19, their re-
liability and quality

One of the most important problems of analyzing the data for COVID-19 is
to find reliable source of the data. Although there is a lot of web-sites which
pretend to offer data, very often their quality is questionable; also, many of
them are not sufficiently easy to access.

1. A very good example is the Bulgarian National Portal for COVID-
19 data, which is called Open Data BG, which provides access to
Bulgarian public data in open and machine-readable format, https:
//data.egov.bg/data/resourceView/e59f95dd-afde-43af-83c8

-ea2916badd19. The official National COVID-19 Portal of Bulgaria:
https://coronavirus.bg/bg/statistika provides only current
data in graphical visualization, and no digital format.

2. The Wikipedia page contains a very comprehensive information about
the real state of the development of the COVID-19 pandemic in Bul-
garia.

3. It contains the official data announced by the Ministry of Health of
Bulgaria, and promises Open Data formats and access. However, it
is not directly accessible but one needs a special code to access the

https://data.egov.bg/data/resourceView/e59f95dd-afde-43af-83c8-ea2916badd19
https://data.egov.bg/data/resourceView/e59f95dd-afde-43af-83c8-ea2916badd19
https://data.egov.bg/data/resourceView/e59f95dd-afde-43af-83c8-ea2916badd19
https://coronavirus.bg/bg/statistika
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source data – one needs to write a special code and one needs to get
acquainted with the REST-API interface, which contains a special key.
They do not have various types of file formats but only JSON, and one
needs a special script to convert it to more usual formats as CSV. The
query to access the data is uselessly complicated and requires POST
method instead of GET method. Hence, the Open access, which is
widely advertised, is practically missing.

4. This explains why European and World portals contain very often
mismatched and missing additional (e.g. the ICU data) Bulgarian
data. One of the very few exceptions is the Worldometer.info site
which obviously have succeeded to struggle with the peculiarities not
only of the Bulgarian portal but with similar national portals of more
than 221 countries. However they provide a paid service if you want
to embed their site in another site. Also, they refer to the so-called
Projections Tool which is a project of the IHME institute.

5. Many European portals did not manage to get the data from the above
portal, in particular the European Centre for Disease Prevention and
Control, https://www.ecdc.europa.eu/en. Apparently, they are
working with synthetic data obtained via models, which represents
often a very big mismatch with the official data provided in the site
https://data.egov.bg/data/resourceView/e59f95dd-afde-43a

f-83c8-ea2916badd19.

6. Another very reliable source of data for the whole world (similar to
the Worldometer but with really open source access) is available at
https://data.humdata.org/dataset/novel-coronavirus-201

9-ncov-cases, which is Novel Coronavirus (COVID-19) Cases Data
which is compiled by Johns Hopkins University. The data is com-
piled by the Johns Hopkins University Center for Systems Science and
Engineering (JHU CCSE) from various sources including the World
Health Organization (WHO), DXY.cn, BNO News, National Health
Commission of the People’s Republic of China (NHC), China CDC
(CCDC), Hong Kong Department of Health, Macau Government, Tai-
wan CDC, US CDC, Government of Canada, Australia Government
Department of Health, European Centre for Disease Prevention and
Control (ECDC), Ministry of Health Singapore (MOH), and others.
JHU CCSE maintains the data on the 2019 Novel Coronavirus COVID-
19 (2019-nCoV) Data Repository on Github.

Fields available in the data include Province/State, Country/Region,
Last Update, Confirmed, Suspected, Recovered, Deaths.

7. It is worth mentioning also other sources:

COVID-19 Maps & visuals

https://www.ecdc.europa.eu/en
https://data.egov.bg/data/resourceView/e59f95dd-afde-43af-83c8-ea2916badd19
https://data.egov.bg/data/resourceView/e59f95dd-afde-43af-83c8-ea2916badd19
https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
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Coronavirus COVID-19 global cases (Johns Hopkins)

COVID-19 event risk assessment planning tool (Georgia Tech)

US spread of COVID-19 maps and analytics (SharedGe0)

Novel coronavirus (COVID-19) outbreak timeline map (HealthMap)

Novel coronavirus infection map (University of Washington)

COVID-19 surveillance dashboard (University of Virginia)

Novel coronavirus (COVID-19) situation dashboard (WHO)

Coronavirus disease 2019 (COVID-19) in the US (CDC)

Geographical distribution of COVID-19 cases worldwide (ECDC)

COVID-19 coronavirus tracker (Kaiser Family Foundation)

COVID-19 coronavirus outbreak (Worldometer)

The COVID tracking project (COVID Tracking)

Data visualization (CDC)

Coronavirus: the disease COVID-19 explained (South China Morn-
ing Post)

Mapping the novel coronavirus pandemic (Esri StoryMaps)

8. Last but not least we mention the Kaggle and Ourworlddata web-sites
devoted to the Coronavirus.

9. Data on COVID-19 (coronavirus) by the project ”Our World
in Data”: The datasets provided by the project are available in the
basic formats: CSV, XLSX, JSON. The complete COVID-19 dataset
is a collection of the COVID-19 data maintained by Our World in
Data. They update it daily throughout the duration of the COVID-
19 pandemic. It includes a dataset with the following characteristics
provided in Figure 1.6.

The complete Our World in Data COVID-19 dataset is available at
the link https://github.com/owid/covid-19-data/tree/master/

public/data

1.4.1 State–of–the–art models with Projections and Analyt-
ical Tools

We provide a list of some of the most popular world wide instruments for
analysis of the COVID-19 spread, supplied with Web-based (free) online
Analytical Tools. We provide some comments.

They are as follows:

https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
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Figure 1.6: Table of Our World in Data

1. The tool ”Projections” by the IHME Institute is available at the link
https://covid19.healthdata.org/bulgaria?view=total-deat

hstab=trend. It is embedded in the Worldometers.info web-site. It
does not model properly the vaccinations, however it is claimed that
they use ”vaccination distributions” which is not clear neither from
the graphs nor from the academic publications to which they refer. In
principle, their models use too many parameters. They do not show
the real (observed) data but some smoothed data, in particular for the
infectious and fatalities curves.

2. Tool Delphi from the Massachussets Institute of Technology, https:
//www.covidanalytics.io/home

3. Tool at Imperial College London, https://www.covidsim.org

4. The Los Alamos National Laboratory (LANL), https://covid-19.b
svgateway.org/

5. the SI-KJalpha model from the University of Southern California, ht
tps://github.com/scc-usc/ReCOVER-COVID-19)

Daily deaths from other modeling groups are smoothed to remove in-
consistencies with rounding. Regional values are aggregates from availble
locations in that region.

In Figure 1.7, (from the site https://covid19.healthdata.org/bulgaria?view=total-
deaths&tab=trend) we show projections of daily COVID-19 deaths from
other modeling groups which we mention below.

https://covid19.healthdata.org/bulgaria?view=total-deaths tab=trend
https://covid19.healthdata.org/bulgaria?view=total-deaths tab=trend
https://www.covidanalytics.io/home
https://www.covidanalytics.io/home
https://www.covidsim.org
https://covid-19.bsvgateway.org/
https://covid-19.bsvgateway.org/
https://github.com/scc-usc/ReCOVER-COVID-19)
https://github.com/scc-usc/ReCOVER-COVID-19)
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Figure 1.7: Projections of daily COVID-19 deaths by different modeling
groups.

1.5 Multidisciplinarity of the Epidemiological Mod-
els for COVID-19

Multidisciplinarity is very important for the success of solving the nowa-
day challenges in modern Epidemiology. To cite an highly reputable source,
Nature, Editorial [2021], ”Theorists and experimentalists must join forces”.
Namely, epidemiologists and disease modeling experts have been working
together to build mathematical models and run simulations to better un-
derstand how SARS-CoV-2 impacts populations. This, in turn, has helped
governments with devising policies and non-pharmaceutical interventions to
help slow the spread of the virus1. Physics- and machine learning-based
models have also been used by the research community to study the virus
and to find potential drug-related solutions to the disease, as described in
the issue of the same journal.

In order to get an idea about the components of the epidemiological
models one needs to take into account different factors.
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1. First of all, the demographic factors play and important role in solv-
ing the real problems of Epidemiology – in particular, for understand-
ing the details of the COVID-19 spread in Bulgaria, one needs to
take into account that in Bulgaria 41% of the population live three
generations under the same roof. Similar is the situation in other
Mediterranean countries, as Greece, Italy, Spain. One may find more
information about the demographic status at the link of EUROSTAT,
”Is your home too crowded? ”: https://ec.europa.eu/eurosta

t/web/products-eurostat-news/-/ddn-20210105-1. About the
current state of the living conditions in Bulgaria and other countries,
see Figure 1.8 and Figure 1.9 3

Figure 1.8: Percentage of population in Bulgaria living in overpopulated
homes.

In the case of the COVID-19 pandemic this means that the school va-
cations play important role for the regulation of the epidemic spread.
Indeed, if the pupils visit school then they become “superspreaders”
(due to their intensive contacts with their classmates) and coming
home they spread the disease to the oldest generation, their grandpar-
ents which are beyond 60 year old. The picture is completely different
in the countries where no more than two generations live together –
Germany, UK, France, Switzerland, Scandinavian countries, etc. In
these countries the closure of the schools do not play that big role
for the containment of the spread of COVID-19. Hence, the effective-
ness of the Containment measures depends strongly on the so-called
“communicability index” within the nation.

2. The climate/weather conditions seem to be important for the so-
called ”seasonal effect”. The specific climate/weather conditions in a

3The Figure is available in the publication of national TV channel BTV at the link
https://btvnovinite.bg/bulgaria/pod-edin-pokriv-pokolenija-balgari-zhiveja

t-zaedno.html.

https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210105-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210105-1
https://btvnovinite.bg/bulgaria/pod-edin-pokriv-pokolenija-balgari-zhivejat-zaedno.html
https://btvnovinite.bg/bulgaria/pod-edin-pokriv-pokolenija-balgari-zhivejat-zaedno.html
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Figure 1.9: Percentage of population in several countries in EU, living in
overpopulated homes.

particular year play also important role for the spread of the disease.
Since the Flus and the Coronavirus diseases are a ,,cold disease“ (one
becomes sick easier if heshe catches cold) the weather conditions in
the particular year reduce or increase the disease spread. Apparently,
this has a strong impact on the seasonal effect – sometimes it starts
earlier in the spring at the same geographical latitude as Bulgaria.

3. In order to understand what is the role of the seasonal effects, it seems
to be also important to measure the ”variation” of the epidemiological
curves for the Flus and for the Coronavirus during the year, in our
latitutes and in the India latitude.

1.6 Seasonal effect of Covid-19 spread - the big
challenge

One of the main challenges for the present research was the design of pre-
dictive models for the seasonal effect of COVID-19 spread in the summer of
2021 and 2022. The main issue with the modeling of the seasonal effect in
Bulgaria is the lack of unpolluted data for the summer of 2020 - the huge
influx of Bulgarian guest workers have completely spoiled the curve of in-
fectious cases with COVID-19. The only possibility was to use ”Big data”
from other countries for an extrapolation, or in other words, ”to teach the
models”. Another possibility, also related to Big data paradigm would be to
use data about the Flu season (which is the winter season in Bulgaria and
the majority of the European countries, however not in India). Again the
lack of user-friendly access to open data is the problem. Due to the small
number of vaccinations until March 2021, we could use data not influenced
by the vaccines, although a Lockdown was introduced already on Novem-
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ber 28, 2020. This Lockdown was raised gradually: on February 1, 2021 the
schools and kindergardens have opened; from March 1 the public facilities
(restaurants, bars) were opened.

1.7 Seasonal effect: the Indian seasonality phe-
nomenon

The unusual peak in the infectious curve in April-May 2021 in India may
be explained only if one deepens in the understanding of the seasonal effect
– it is not just summer and winter time - it is strongly dependent on the
Flu season in every particular country. One also needs to apply the hypoth-
esis that the Flu seasons coincide with the Coronavirus seasons. We will
see below that the Flu (peak) season in the majority of India’s states is in
the range of June-September, see Figure 1.10. Though physically located in
northern hemisphere, India has distinct seasonality that might be related to
latitude and environmental factors. Thus, the unusual spike in the infectious
curve in April-May 2021 was just at the end of the Flu low season, and was
explained by the drastic neglecting of social distancing measures during elec-
tion meetings, religious gatherings, celebations, etc. We cite the Wikipedia
(https://en.wikipedia.org/wiki/COVID-19 pandemic in India) about
the multiple factors that caused it:

1. highly-infectious variants of concern such as Lineage B.1.617

2. a lack of preparations as temporary hospitals were often dismantled
after cases started to decline, and new facilities were not built

3. health and safety precautions being poorly-implemented or enforced
during weddings, festivals (such as Holi on 29 March, and the Haridwar
Kumbh Mela in April), sporting events (such as IPL)

4. state and local elections in several states, and in public places

5. an economic slowdown put pressure on the government to lift restric-
tions

6. there had been a feeling of exceptionalism based on the hope that
India’s young population and childhood immunisation scheme would
blunt the impact of the virus

7. Last but not least, models may have underestimated projected cases
and deaths due to the under-reporting of cases in the country

We have two references, Koul et al. [2014], Chadha and Potdar [2015],
where the peak and the low seasons of the Flu infection for several ma-
jor states in India are well described. We provide the main figure from

https://en.wikipedia.org/wiki/COVID-19_pandemic_in_India
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Figure 1.10: Peak seasons of the Flu for some states in India.

Chadha and Potdar [2015], see Figure 1.10. One sees how unusual the peak
seasons are, although these states are all in the Northern hemisphere. Es-
pecially paradoxical seems the case of the very south locations Allapphuzha
and Chennai which are on the same latitude and are quite close, but have
complete different peak seasons.

It shows that the big infection in April-May 2021 is during the low season
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Figure 1.11: Peak seasons of the Flu for some countries.

Figure 1.12: Proposed vaccination timing.

in the majority of the states. In view of the wide similarities between the
ways of spread, one may conjecture that the peak seasons of the Flu and
the Covid-19 are very similar. This is the basis for modeling of the seasonal
effect of Covid-19 spread.

It is very instructive to see how different are the Flu peak seasons in the
whole world, Hirve et al. [2016], see Figure 1.11 and Figure 1.12:

However, in order to be able to draw some conclusions, it is im-
portant to know the precise form of the infection curves of the Flu disease,
and in particular their ”infectivity variation around the mean”, i.e. what
is the ratio of the average number of infections during the low season and
the same average during the peak season. We expect that this ”infectivity
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variation” is much stronger in the countries with stronger climatic varia-
tions (in the subtropics), and not that strong in the tropical areas (as India)
where the climatic variations are not that strong. To make more precise
conclusions one needs to carry out a detailed study of the infection curves
for the seasonal Flu at the locations of interest.
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Chapter 2

TVBG-SEIR – the
short-term SEIR model
based on splines, and a tool
for COVID-19 prediction
scenarios

In the present chapter we develop a novel TVBG-SEIR spline model for
analysis of the coronavirus infection (COVID-19), aimed at analyzing the
short-term global evolution of the epidemics controlled by the introduction
of lockdown/open up measures by the authorities. The incorporation of
different lockdown prediction scenarios varying in time permits to analyze
not only the primary epidemic wave but also the arising secondary wave and
any further waves. Let us note that what we call ”prediction scenarios” is
nowadays called very often projections.

The model is supplied by a web-based Scenario Building Tool for COVID-
19 (called shortly SBT-COVID-19 ) which may be used as a decision sup-
port software by (health) policy makers to explore various scenarios, by
controlling/changing the scale of the containment measures (home and so-
cial isolation/quarantine, travel restrictions and other) and to assess their
effectiveness. In particular, the SBT-COVID-19 Tool permits to assess how
long the lockdown measures should be maintained.

The SBT-COVID-19 tool is based on the Jupyter Notebooks Architec-
ture: Jupyter Notebooks work with a two-process model based on a kernel-
client infrastructure. This model applies a similar concept to the Read-
Evaluate-Print Loop (REPL) programming environment that takes a single
user’s inputs, evaluates them, and returns the result to the user. Based on
the two-process model concept, the main components of Jupyter may be
visualized in the following way:

25
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Figure 2.1: Jupyter Software Architecture

2.1 Introduction

The main point of our approach is the proper way to incorporate in our
models the a priori known information about the Containment measures.
The models which we present here did not come immediately in the best
form, and they had to undergo a certain evolution:

1. When we first started to develop the TVBG-SEIR model we were sure
that we have to use the dates on which Containment measures have
been introduced by the Health authorities as knots, even the same for
the two splines which represent the coefficients β and γ. This concept
is also the one followed by the authors of other models, say published
in Science, Dehning [2020].

2. Also, to keep it simple we have decided to train our models on real
data where we have no more than two switches in the Containment
measures – the two switches may be both strengthenings of the mea-
sures, or one of them may be relaxation. Hence, the most reasonable
approach seems to be, to consider only splines for representing the
parameters β(t) and γ (t) having just two break points in the interval
of the historical data.

3. However, after we have fitted a lot of models to real data, we have
realized that the knots that have resulted after the fitting may be
quite far from the dates when the Containment measures have been
introduced. Then we decided to let the two knots of the splines free
in the Optimization process. This resulted in a quite computation
consuming algorithms but there is no other way. . .

4. Perhaps, the most reasonable approach is to consider the dates of the
two Containment measures as initial guess for the Optimization pro-
cedure. Then we will find some solutions for the global Optimization
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which have close resulting RMS (root mean square). If there is no big
discrepancy with the observed (official) data, we will take as satisfac-
tory the solution with knots which are closest to the dates of the two
Containment measures.

5. Not less important is to incorporate in a proper way the Monotonicity
constraint as a Bayesian prior: we consider most naturally, in the
case of two switching dates with strengthening measures a monotone
decreasing β (t) but monotone increasing γ (t).

2.1.1 Context

The present model is designed with the main purpose to provide short-
term planning of the containment measures. In particular, it is essential
to assess in the short term, how the expensive, resource-intensive measures
implemented by the authorities, as home and social isolation/quarantine,
travel restrictions, etc., can contribute to the prevention and control of the
COVID-19 infection, and how long they should be maintained.

However the classical SIR/SEIR models have been primarily studied in
the case where the main parameters - the transmission rate β (reflecting
the virus spread by infected individuals) and the removed (removal) rate γ
(reflecting the hospitalization/isolation measures) - remain constant during
the whole period of interest. This does not reflect in a proper way the
extremely dynamic behavior of such measures during the COVID-19 and
similar epidemics, resulting from the imposition of intensive containment
measures by the authorities.

2.1.2 Aims and Methods Summary

It is important to extend the classical SIR/SEIR models by creating new
models for the dynamics of the transmission rates β (t) (sometimes referred
to as Beta) and removed rates γ (t) (sometimes referred to as Gamma).
The main aim of the present research is to introduce a novel spline-based
SEIR model with time-varying β (t) , γ(t) parameters, or abbreviated TVBG-
SEIR model, which is used to estimate the practical implications of the
public health interventions and containment measures. We have designed
a Scenario Building Tool for COVID-19 (SBT-COVID-19 Tool)
based on the TVBG-SEIR model, which may be used as a Decision Support
Tool to assist the health decision- and policy-makers in creating predictive
scenarios (projections). It may be used to assess the impact of previous
public health interventions, and to plan quantitatively and qualitatively the
introduction of future containment measures for achieving the necessary ob-
jectives.

For formulating our model, we use deterministic spline Ansatz: the trans-
mission rates β(t) and the removal rates γ (t) are modeled by splines with
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two nodes - Node1, Node2 (the same nodes for both β(t) and γ (t)) - within
the time interval of interest – from StartDate until TodayDate. This Ansatz
allows to properly model the dynamics due to the introduction of contain-
ment measures by the authorities in two steps. The purpose of fitting of
the TVBG-SEIR model is to identify the nodes of the splines and the three
values of β(t) and γ(t) on the intervals [StartDate,Node1] , [Node1,Node2]
and [Node2,TodayDate]. It is assumed that β(t) and γ(t) are constant in
the time interval [Startdate, Node1], and β(t) is monotone decreasing while
γ(t) is monotone increasing function. There may be different data to which
the TVBG-SEIR model may be fitted. In every situation it is preferable to
choose those data which are the most reliable. In particular, we will fit
the TVBG-SEIR model (with time-varying β(t) and γ (t)) simultaneously
to two sets of data: the daily infected cases (or their cumulative vec-
tor), and to the removed cases (which are all removed cases until a certain
date, obtained as cumulative to the daily removed cases). Other possibility
is to fit simultaneously the data to the number of daily reported cases in the
Intensive Care Units (ICUs). (This approach is also used by some authors.)

The choice of just two nodes of the splines for the rates β(t) and γ (t)
seems to be appropriate for models of historical data (until Today), but
for not very long periods of time. These models are used as a basis for
creation of “prediction scenarios” (projections) starting from Today, with a
prediction perspective of about two months (2m) horizon. These models are
updated every day (by the arrival of the official daily data), and the scenarios
(projections) are renewed accordingly. In a more mathematical language
“predictive scenario” (called very often today projection1) means choice of
control parameters β(t) and γ (t) in the form of splines defined after Today,
which determine the SEIR model to be defined in detail below. One may
choose these scenarios in infinitely many ways. The main objective of our
approach is to choose such scenarios β(t) and γ (t) for which the SEIR model
generates curves which satisfy some reasonable restrictions, e.g. the number
of infected daily cases does not explode too abruptly. Let us emphasize that
these are just “possible prediction scenarios” but not extrapolations of the
historical (observed) data in the classical sense of the word.

The web-based SBT-COVID-19 Tool was designed for visualization of
the results of the fitted model (the daily infected cases), and for creating
prediction scenarios (projections) for the daily infected cases during the next
two month horizon, by controlling the future values of the coefficients β (t)
and γ (t) . It is described in detail in Section 2.8, and is available at the links:

1Projection is the process of moving forward in time through the imagining of future
events, or by means of estimates based on certain assumptions or past trends, see https:

//ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:

Projection.
The term projection is obviously synomimous to ”prediction scenario” and we will use

both, especially if comparison is needed with the recent literature.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Projection
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Projection
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Projection
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Version 3 (with Matlab generated Figures)

http://213.191.194.141:8888/notebooks/TVBG-SEIR-Spline-mode

l v3.ipynb

Version 4 (with Python generated Figures)

http://213.191.194.141:8889/notebooks/TVBG-SEIR-Spline-mode

l v4.ipynb

2.1.3 Objectives

By analogy with the usual seasonal flu the main parameters of the spread of
the viruses are the transmission rate β which reflects the rate of the trans-
mission of the virus from infected people to susceptibles, the removed rate
γ (which is the sum of “recovery to health cases” + “isolated sick cases”
+ “mortality due to the sickness cases”), and the parameter σ which is the
reciprocal to the incubation period. Unlike the usual flu, Covid-19 has a
long incubation period (at present, estimated to have a mean value of 5.9
days, Mcaloon et al. [2020]. Daley et al. [2020]). Due to the large number of
asymptomatic or mild-symptomatic cases, COVID-19 has proved to be very
insidious and requires intensive emergency measures from the authorities
to reduce the transmission rate β and to increase the recovery rate γ. For
comparison, in the case of the seasonal flu no intensive containment mea-
sures are necessary to be undertaken by the authorities, but just the usual
two-week winter school vacations have proved to be sufficient to stop the
epidemic.

For containing COVID-19, the authorities have introduced very strong
measures which have essentially influenced the dynamics of the parameters
β and γ. For the majority of states these measures have been introduced
not only in one step but most often in two steps. It depends on every society
how fast these measures will be implemented in life. There are two types of
measures: for example, closing schools, pubs, restaurants, traveling national
or international routes, social meetings, wearing masks, reduce directly the
transmission rate of the disease β (further we will call sometimes these mea-
sures shortly Beta measures); on the other hand the fast identification and
medication of virus spreaders, hospitalization, quarantining and similar, in-
crease the rate γ of removal from the group of virus spreaders (further we
will call sometimes these shortly Gamma measures). It is important to
assess how these expensive and resource intensive measures implemented by
the authorities can contribute to the prevention and control of the COVID-
19 infection, and how long they should be maintained, Tang et al. [2020],
Tang et al. [2019].

In order to meet the challenge of Controlled spread of the COVID-19
(and similar) epidemics, one needs to develop new mathematical models
which better describe reality. Based on the widely used conventional epi-
demiological model SEIR, in the present research we propose a new model

http://213.191.194.141:8888/notebooks/TVBG-SEIR-Spline-model_v3.ipynb
http://213.191.194.141:8888/notebooks/TVBG-SEIR-Spline-model_v3.ipynb
http://213.191.194.141:8889/notebooks/TVBG-SEIR-Spline-model_v4.ipynb
http://213.191.194.141:8889/notebooks/TVBG-SEIR-Spline-model_v4.ipynb
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TVBG-SEIR which incorporates a specific spline model for the time-varying
transmission β and removal γ rates.

The present chapter is organized as follows: In Section 2.2 we recall the
deterministic SEIR model and introduce some notions and notations. In Sec-
tion 2.3 we introduce the discretization of the SEIR model which is used in
the algorithms. In Section 2.4 we introduce and provide all technical details
of the TVBG-SEIR spline model. In Section 2.5 we provide an application of
the TVBG-SEIR model to Bulgarian data, which are used to illustrate the
work of the SBT-COVID-19 Tool for prediction scenarios. In Section 2.6
and Section 2.7 we provide more examples of analysis, for the Italian data,
and for the German data. In Section 2.8 we describe the technical details of
the SBT-COVID-19 Tool for prediction scenarios (projections). In Sec-
tion 2.9 we provide some recent references about models with time-varying
transmission rates and their fitting to the data (calibration).

2.2 The classical deterministic SEIR model: No-
tions and Notations

We will introduce the classical deterministic SEIR model by providing all
notions and notations as fully as possible, to enable the replicability of the
calculations and experiments in the present research. Thus we also provide
a detailed account of the discretization of the well-known classical SEIR
model.

In section 1.2 we have introduced the Compartmental models with all
necessary notions and notations.

In section 1.3 we have provided the list of official (observed) data avail-
able in Internet via the majority of the popular links, some of which we have
provided in section 1.4.

2.2.1 Definition of the classical continuous SEIR model

The main point of developing the compartmental deterministic SEIR model
is to provide some tractable approximations S (t) , E (t) , I (t) , R (t) to the
time series of the ”reality data” Sr (t) , Er (t) , Ir (t) , Rr (t) explained in sec-
tion 1.2. The most widely used is the model based on a system of Ordinary
Differential Equations with variables S (t) , E (t) , I (t) , R (t) which is given
as follows:

S′ (t) = −β (t)S (t) I (t)

N
(2.1)

E′ (t) =
β (t)S (t) I (t)

N
− σE (t) (2.2)

I ′ (t) = σE (t)− γ (t) I (t) (2.3)

R′ (t) = γ (t) I (t) (2.4)
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Let us explain the notations and the correspondence to the reality data
of the Compartmental model:

1. Here the term β (t) I (t) /N expresses the rate at which new individ-
uals (as a proportion of the total population size) are infected by the
already infectious I (t) individuals, (cf. Keeling and Rohani [2008],
p.18). Here and further β (t) is called Transmission rate of the infec-
tion, which we call further simply Beta.

2. As already said, the coefficient γ (t) is the Removal rate; it is deter-
mined by the reciprocal of the infectious period, after which either
the person is recovered (and no more infectious) or dead (again, no
more infectious). Here and further γ (t) is called Removal rate, and
sometimes we call it simply Gamma.

3. The coefficient σ is the latent rate, or the rate of ”becoming symp-
tomatic” (where 1

σ is the average of the incubation period). In the
present paper we use the constant value

σ =
1

5.9

which represents a reasonable approximation, as the recent research
shows, Mcaloon et al. [2020]. (Let us note that previously the rate was
1
5.9 , see Lauer et al. [2020].)

4. The curve S (t) corresponds to the reality data time series Sr (t). The
quantity σE (t) is equal to the daily new infectious cases Idata (t) .
However, the curve I (t) of the SEIR model is equal to the so-called
Active Cases which are defined by the equation

AC (t) = Total Infected (t)−Rr (t)

Here Total Infected (t) is the cumulative sum of Idata (t) until the
date t.

The usual applications of the SEIR model are with constant rates β (t)
and γ (t) . One assumes that the initial values S (0) , E (0) , I (0) , and R (0)
are given and the system is solved for the times t ≥ 0, where t is an integer.
Obviously, we have the equation

S′(t) + E′(t) + I ′(t) +R
′
(t) = 0 for t ≥ 0,

which implies that the sum

S (t) + E (t) + I (t) +R (t)
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is a constant for every t ≥ 0. It is assumed that the following equation holds

N = S (0) + E (0) + I (0) +R (0) (2.5)

= S (t) + E (t) + I (t) +R (t)

where N is the total population in the country of interest XX.
Let us remind that one of the most important properties of the SEIR

model is that it provides a direct way to express the basic Reproduction
ratio:

R0 =
β

γ
(2.6)

2.3 Discretization of the SEIR model

In practice one uses a discretization of the continuous SEIR model. In the
current work we use the following discretization of the SEIR model which is
derived from the Euler method for approximate solution of the initial value
problem (2.1)-(2.4):

Sn+1 = Sn −
βnSnIn
N

(2.7)

En+1 = En +
βnSnIn
N

− σEn (2.8)

In+1 = In + σEn − γnIn (2.9)

Rn+1 = Rn + γnIn (2.10)

Here Sn, En, In and Rn are respectively the values of S (t) , E (t) , I (t)
and R (t) on the day t = n, and the initial values for day n = 0 are S0,
E0, I0 and R0. The above system is iteratively solved for all integers n ≥ 0.
We assume that the size N of the population remains unchanged (hence
no usual birth and mortality are taken into account). As in the continuous
case, the total sum of the above is assumed to satisfy

N = Sn + En + In +Rn (2.11)

which makes one of the equations in (2.7)-(2.10) redundant.
It is well known that the above Euler method for approximating the

solution of (2.1)-(2.4) is less accurate than the Runge-Kutta which is widely
used, see e.g. Stoer and Bulirsch [2002].

Again, it is very important for the modeling process to realize what is the
correspondence between the variables of the discrete model and the officially
announced data: On the day n the value Rn corresponds to the sum of the
cumulative recovered plus fatalities data, i.e. to Rdata (n) + Deaths (n) .
The announced observed daily data of newly infected Idata (n) correspond
to the amount σEn which is clear from equation (2.9). Below we use this
correspondence to define the quadratic function F (Θ) for fitting our models.
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We have to make an important remark about the notations used in the
present text. It was clearly explained in [Kounchev et al., 2021b, see Bibli-
ography to chapter 3] that in the literature people use very often misleading
notations by mixing four different settings:

1. the continuous setting of SEIR model, (2.1–2.4)

2. the discrete setting of SEIR model, (2.7)-(2.10)

3. the official data provided in section 1.3

4. the real situation best described by the Compartmental framework
described in section 1.2, and which is meant to be approximated by
the SEIR model.

5. In particular, misleading is the usage of the curve I (t) of the SEIR
model which corresponds to the Active Cases in the empirical data.
Things will become clearer after we discuss the correspondence of the
variables in the SEIR model with the other data in section 3.5.

Remark 2 Let us remark that the continuous model (2.1–2.4) and the above
discrete approximation (2.7)-(2.10) have essential differences in the long-
term behavior which has been the subject of much research. It is important to
note that the qualitative properties of the solution to the differential equation
and of the discrete equation differ essentially - the continuous case is simpler
as usual.

2.4 The TVBG-SEIR model defined

The SEIR models have proved to be very efficient in situations where the
main parameters β and γ are constants, in natural conditions, where no spe-
cial control by the authorities is exercised, i.e. no intervention measures are
undertaken to change the transmission and the removal rates in the course
of the epidemics. This is very often the case with the seasonal flus where the
medical authorities do not undertake actively special measures to restrict the
social behavior of the citizens, although nowadays the vaccinations change
the natural picture. However due to the specific of the COVID-19 the sit-
uation has become more dramatic and it has required the interference of
the governments in order to avoid the overloading of the National Health
systems. The authorities have introduced very strong restrictive measures
which have essentially influenced the dynamics of the parameters β, γ. For
the majority of the states these measures have been introduced not only in
one step but most often at least in two steps.

In view of the above it makes sense to seek for mathematical models
which try to model as best as possible the dynamics of the parameters β
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and γ. We have decided for spline structure with two important breakpoint
nodes, Node1, Node2 - which reflect the control exercised by the authorities
in the form of two consecutive restriction measures. Also, it is natural to
assume that between the dates the control measures change the parameters
β (t) and γ (t) in a monotone way, i.e. β (t) is decreasing whereas γ (t) is
increasing.

2.4.1 Technical Description of the TVBG-SEIR model

1. We denote the StartDate by T1; this corresponds to a date when the
first cases of COVID-19 are announced, eventually we may choose T1
to be a date when the steeper growth of the epidemic starts. We
denote by T4 the EndDate (usually chosen to be Today).

2. We choose two interior nodes in the interval [T1, T4] for the interpo-
lation splines modeling the coefficients β (t) , γ(t): Node1 = T2 and
Node2 = T3. This corresponds to two steps of the introduction of
restrictive measures imposed by the authorities of the country XX.
Normally, the date T2 may be the First restrictive measures date, or a
date close to it, and T3 may be the Second restrictive measures date,
or a date close to it.

3. The model is supposed to reflect the natural expectation that once
there are official restrictions, they will implicate an essential change in
the Transmission and Removed rates although not immediately. We
assume that the rate β (t) is monotone decreasing with the time, which
corresponds to the natural expectation that the more restrictive the
measures the smaller the Transmission rate. Respectively, the rate
γ (t) is assumed to be monotone increasing, meeting the expectation
that the stronger the measures, the bigger the removal rate.

4. We assume that β (t) and γ (t) are constant between the start date
T1 and the first node T2, i.e. β (T1) = β (T2) and γ (T1) = γ (T2).
This corresponds to the still life of the society (without containment
measures) when the rates β (t) and γ (t) are nearly a constant.

5. To be more precise, the splines which we consider are not the usual
polynomial, but the so-called exponential splines depending on a pa-
rameter in the exponent, which makes a fast decay to the next target
value of the β (t) rate; respectively this makes fast increasing to the
target value of the rates γ (t). This corresponds to the expectation
that the speed by which the society switches from one level of the re-
strictive measures to another is relatively fast, and it is reflected by
the size of the exponent we decide to choose. In fact, we use shape
preserving exponential splines which are just C1 (smooth) and do not
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Figure 2.2: The rates β (t) for a Model curve

need additional boundary conditions. Alternatively, one may use C2

(twice differentiable, twice smooth) exponential splines which would
be more technical due to the necessity to choose boundary conditions
(at the initial and the terminal points). For the practical purposes,
there are different spline functions implemented in Matlab/Octave, R,
Python.

On the following Figures 2.2, 2.3 we provide examples of the dynamics
of β (t) and γ (t) rates:

6. An important property of the TVBG-SEIR model is that due to the
above spline model for the β (t) and γ (t) parameters, where there is
a fast transition to the next target value, a classical SEIR model with
constant β (t) and γ (t) holds during larger sub-intervals. In particular,
this permits to provide a reliable estimate of the Basic Reproduction
Number.

7. The Basic Reproduction number (ratio) R0 is a key epidemiolog-
ical value for all models of epidemics, see Keeling and Rohani [2008],
Lipsitch et al. [2003], Wallinga and Lipsitch [2007], Heffernan et al.
[2005]. Following Heffernan et al. [2005] (formula (2.4)), for the case
of the SEIR models with constant rates β (t) and γ (t) , the basic re-
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Figure 2.3: The rates γ (t) for a Model curve
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Figure 2.4: An example of a Time-Changing Basic Reproduction Number
obtained by formula R0 = β(t)

γ(t) .

production number R0 is given by the formula

R0 =
β

γ

where we have assumed that the natural birth and mortality rates are
small and also equal. Due to the above remark, we may extrapolate
the above formula for all time points of interest by putting:

R0 =
β (t)

γ (t)

In Figure 2.4 we provide the basic reproduction number R0, obtained
by the last formula, for some specific TVBG-SEIR models.

8. In Figure 2.2 we see that the nodes of the spline satisfy Node1 = T 2 =
17-Mar-2020 and Node2 = T3 =7-Apr-2020 On the other hand in
Figure 2.3 we have chosen a configuration with different nodes, T2 =
23-Mar-2020, and T3 = 15-Apr-2020.

9. In the above examples of the dynamics of β (t) and γ (t) one sees
the exponential factor exp (0.4 · (t− t1)) by which the curve changes
from one level at t = t1 to the next target level. The coefficient 0.4
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is judiciously chosen and may be varied, as well as the exponential
function may be replaced by a different proper function.

10. The rates β (t) and γ (t) , are defined as interpolation splines on the
subintervals defined by the start date T1, the nodes dates T2, T3, and
the final date T4. Thus the whole configuration is defined by eight
parameters in total, which we gather in a set Θ, given by

Θ = {T2, T3, β (T2) , β (T3) , β (T4) , γ (T2) , γ (T3) , γ(T4)}

11. The data which we use for the fitting of the discrete TVBG-SEIR
model are the official data for daily new infected cases Idata(t) (or
their cumulative vectors cum(Idata)(t) and the cumulative data for
recovered and fatalities.

12. Finally, we fit the Model to the data by optimizing the positions of the
two nodes T2, T3, and the levels of β(t) and γ(t), i.e. by applying Least
squares minimization. Namely, we minimize the following quadratic
functional F (Θ) by varying the parameter set Θ :

F (Θ) =

n∑
j=1

(cum (Idata) (tj)− σ · cum(E)(tj))
2+

+(Rdata (tj) +Deaths(t)−R(tj))
2

Here we denoted by cum(E)(t) the cumulative vector of the solution
En of the discrete SEIR system until the date t.

Let us note that there are different possibilities to choose the functional
F (Θ) which is used by other authors, and one of the most important
arguments is the reliability of the officially announced data.

13. As we said, the minimization of F (Θ) is performed by varying by
means of sampling the two nodes T2 < T3 of the splines in the interval
range [T 1, T4] ; the interpolation values for the splines,

β (T2) , β (T3) , β (T4) , γ (T2) , γ (T3) , γ (T4)

are also varied. More details about the possible choice of proper models
are provided below in Section 2.5.

14. The curves Sn, En, In, Rn of the discrete SEIR model are obtained by
solving the system (2.7)-(2.10) with initial conditions given by

S1 = N − E1 − I1 −R1
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Figure 2.5: An example of daily data of infected cases Idata(t) for Bulgaria,
March-April, 2020.

where N is the size of the whole population, and also,

σE1 = Idata (1)

R1 = Rdata (1) +Deaths (1)

I1 = Idata (1)−R (1)

As defined above, the set Θ contains the parameters which determine
the (discrete versions of the) splines for β (t) and γ (t) . Additionally,
one may introduce non-negative weights w1 (t) and w2 (t) which give
priority to some of the data.

15. In Figure 2.5 below we provide an example of daily data of infected
cases Idata(t) for Bulgaria during March - April, 2020.

16. The cumulative data for recovered and fatalities during March - April,
2020 are provided in Figure 2.6:

17. In Figure 2.7 we provide the fitting of the model curve σE(t) to the
data for Bulgaria, Idata(t), during March-April, 2020:

18. Figure 2.8 shows the fitting by the model curve R (t) of the Recovered
plus Fatalities data for Bulgaria:

19. It is important to remark that we have applied the parsimonious prin-
ciple for constructing the spline model, by which one has to avoid
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Figure 2.6: An example for cumulative data for recovered and fatalities in
Bulgaria, March-April, 2020.

Figure 2.7: Fitting of the model curve σ ∗ E(t), to the data curve Idata(t)
for the infected cases in Bulgaria, March-April, 2020.
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Figure 2.8: Fitting by the model curve R(t) of the Recovered plus Fatalities
data for Bulgaria, March-April, 2020.

putting too many nodes in the splines since this will influence the sta-
bility of the model, and might cause overfitting, hence would spoil the
predictive power of the model.

20. As we said, the result of the minimization of the quadratic functional
F (Θ) is a set of parameters Θ for which the minimum is attained,
whereby there may be multiple solutions. Once we have found some
model based on the parameters Θ we proceed to constructing predic-
tion scenarios . We choose some date T6 which we call Horizon, say at
most 2 (two) months from Today = T 4, by putting T6 = T4+2 months

Then a scenario is defined by choosing an additional node T5 which is a
Third restriction measures date and the parameters

{β (T5) , β (T6) , γ (T5) , γ (T6)}

We put

β (T5) = Coef1 ∗ β (T4)

β (T6) = Coef11 ∗ β (T5)

γ (T5) = Coef2 ∗ γ (T4)

γ (T6) = Coef22 ∗ γ (T5)
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The coefficients Coef1, Coef11, Coef2, Coef22 are used further, to con-
trol and represent our scenario building in the SBT-COVID-19 Tool. Their
meaning and choice is explained in detail in Section 2.8, where we introduce
the Tool.

2.5 Analysis of COVID-19 spread in Bulgaria in
October-December, 2020

In the present section we provide an application to Bulgarian COVID-19
data and prediction scenarios (projections) generated by the SBT-COVID-
19 Tool. We will use ”prediction scenario” instead of ”projection” terminol-
ogy.

In the SBT-COVID-19 Tool one may find online the results for analyzing
of the COVID-19 data and for generating scenarios in the case of Bulgaria,
for the period March-August, 2020, (see Kounchev et al. [2021b]). There we
have shown the possibility for a next wave of the infection.

Here we demonstrate how to generate prediction scenarios (projections)
based on the Bulgarian data for the period 1 October, 2020 – 3 January,
2021. In the results provided below, it is clearly visible that the model
reflects properly the wave of the epidemic in October-November and its
decline at the end of December due to the lockdown imposed on November
25th, 2020. It also hints the appearance of a next wave for certain scenarios,
which correspond to special choices of the splines for β (t) , γ (t) after Today
date, which model relaxation of the containment measures. We have to
emphasize that the date Today and Third restriction measures date are the
only nodes of the splines for β (t) , γ (t) in the interval after Today date.
Hence, the only parameters which determine a prediction scenario are the
Third restriction measures date and the values of β (t) , γ (t) at them.

The SBT-COVID-19 Tool will be described in detail in Section 2.8.

We provide the visualizations of the discrete SEIR model fitting, which
are available in the SBT-COVID-19 Tool. The thick red curve on the
Figures below shows the fitted model curve until Today = T 4 for the daily
new infected cases σE (t) and the blue stars show the official data for them,
namely Idata (t). The thin red curve shows the prediction scenarios, after
Today.

Definition 3 Under scenario we understand a choice of the coefficients
Coef1, Coef2 which indicate whether we relax the measures (i.e. we set
them to 0.2, 0.4, 0.6, 0.8), retain the measures (= 1.0) or tighten measures
(i.e. we set them equal to 1.2, 1.4, 1.6, 1.8) which determine the parameters
β (t) , γ (t) of the epidemic after Today date, as well as of the coefficients
Coef11, Coef22, which indicate a relaxation (if set equal to 1.2, 1.6, 1.8) of
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the two types of measures after the HORIZON date (for which we have three
possible choices, namely, 5, 15, 25 days from Today).

1. For Bulgaria we have considered the data from the StartDate which is
T1 = 1-Oct-2020, until the end date Today, equal to T4 = 3-Jan-2021.
Third restrictions date = T5 = 28-Jan-2021, and the Horizon date is
T6 = 22-Feb-2021.

2. As we explained in Section 2.4 the minimization of the functional F (Θ)
consists of considering many pairs of nodes T2 , T3 (about 150 for a
three-month period) for the splines β (t) , γ (t). We select the pair
T2 , T3 and the corresponding parameters Θ (which define Model1 )
for which the minimum F (Θ) of F (Θ) is attained. However there
are also other parameter vectors Θ for which the functional F (Θ)
attains values very close to the optimal value F (Θ). We denote these
by Θ = Θ1 , Θ2, Θ3 , etc. These vectors define parameters β(j),
γ(j), or equivalently, models, which we denote by Model1, Model2,
Model3, etc. The curves of the TVBG-SEIR model which correspond
to these parameters β(j), γ(j) play a very useful role, and serve as an
alternative to the Bootstrapping procedure as described in the classical
textbooks, see e.g. the monograph of Hastie and Tibshirani (2009),
Hastie et al. [2009]. Thus, it will provide us also an alternative to
finding the Confidence intervals for the obtained results.

3. Let us note that in the example above the maximum value of the
functional F (Θ) is 275.90 (taken over all admissible parameters Θ),
while the minimum is 30.96.

4. For the optimistic, Model1, we have found T2 = 9-Nov-2020, T3 =
2-Dec-2020, with F (Θ) = 30.96, hence the ratio max (F (Θ)) /F (Θ)
is about 9. Figure 2.9 shows the simplest prediction scenario starting
on Today =T4 = 3-Jan-2021. In the Legend of the Figure, Coef1 =
1 and Coef2 = 1 mean that no change by the authorities will be
undertaken starting Today and ending on the Third restrictions date
= T5 = 28-Jan-2021. Further, Coef11 = 1 and Coef22 = 1 mean that
no relaxation of the measures will follow starting on 28-Jan-2020.

5. However, on 28-Jan-2021 only the measures decreasing the coefficient
β may be partially relaxed, without appearance of a next wave, i.e.
we may afford Coef11 = 1.4, This is seen on Figure 2.10:

6. The second wave is inevitable if more relaxation of the measures is
allowed by the health authorities: namely, relaxing both measures, i.e.
Coef11 = Coef22 = 1.8 after 28-Jan-2021 will generate a strong next
wave of infections, as seen from Figure 2.11
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Figure 2.9: Model1: Simplest prediction scenario starting on Today = T4
= 3-Jan-2021.

Figure 2.10: Model1: prediction scenario as on Figure 2.8, but with relax-
ation of β, by Coef11 = 1.4 on 28-Jan-2021
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Figure 2.11: The second wave appears after relaxation of both beta and
gamma, by putting Coef11 = Coef22 = 1.8 after 28-Jan-2021.

7. Similar are the conclusions with Model3 for Bulgaria (with Fval =
31.60, with next wave appearing as well.

8. For Model2 (with Fval = 31.78 ) we have the most optimistic sce-
nario since we may partially relax both measures after 28-Jan-2021
(i.e. Coef11 = Coef22 = 1.4), and no second wave will appear, as seen
from Figure 2.12

As we mentioned above, we may use say ten models Model2, Model2,. . . ,
Model11 and generate their curves I(t) to obtain estimate of the Confidence
intervals at every time t. However we found the above presentation using
optimistic and pessimistic scenarios more simple and clear.
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Figure 2.12: No second wave appears for Model3.

2.6 Application to Italian COVID-19 data in October-
December, 2020, and scenarios generated by
the SBT-COVID-19 Tool

In the present section we provide similar results obtained by our SBT-
COVID-19 Tool for the Italian data.

1. The results about Italy considered till Today = 1-Jan-2021 are similar
to Bulgarian. For Model0 we have T2 = 6-Nov-2020, T3 = 20-Nov-
2020, and

Fval = F (Θ) = 153.09.

See Figure 2.13.

A strong relaxation after the Horizon date 26-Jan-2021 results in a
strong next wave seen in the following Figure 2.14:

2. Model2 has T2 = 3-Nov-2020, T3 = 17-Nov-2020, and

Fval = F (Θ) = 159.77

For it we obtain the following scenario, see Figure 2.15:

3. Just as in Model1, further strong relaxation gives a strong next wave
provided in Figure 2.16:
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Figure 2.13: Italy, Model0: an optimistic prediction scenario.

Figure 2.14: Italy, Model0: next wave appears after strong relaxation both
restriction measures by putting Coef11 = Coef22 = 1.8
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Figure 2.15: Italy, Model2: no relaxation - no next wave.

Figure 2.16: Italy, Model2: strong relaxation for both measures causes next
wave.
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Figure 2.17: Italy, Model3: no relaxation - no next wave.

4. Model3 has T2 = 6-Nov-2020, T3 = 23-Nov-2020, and Fval = F (Θ) =
169.72.

It gives the following Figure 2.17

5. Further relaxation after 26-Jan-2021 shows a bigger next wave in the
Figure 2.18
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Figure 2.18: Italy, Model3: strong relaxation causes strong next wave.

2.7 Application of the model to German COVID-
19 data in March-May, 2020

We provide an analysis of the German data by means of scenarios generated
by the SBT-COVID-19 Tool.

The overall observation is, that unlike the data for Bulgaria and Italy,
during the period March-May, 2020, they have shown a very strong tendency
to explode into a next wave.

1. For the German data, on the Today date = 1-Jan-2021, according to
our Model1 for Germany, we have T2 = 3-Nov-2020, T3 = 11-Nov-
2020, and

Fval = F (Θ) = 160.96.

It is seen that if the containment measures remain the same as before
Today, then Germany is already in the next wave , which is seen from
the Figure 2.19

2. However, a moderate tightening of the second measures (Coef2 = 1.2)
will result in a calming down, see Figure 2.20.

But a much better result will bring the tightening of the measures
influencing the coefficient β, i.e. Coef1 = 1.2 as seen in Figure 2.21:
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Figure 2.19: Germany, Model1: no more restrictions Today - remains in a
wave.

Figure 2.20: Germany, Model1: Restrictions Today cause decay of the wave.
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Figure 2.21: Germany, Model1: Stronger Restrictions Today causes strong
decay of the wave.

3. For Model2 we have T2 = 3-Nov-2020, T3 = 8-Nov-2020, and

Fval = F (Θ) = 169.16,

and for Model3 - T2 = 3-Nov-2020, T3 = 20-Nov-2020, and

Fval = F (Θ) = 171.61

The application of the two models gives a result similar to that of
Model1.

In Figures 2.22, 2.23, one may choose how strong the tightening of the
measures has to be, within Model2, in order to obtain a stronger slowdown
of the infection progression,:

And for Model3 : we have a slight difference in Figure 2.24:
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Figure 2.22: Germany, Model2: Restrictions Today causes decay of the
wave.

Figure 2.23: Germany, Model2: Strong Restrictions Today cause strong
decay of the wave.
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Figure 2.24: Germany, Model: Very similar to previous Model2.

2.8 Description of the SBT-COVID-19 Tool for
controlled scenarios

We provide a short informative description of the Web-based tool SBT-
COVID-19, which implements the results obtained by the TVBG-SEIR
model.

1. We have designed a SBT-COVID-19 Tool for the Model scenario
predictions (projections) of the Coronavirus (and similar infectious
diseases) spread. The SBT-COVID-19 Tool is based on the fitting
of the TVBG-SEIR model to the official data available on a daily basis
as described in Section 1.3).

2. The online tool is available at the site http://213.191.194.141:

8888/notebooks/TVBG-SEIR-Spline-model v3.ipynb

3. First of all, we fit the model for the time series in the interval [T1, T4],
where T4 is Today’s date. Then the USER may choose several param-
eters to make a prediction about the virus spread during the period
[T4, Horizon] where Horizon is chosen to be at most 2 months from
Today = T4.

4. The first parameter, to be controlled, is the Third restrictive measures
date denoted by T5. The USER may choose several options, say 5, 15,

http://213.191.194.141:8888/notebooks/TVBG-SEIR-Spline-model_v3.ipynb
http://213.191.194.141:8888/notebooks/TVBG-SEIR-Spline-model_v3.ipynb


2.8. SBT-COVID-19 TOOL 55

25 days from Today (= T 4), i.e. one may select the dates

T5 =


T4 + 5
T4 + 15
T4 + 25

5. Then the USER may decide how to strengthen or relax the Beta mea-
sures and the Gamma measures during the period [T4, T5], by means
of the coefficients Coef1 and Coef2 respectively; Coef1 = 1 means that
the Beta measures remain the same, while Coef2 = 1 means that the
Gamma measures remain the same in the period [T4, T5]. If Coef1 < 1
then this means that the Beta measures are weaker , and also, the
smaller Coef1, the weaker are the Beta measures and they will reach a
target value at the date T5, which is defined by the size of Coef1 (Note
that Coef1 < 1 means that the rate β(t) will be bigger!). In a similar
way, if Coef2 < 1, then this means that the Gamma measures will be
weaker , and the smaller Coef2, the weaker are the Gamma measures
(note that in such case the rate γ(t) will be smaller!). A target value
(determined by the size of Coef2) will be reached at the date T5.

6. On the other hand, if Coef1 or Coef2 are bigger than 1, this means
strengthening the measures , resp. of Beta measures and Gamma
measures in the period [T4, T5] to some target value defined by Coef1,
Coef2.

7. The USER has further the possibility to decide what will happen after
date T5 - to weaken or leave the same the Beta and the Gamma mea-
sures. This is decided by the choice of two coefficients – Coef11 for the
Beta and Coef22 for the Gamma measures. Coef11 = 1 means that
one retains the same level of the Beta measures; Coef22 = 1 means
that one retains the same level of the Gamma measures. If Coef11 > 1
then this would relax the Beta measures – the bigger Coef11 the more
the relaxation. Coef22 makes the same for the Gamma measures.

8. A similar way to represent the above approach to Scenarios design and
visualization is implemented since relatively recently in the popular
online tool COVID-19 Projections, http://www.healthdata.org

/covid/, embedded in the Worldometers.info web-page, which we
have mentioned in section 1.4.1. However, initially, until the end of
July 2020, they used confidence intervals around the most probable
scenario. Instead of using coefficients Coef1, Coef2, they use a more
descriptive terminology for worse and better scenarios, as 95% masks
usage, short lasting vaccination, etc. Their terminology changes very
fast in time.

http://www.healthdata.org/covid/
http://www.healthdata.org/covid/
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2.9 Recent research on time-varying transmission
rates

As we said, presently it is urgent to consider SIR/SEIR models with time-
varying β (t) and γ (t) rates.

For completeness sake, we mention some research about solving an in-
verse problem for finding time-varying β (t), in a SIR model, for a fixed
removal rate γ, Pollicott et al. [2012], from the number of infectious cases.
In Boatto et al. [2018], the authors do research and provide further references
of research on specific models for the transmission rate β (t).



Chapter 3

ATVBG-SEIR: SEIR models
for long-term predictions
based on splines

The main purpose of the present chapter is to introduce a model ATVBG-
SEIR for generation of long term prediction scenarios (projections), which
will help us answer the question, how long lockdowns are needed to end
the COVID-19 epidemic in a single country, with or without vaccinations.
We will provide applications to data from different countries, as Austria,
Bulgaria, Germany, Italy, UK and USA. These models are implemented in
a Web-based tool, for creating Lockdown Scenarios.

3.1 Short summary

The main purpose of the present Chapter is to present a methodology for the
estimation of the duration of the Epidemic of COVID-19 in a single country,
accounting for different scenarios. Our methodology is based on a specific
SEIR model, called ATVBG-SEIR model, which is explained in detail. We
include vaccinations in the model which are carried out according to a vacci-
nation plan provided on a monthly basis. The algorithm takes into account
the main constraint of the health system which is the number of Intensive
Care Units (ICU) intended for COVID-19 patients (they are e.g. about 1100
in Bulgaria, about 8000 in Germany, etc.). At the end, we present a web-
based Lockdown Scenarios Tool, available online at http://atvbg-seir.eu
based on the algorithm implementing the methodology. Results are demon-
strating the efficiency of the tool by applying it to COVID-19 data from
Austria, Bulgaria, Germany, Italy, UK and USA.

We have implemented a model for the Seasonal effect (the summer sea-
son) in the ATVBG-SEIR model, which is a very challenging task in general.

Another challenge is the modeling of the duration of the vaccine and

57
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natural immunity. As is well-known now thanks to the Chinese experience
(see [Nature, 2021, Bibliography to chapter 1], [He et al., 2021, Bibliography
to chapter 1]), the durability of the natural immunity (after the course of
the disease) is about 9 months. On the other hand, there are no definite
results in the scientific literature about the durability of the post-vaccination
immunity (acquired due to vaccination) – it differs according to different
experts from 5 to more than 12 months; in our implementation we have
decided for 6 months durability in this case. Hence, we have decided to
incorporate in our model the loss of both types of immunity to be 9 months
and 6 months respectively. This feature of “immunity loss” makes the model
seem to be more complicated but we still succeed to keep it simple and
manageable.

3.2 Introduction to the model

There is a list of features of the COVID-19 disease, which distinguish it
essentially from the usual seasonal flu, and have to be taken into account
by the modellers of the long-term behaviour of the spread. We summarize
these features briefly:

1. The main characteristics of the Coronavirus are determined by its
insidious properties – namely, majority of people (about 80%, mainly
children) have an extremely light asymptomatic course of disease; very
few people have a heavy progression of the disease with more than
three weeks of symptomatic course, especially those with underlying
conditions. As a result, the total amount of infected people who need
hospitalization is considerable and quite many need to stay in the
ICUs (intensive stations, intensive care units, intensive beds), where
they get additional oxygenation. The number of the ICUs reserved for
COVID-19 cases is in every particular country limited although some-
what flexible, e.g. in Bulgaria there are about 1, 100 such beds (with
a total limit of about2, 000 ICUs for the whole country), while in Ger-
many they are at least 8, 000 (with a total limit of 40, 000 ICUs), 2, 764
in Italy, 26, 900 in USA, etc. This number of ICUs represents the main
restriction which has to be taken care of by the Health authorities who
are in charge of imposing intervention measures against the develop-
ment of the COVID-19 epidemics.

2. Another important characteristic feature of the COVID-19 infection
is the very long incubation (latent) period, from 5 to 14 days which
causes a very long tail in the curve of the Active cases. Hence, the
average time of the course of COVID-19 disease plus the incubation
time are several times bigger than that of the seasonal flu; this explains
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the magnitude of the basic reproduction number R0 of COVID-19
exceeding very often six.

3. Those two characteristics enable the very wide proliferation of the
virus infection, although its fatality (mortality) rate does not differ
drastically from that of the seasonal flu (as many specialists claim).
Thus, the comparison with the usual “seasonal flu” is superficial if the
above remarks are not taken into account.

4. In the months of October through March there are two main factors:
the negative effect of winter drop of immunity, aggravated by the
open schools/universities and kindergartens. However, starting
April-May we have an average increasing of population’s immunity.

5. Hence, the issue with the ICUs is the main bottleneck of the health sys-
tems. The empirical data show that there is a rather stable correla-
tion between the number of the ICUs needed currently for COVID-19
patients (called also ICU critical cases) and the number of the so-called
Active cases (see a rigorous Definition below).

6. The data about the current occupancy of the ICUs in many countries
may be retrieved from the official data sources, with nice visualization,
e.g. at the site https://www.ecdc.europa.eu/en/publications-d

ata/download-data-hospital-and-icu-admission-rates-and-c

urrent-occupancy-covid-19, https://ourworldindata.org/cov
id-hospitalizations, https://www.worldometers.info/corona

virus/.

However many countries have specialized portals which sometimes pro-
vide data faster and with a better quality, although sometimes not very
regularly.

In our methodology and the related Algorithms and Tool we have focused
on the following concepts and technical issues:

First of all, due to the long incubation period of COVID-19, the SEIR
model is very suitable for modeling the dynamics of the epidemic, since
the people who have contacted infectious individuals stay a considerable
amount of time in the Compartment of the Exposed. The main parameters
of the SEIR models are transmission rate β (reflecting the spread of the
virus from infectious individuals) and the rate of ”removal / elimination” γ
(reflecting the measures for hospitalization / isolation). Measures to reduce
the transmission rate β are: social distancing, wearing masks, fewer contacts,
incl. social isolation, less travel, etc. Measures to increase the ”removal rate”
γ are: rapid detection and quarantine of infected persons through testing
and reporting, quickly tracking contacts, etc.

https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19
https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19
https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19
https://ourworldindata.org/covid-hospitalizations
https://ourworldindata.org/covid-hospitalizations
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
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Since the interventions of the health authorities change essentially the
dynamics of the epidemic, the classical constant parameter SEIR model does
not manage to provide an adequate model. Hence, specific type of SEIR
models are necessary which reflect properly the dynamics of the parameters
β, γ and the course of the epidemic development.

The idea of the ATVBG-SEIR model is the following:

1. We subdivide the dynamics of the model of the epidemics into two
different altering regimes (roughly, 0s and 1s): The first is a Stric-
tRegime (mimicking strict measures) during a fixed and short period
of time (say 21 days) and has a constant basic reproduction number
R0 < 1. During the Strict regime we use a classical SEIR model
with constant parameters β, γ .The values of these parameters have
been obtained by calibration of the standard SEIR model to certain
period of the official data for Bulgaria (or other country) for which it
is known that Strict Containment measures have been applied. The
other regime is RelaxRegime (mimicking Relaxed measures) which
has basic reproduction number R0 > 1, and might have a longer (not
fixed) duration. During the Relaxed regime we use another classical
SEIR model for which we obtain the values of the parameters β, γ
by calibration of the SEIR model to the official data for Bulgaria (or
other country) for a period of time where we know that Relaxed Con-
tainment measures have been applied.

As is well-know, the calibrated parameters β, γ of the SEIR model determine
the basic reproduction number by means of the formula

R0 =
β

γ

It would be more correct to write Re instead, which is the effective repro-
duction number in a non-steady dynamical system.

1. Thus, the ATVBG-SEIR model consists of altering Strict regime with
Relaxed regime periods, whereby the duration of the Strict regime
periods is kept fixed while the duration of the Relaxed regime periods
is left flexible to predict the future. The altering regimes of our model
may be considered as a hesitation of the society in the ethical dilemma
– between the risky expectation for the herd immunity, and the fast
somewhat risky vaccine, see Aschwanden (2020), Aschwanden [2020].

2. Our methodology is applicable to every country, but one needs to
carefully collect the data from different sources, especially important
is to have adequate data for the critical cases needing ICUs. Also, one
has to select appropriate “typical time periods” in the development of
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the epidemic when the measures introduced by the health authorities
were strict and efficient, and other time periods when the measures
were relaxed. The crux of the matter is the very logical assumption
that during a period of time when the Containment measures have
remained unchanged, the main parameters β, γ of the classical SEIR
(or similar compartmental) model will not vary essentially and would
provide a good approximation to the data.

3. The focus of our observation is the application of the ATVBG-SEIR
model to a forecast of the dynamic of the ICU critical cases (the num-
ber of the individuals with COVID-19 who need ICUs), by generating
prediction scenarios (projections).

The plan of the present chapter is as follows:

In section 3.3 we show how the curve of the Active cases may be ex-
pressed in terms of the curves of the continuous SEIR model which has been
introduced in section 2.2.

In section 3.4 we remind the discrete SEIR model from section 2.2 and
introduce the notion of Modified Active cases and compare them with the
usual notion of Active cases.

In section 3.5 we recall the correspondence between the empirical data
and the curves of the discrete SEIR models.

In section 3.6 we incorporate the vaccinations in the SEIR model.

In section 3.7 we introduce the ATVBG-SEIR model.

In section 3.8 we show how the number of ICU critical cases may be
expressed within the ATVBG-SEIR model via the curve of the Active cases,
and mention the main points of the Algorithm.

In section 3.9 we fill the gap of the usual stopping rule (the 70% rule),
related to the equilibrium properties of the SIR/SEIR models. We introduce
a second stopping rule.

In section 3.10 we list the main properties of the Algorithm, including
initial values for the curves of the ATVBG-SEIR models.

In section 3.11 we provide the Main results of our approach.

In sections 3.12- 3.14 we show the thorny way of model calibration: this is
an important step of our Methodology (and Algorithm) – the identification of
Strict and Relaxed regimes by fitting the ATVBG-SEIR model to Bulgarian,
German or other countries data. This step is the very first in the Algorithm.

In section 3.15 we provide a short instruction how to work with the web-
based Lockdown Scenarios Tool, which was used to obtain the main results
of the present Chapter.

A reader not interested in the methodology and Algorithm but just in
the main results of the chapter may go directly to section 3.11.
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3.3 Active cases in the continuous SEIR model

The main idea in the development of the SEIR model is to provide some
traceable approximations S (t) , E (t) , I (t) , R (t) to the actual data. In
section 2.2 by the system of equations (2.1)-(2.4) we have introduced the
classical differential SEIR model, following the usual references Anderson
and May [1991], Hethcote [2000], Keeling and Rohani [2008].

The usual applications of the SEIR model are with constant rates β (t)
and γ (t) . One assumes that the initial values S (0) , E (0) , I (0) , and R (0)
are given and the system is solved for the times t ≥ 0. As we have already
discussed, see (2.5), it is assumed that the following equation holds,

N = S (t) + E (t) + I (t) +R (t)

where N is the total population in the country XX.
Let us remind taht one of the most important properties of the SEIR

model is that it provides an easy way to express the basic Reproduction
ratio:

R0 =
β

γ

which shows how many people are infected by one infectious person during
his/her being sick.

We have mentioned the empirical observation that the critical ICU cases
are a rather stable percentage of the Active cases. Hence, we need to find
an expression for the Active cases within the SEIR model. In the available
empirical data the Active cases on the day t are given by the formula:

Active Cases (t) = Total number of infected(t) (3.1)

− Total number of Recovered(t)

− Total number of Fatalities(t)

Let us assume for simplicity that the whole interval of interest is the
period 0 ≤ t ≤ T. It is very natural to define the total number of infectious
cases on the day t by the integral

TotalInf(t) =

∫ t

0
σE (s) ds

which is the total number of people who have come to compartment CI in
the period [0, t] (we use the terminology of the compartment formulation of
the SEIR model, see e.g. Keeling and Rohani [2008].

Hence, the number of the Active cases which we denote in the continuous
case by AC (t) will be given in the continuous SEIR model by the integral

AC (t) = TotalInf(t)−R (t) (3.2)

=

∫ t

0
σE (s) ds−R (t)
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It is a classical fact from the theory of Ordinary Differential Equations,
that the curves (solutions) of the SEIR model are smooth (differentiable)
at the points t where the parameters β(t), γ(t) are continuous (see
e.g. Katok and Hasselblatt (1999), Katok and Hasselblatt [1997] ). The last
remark is very important for us since by definition the model ATVBG-SEIR
is essentially a SEIR model with piece-wise continuous parameters β(t), γ(t)
with a finite number of break-points.

Hence, at the times t where β(t), γ(t) are continuous the above formula
for AC (t) implies that the derivative of the Active cases AC (t) is given by

AC ′ (t) = σE (t)−R′
(t)

= σE (t)− γI (t) = I ′(t)

Hence, in the SEIR model the slope of the Active cases AC(t), is equal to the
slope of the infectious cases I(t). Hence, by using standard arguments from
the theory of ODEs we may easily prove the following result which provides
the interpretation of the variable I (t) of the SEIR model (cf. Kounchev
et al. [2021a], Kounchev et al. [2021c]):

Theorem 4 Assume that the variable parameters β(t), γ(t) of the SEIR
model have a finite number of points of discontinuity, which we denote by
0 < t1 < t2 < · · · < tp < T . Then for every moment of time t 6= tj for
j = 1, 2, . . . , p with 0 ≤ t ≤ T holds

AC (t) = I (t) + C (3.3)

where C is a constant.

Next, our main purpose is to find the discrete SEIR model counterpart
of the notion of Active cases, which appears to be a non-evident problem.

Remark 5 Here we have to make an important remark about a certain
mismatch between the Active cases in the official data and the Active cases
in the Compartmental model, see e.g. Keeling and Rohani [2008]. While in
the official data under active case one understands a person who is currently
sick and may be in the hospital, in the Compartmental model such person is
considered to be in the Removed compartment, since in a hospital the person
is supposed to be no more virus spreader (we assume that the hospitals
are working properly).

3.4 Discretization of SEIR model and Active Cases

In practice one uses a discretization of the continuous SEIR model. We
have considered the following discretization of the SEIR model (2.7)-(2.10)
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in section 2.3. It is very intuitive, and is in fact derived from the Euler
method for approximate solution of the initial value problem (2.1)-(2.4) in
section 2.2 (cf. also Keeling and Rohani [2008]),

Sn+1 = Sn −
βnSnIn
N

En+1 = En +
βnSnIn
N

− σEn

In+1 = In + σEn − γnIn
Rn+1 = Rn + γnIn

As in the continuous version of the model, we assumed that the size N
of the population remains unchanged (normal birth and mortality are not
taken into account), recall equation (2.11):

N = Sn + En + In +Rn

An important point in our discretization framework is the way we define
the Active cases. It appears that the direct and most obvious definition does
not have nice properties.

Now we provide the following definition of what we call Modified Ac-
tive Cases:

Definition 6 We define the Modified Active cases for the SEIR model:
For N = 1 we put

MAC1 = TotalInf (1)−R2 (3.4)

and for every integer P ≥ 2 we put

MACP = TotalInf (1) + σ

P∑
n=2

En −RP+1 (3.5)

Since σEn represents the newly infected cases, we see that the above sum is
in fact expressed by the equation

TotalInf (P ) = TotalInf (1) + σ
P∑
n=2

En

From the above definition and the equations (2.9), (2.10) we obtain the
simple formula:

MACP −MACP−1 = σEP −RP+1 +RP

= σEP − γIP = IP+1 − IP
In the continuous limit it means that the Modified Active Cases are ap-
proaching the variable It of the continuous SEIR model (perhaps with some
constant).

After summing up we obtain the main result:
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Theorem 7 The Modified Active Cases satisfy the equality

MACP −MAC1 = IP+1 − I2 (3.6)

Or equivalently,

MACP = IP+1 + TotalInf (1)−R2 − I2.

Thus, we see that up to a constant the Modified Active Cases at the moment
P (which is an observable data value) is equal to the variable IP+1 of the
discrete SEIR model.

The intriguing discovery of the above simple equations is that it is more
natural to consider the Modified Active Cases instead of the usual and
seemingly more natural straightforward definition of Active Cases. Namely,
if we put

ACP = TotalInf (1) + σ

P∑
n=2

En −RP

then we obtain

ACP = MACP +RP −RP+1

= MACP − γP IP

Further, we obtain the following relation for the (finite) difference:

ACP −ACP−1 = σEP −RP +RP−1

= σEP − γP−1IP−1

Hence, after summing up in the variable P we obtain

ACP −AC1 = IP+1 − I2 + γP IP − γ1I1
Obviously, the last is not a closed expression of ACP by means of IP since
it contains the parameter γ, and lacks the nice properties of the Modified
Active Cases.

3.5 Correspondence between Official data and dis-
crete SEIR model

This is the most important part of our theoretical discussion.

1. The most important remark is that usually the notation for the curve
I(t) in the SEIR model is somewhat misleading. Usually, it is mixed
with the daily newly infected cases. However, on the day t the daily
New Infected cases are equal to

NewInfectedt = σEt

where Et is the variable of the discrete SEIR model.
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2. We have seen above that in the continuous SEIR model the curve I(t)
of the SEIR model coincides with the Active Cases on the day t, up
to a piece-wise constant function, recall Theorem 7. However, in the
discrete SEIR model the discrete curve It coincides up to a constant
with the Modified Active Cases MACt−1.

Let us remark that it is not difficult to prove that the Active Cases and
the Modified Active Cases coincide in the limit with the continuous SEIR
model. Indeed, they differ only by the amount RP−RP+1 which is supposed
to be in general small.

Conclusion 8 It is important that we have found a nice correspondence
between the discrete curve It and the curve of the Modified Active Cases (in
both the discrete SEIR model and in the empirical data). We have already
said that there is a drawback in the usual definition of the empirical Active
Cases, since it does not correspond nicely to the discretized SEIR model. Al-
though it is expected that practically the two formulas are very close (since
their difference RP − RP+1 is supposed to be small), at least for a rig-
orous numerical analysis it would be better to replace the usual notion of
Active Cases with the notion of Modified Active Cases, if we want to have a
smoothly working simple algorithms.

Perhaps the above drawback may be resolved by a more sophisticated
discretization of the SEIR model, which would though make the algorithms
more complicated.

3.6 The modeling of vaccinations

It is possible to introduce without big effort the vaccinations in our contin-
uous and discrete SEIR models.

There is a bunch of papers devoted to the modeling of the vaccination
via SIR and SEIR models, as well as to optimal control of the vaccination
process. We refer to the following sources: Biswas et al. (2014), Biswas
et al. [2014], Neilan and Lenhart (2010), Neilan and Lenhart [2010], Brauer
and Castillo-Chavez (2001) Brauer et al. [2012], Brauer et al. (2008) Brauer
[2008].

We will consider very simplified setting and parameters of the vaccina-
tions. We will reformulate the SEIR model by introducing a vaccination
process. For simplicity, we assume that the vaccine is 100% effective so that
all vaccinated susceptible individuals become immune; technically this may
be achieved by multiplication of an efficiency coefficient. We will also as-
sume that the immunity lasts forever; technically this may be achieved by
revaccinations, which we will not add at the end of the day.
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We will denote by u (t) the percentage of susceptible individuals S (t)
being vaccinated per unit of time. Another formulation is to use directly the
number V (t) of the vaccinated persons, i.e. V (t) = u (t)S (t) . In particular,
if we vaccinate 30, 000 people per month, then we will have to subtract
30000/30 = 1000 persons on the day t from the number of the susceptible
individuals S (t) . Hence, the modification of the SEIR model (2.1)-(2.5)
becomes:

S′ (t) = −β (t)S (t) I (t)

N
− V (t) (3.7)

E′ (t) =
β (t)S (t) I (t)

N
− σE (t) (3.8)

I ′ (t) = σE (t)− γ (t) I (t) (3.9)

R′ (t) = γ (t) I (t) + V (t) (3.10)

The discrete counterpart of the above system of equations is a modification
of the corresponding discretized SEIR system (2.7)-(2.10):

Sn+1 = Sn − βnSnIn/N − Vn (3.11)

En+1 = En + βnSnIn/N − σEn (3.12)

In+1 = In + σEn − γnIn (3.13)

Rn+1 = Rn + γnIn + Vn (3.14)

3.7 The ATVBG-SEIR model

In order to make an adequate SEIR model, and an appropriate algorithm,
we take into account the main characteristics of the COVID-19 epidemic.

1. Our approach to modeling the dynamics of the epidemic is to use
a highly simplified SEIR model with variable parameters, which we
call Alternating Time Varying Beta-Gamma-SEIR (abbreviated as
ATVBG-SEIR) (it reminds of the bang-bang controls in the the-
ory of Optimal Control). The model has only two alternating regimes:
Strict regime (mimicking strict containment measures) and Relax
regime (mimicking weakened containment measures) with varying
rates β, γ that are alternately piece-wise constants as explained be-
low.

2. The main constraint is the upper limit of Intensive Care Unit beds
(ICUs) reserved for COVID-19 patients, which in the case of Bulgaria
does not exceed 1100, while in Germany they are at least 8, 000 (with
a total limit of 40, 000 ICUs), 2, 764 in Italy, 26, 900 in USA, etc.1

1It does not seem that there are very precise data about the upper limit of ICUs
reserved for Covid-19 cases since different sources show different numbers.
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3. For simplicity, we choose the ATVBG-SEIR model to use fixed periods
of about 21 days (or more) for the Strict regimes, while the periods
for Relax regimes are determined iteratively by our algorithm upon
hitting the ICU beds upper limit.

4. The most time consuming and not obvious task in constructing the
ATVBG-SEIR model is to identify the Strict regime and the Relaxed
regime. In sections 3.12-3.14 below we show in more detail our ex-
perience in identifying Strict and Relaxed regimes in Bulgaria and
Germany. Without loss of generality, a possible Relax regime for
Bulgaria was obtained after calibration of the standard SEIR model
(constant parameters) for the period 1.10.2020—25.11.2020 during
which schools, kindergartens, restaurants, bars were open. It has a
basic reproductive number R0 ≈ 4. Another possibility is to take the
period 15.09.2020—15.10.2020, which has basic reproductive number
R0 ≈ 2. For the last period it is important that it is immediately after
partial containment measures , while the former time period stretches
over a large period of relaxed measures.

5. We have fewer opportunities to calibrate the ATVBG-SEIR model
during a Strict regime since strict measures were imposed in Bulgaria
during the period March-May, 2020, at the beginning of the epidemic,
but a lot of Bulgarians guest workers have arrived from abroad. Hence,
no reasonable calibration of the classical SEIR model could be made
relying just upon the official data without taking into account the
social dynamics.

6. We chose several Strict regimes for Bulgaria. One of them has a basic
reproduction number R0 = 0.9 and is obtained on the basis of data
for the period 1.4.2020-15.05.2020.

7. However, we have considered also Strict regimes with reproduction
numbers that are much less than one (i.e. we have a declining of the
epidemic): R0 ≈ 0.8, 0.5, 0.2

EXAMPLE: Below we provide an example of ATVBG-SEIR model pa-
rameters for the period ’12-Dec-2020 ’ till ’11-Feb-2022 ’. We have displayed
the graphs of the parameters: β (t) (blue) and γ (t) (red). For each day the
pair of numbers (β (t) , γ (t)) alternately takes the following pairs of values

StrictRegime = (0.4649, 0.8415)

RelaxRegime = (0.1276, 0.0279)

i.e. β (t) takes alternately the values 0.4649 and 0.1276, and γ (t) takes
alternately the values 0.8415 and 0.0279. In this example, the periods of
the Strict regime are 21 days, as seen in Figure 3.1
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Figure 3.1: An example of parameters β(t) (blue) and γ(t) (red) for the
ATVBG-SEIR model, for the period 12-Dec-2020 till 11-Feb-2022.

3.8 Determining the number of ICUs and the Al-
gorithm

Below we discuss the most important elements of our Algorithm:

1. Empirical data to date show that the number of ICUs occupied by
critical COVID-19 cases is very strongly correlated with the so-called
Active cases. The Active cases are an important notion since the
course of the COVID-19 disease has very different duration for different
people. Practically, the number of Active cases is calculated on the
ground of the official daily data for each day t by the formula

AC (t) = Total number of infected

− Total number of Recovered

− Total number of Fatalities

2. According to the empirical observations, the number of patients with
COVID-19 accommodated in ICU beds varies; e.g., for Bulgaria it
is about 0.55%, and for Germany about 1.35%, of the Active cases.
In the implementation of our algorithm we have complied with these
percentages.

Our main goal is to account for the number of COVID-19 ICU cases
in the framework of the ATVBG-SEIR model. We have seen that
the Active cases within the continuous SEIR model are determined by
the formula

AC (t) = TotalInf(t)−R (t) =

∫ t

0
σE (s) ds−R (t)
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and we have justified an analog for the discrete model ATVBG-SEIR,
where we use the Modified Active Cases. Hence we put

ICU (t) = 0.55% ∗AC (t)

in the ATVBG-SEIR model for Bulgaria. Here the percentage 0.55%
has been obtained as a mean value for a sufficiently long period of
time.

3. Another important point supporting the realism of the results is, that
by the opinion of many medical experts, the infected cases are at
least 3 − 4 times more than the officially registered. In our model
we take this into account. This phenomenon is easily explained, since
many people with a positive PCR test and people with symptoms
which have not been medically investigated do not enter the official
statistics, and are not a subject to mandatory isolation and control
by health authorities; this issue has been discussed in various sources.
The escalation coefficient 3−4 or a different one is an important input
from the experts in our Algorithm.

4. According to the experts, the epidemic ends if 70% of the population
has acquired immunity, by means of vaccination or previous health his-
tory. In our algorithm we have set this condition as a stopping rule
for the iterations of the algorithm, which upon fulfilling automatically
determines the duration of the model ATVBG-SEIR. However this
stopping rule cannot be always fulfilled due to the existence of equilib-
rium state. In the section 3.9 below we will discuss another stopping
rule, which becomes active if the above rule is not applicable.

3.9 Equilibrium of SEIR models and the end of an
epidemic

As we said above, it is a common truth among the specialists that the
immunity of 70% of the population N marks the end of an epidemic. This
has been discussed in the recent paper Gomes et al. (2020), Gomes and
et al. [2020].2

However, when applying SIR or SEIR models, it is not guaranteed that
such a 70% threshold may be attained without vaccine, due to some fun-
damental properties of these models, which are related to the existence of
equilibrium states (see e.g. Keeling and Rohani [2008]). Indeed, one may

2 In the same publication it is proved that the worst case scenario from the point of
view of epidemic size and duration is the homogeneity of the population network, i.e. every
heterogeneity of the (social connections) network reduces the size and the duration of the
epidemic.
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prove rigorously that for t −→ ∞ there is an asymptotic value of the re-
moved cases R(t), which is denoted by R∗. More generally, for R0> 1, the
so-called endemic equilibrium exists and is defined by the limiting constants
S∗, E∗, I∗, R∗, where

S∗ =
1

R0
, E∗ = 0, I∗ = 0, R∗ = 1− 1

R0

and a zero mortality rate (= birth rate) is adopted, for details see Keeling
and Rohani [2008], p. 42. Hence, if the population under consideration has
N∗ individuals, then the maximal percentage which may be removed is

R∗N∗ =

(
1− 1

R0

)
N∗

Since we work with a model starting at a part of the population, say with
initial value R(0), then we obtain N∗ = N −R(0) and we see that quantity

R (0) +

(
1− 1

R0

)
N∗ = R (0) +

(
1− 1

R0

)
(N −R (0))

has to be bigger than 0.7 ∗ N , if we want to satisfy the stopping criterion.
Hence, the condition

1− 1

R0
≥ 0.7N −R (0)

N −R(0)

has to be satisfied if we want to remove 70% of the population N . We
see that this condition is not satisfied below in Figure 3.6 (for Germany).
Indeed, as seen in Figure 3.6, we have the last Relax regime starting on the
date T = July 1, 2021, and the final value of the removed is

R (T ) = 2.955195 · 107.

This value serves asR(0) for the next interval [1 July, 2021, 4 Jan. 2022]
where we have the Relax regime parameters for a classical SEIR model. Since
R = 83 · 107 we see that

0.7N −R (0)

N −R(0)
= 0.53412 > 0.5 = 1− 1

R0

This shows that we cannot satisfy the above condition

1− 1

R0
≥ 0.7N −R (0)

N −R(0)

hence, the algorithm will not stop its execution. This is the major motivation
to introduce another stopping rule for our algorithm.

We introduce another criteria for decaying epidemic which may be con-
sidered as a practical end of the epidemic. In particular, if the number of
newly infected cases forecasted by the model, namely σE (t) , or the num-
ber of the Active cases (given by I (t) ) fall under some threshold, this is a
clear sign about a strongly suppressed epidemic, and might be considered
practically as ended epidemic.



72 CHAPTER 3. ATVBG-SEIR MODEL FOR LONG-TERM

3.10 The algorithm

1. First of all, let us note that it is practically useless to take into account
the whole information from the very beginning of the pandemic (since
January or February, 2020) - we just need to take no more than three
months of the data (a more detailed discussion would need a rigorous
proof based on the theory of dynamical systems, see Katok-Hasselblatt
(1999), Katok and Hasselblatt [1997]). We cut the data for the last
three months and we denote the corresponding interval of time by
[T1, T2] .

2. Thus we have the non-trivial problem to find the initial data for the
SEIR model using the the officially announced data TotalInf (t) (in-
fectious cumulative data), Idata (t) (today’s new infections), Rdata (t)
(the recovered cumulative data), and Deaths (t) , (the fatalities cumu-
lative data). We use the notion of Modified Active Cases, for defining
the initial data for the discrete SEIR model for the interval [T1, T2]
where we consider T1 as the initial point of the model.

We use the conclusions of Section 3.5 where we have discussed the cor-
respondence between the empirical data and the discrete SEIR data. For
defining I0 we use the Modified Active Cases:

E0 =

(
1

σ

)
∗ Idata(1)

R0 = Rdata (1) +Deaths(1)

I0 = TotalInf (1)−Rdata (2)−Deaths(2)

S0 = N − E0− I0−R0

Then we execute the algorithm as we have already explained until one of
the stopping criteria is met.

We have already discussed the stopping criteria for the algorithm. As
we have discussed above in Section 3.9, there are two conditions upon which
the algorithm signals the end of the epidemic:

1. If at a certain moment t the removed cases calculated by the model
R(t) reach (or eventually go beyond) the threshold 0.7∗N where N
denotes the population.

2. If at a certain moment t the Active cases I(t) calculated by the model
reach (and fall under) a threshold value. The definition of this thresh-
old value needs further study from empirical data.
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Figure 3.2: Optimistic scenario for Bulgaria - the curve of ICUs; no vacci-
nations.

3.11 Main results obtained with the Lockdown Sce-
narios Tool without Seasonal effect

3.11.1 Results for Bulgaria:

Following the optimistic scenario for Bulgaria (defined in Section 3.13 be-
low), namely

RelaxRegime = (β = 0.0436, γ = 0.0215) , R0 = 2.0,

StrictRegime = (β = 0.0199, γ = 0.0288) , R0 = 0.6915

without vaccinations, the epidemic ends on 06-Jul-2022, with two major
lockdowns in the spring/summer, while 70% of the population got immune,
and an estimated total number of fatalities 60, 539, see Figure 3.2.

For the same optimistic scenario, as seen from Figure 3.3, with vaccina-
tion plan 120, 000 persons (240, 000 vaccinations) per month, the epidemic
ends on 26-Dec-2021, with one major lockdown, while70% of the population
got immune, and an estimated total number of fatalities 45, 591 :

On the other hand if we choose the pessimistic scenario (in Section 3.13
below), namely,

RelaxRegime = (β = 0.0902, γ = 0.0159) , R0 = 5.7

StrictRegime= (β = 0.0218, γ = 0.0270) , R0= 0.8056
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Figure 3.3: Optimistic scenario for Bulgaria - the curve of ICUs; with vac-
cinations.

Figure 3.4: Pessimistic scenario for Bulgaria: the curve ICUs; with vaccina-
tions

with vaccination plan120, 000 persons (240, 000 vaccinations) per month,
the epidemic ends in November, with a series of Strict lockdowns, as seen
from the Figure 3.4, and with an estimated total number of fatalities 49, 854:
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3.11.2 Estimating the number of fatalities for optimistic/pessimistic
scenario

The perspective provided by the two extreme scenarios is meant to com-
pensate the lack of seasonal effect component in our models. Typically,
the “pessimistic scenario” results in more lockdowns, though in a shorter
duration of the epidemic. On the other hand, some main characteristics
seem to remain rather stable for either scenario, in particular, the number
of fatalities.

In order to obtain a rough estimate of the number of fatalities, i.e. the
curve Deaths (t) for the model ATVBG-SEIR, we recall that it does not
participate directly in the model but is included in the removed cases, in
the curve R (t). We may avoid the consideration of a more complicated
model of the type of SEIRD (where the variable D corresponds to the curve
Deaths (t) ) by the introduction of an empirical ratio. We have tested
different approaches, and we have found that the usual mortality ratio

D0 ≈
Deaths (t)

TotalInf (t)
(3.15)

for the empirical data is rather stable. The basic statistical analysis shows
that in all cases of the countries which we have considered, the above mor-
tality ratio has the least standard deviation compared to other ratios as

Deaths (t) /CumulativeICU (t) and Deaths (t) /Recovered(t).

For us it is important that for dates t beyond Today, we will be able
to use the ATVBG-SEIR model, namely, we will calculate TotalInf (t) by
using the curve E(t) of the discrete ATVBG-SEIR model, since it is the sum
of σE(t). Hence, we may scenario-forecast the curve Deaths (t); we obtain
an estimate of the fatalities curve in the future by putting

Deaths (t) = D0 ∗ TotalInf (t)

which we use practically only on the very last date t of the forecasted epi-
demic.

The ratio D0 depends on the particular country, and we take into ac-
count the escalation coefficient showing the real number of totally infected
. Hence, we obtain that the ration D0 for Bulgaria has an average about
0.012 until January 2021. For the same period, for Germany, it is 0.011; for
Austria – 0.008; for USA – 0.012, for Italy - 0.033, for UK - 0.032.

We have to say that what we obtain is an estimate of the curveDeaths (t),
which does not take into account that an adequate Vaccination plan targets
on the first line those who are vulnerable to COVID-19 (with heavy accom-
panying diseases), and the expected fatalities will be definitely less.

We may compare our scenario-predictions with other resources in the
Web, e.g. with the platform of the IHME institute, http://www.healthdata.org/.
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The forecast of their product ”Projections tool”, available on the web-
site shows about 11, 000 cases on the date t = June 1, 2021, see https:

//covid19.healthdata.org/bulgaria?view=total-deaths&tab=trend.
However it is not clear how do they account for the vaccinations, see Figure
3.5.

Figure 3.5: The prediction (projection) for the Total Fatalities, of the
”IHME projection tool” for Bulgaria, with Today date March 1, 2021, and
prediction for June 1, 2021.

On the other hand, our model shows, that if we assume the limit 1100
of the ICU beds in Bulgaria, and 120, 000 vaccinated persons per month,
then on date t = June 1, 2021, the curve Deaths (t) is equal to 30, 261 cases
(in the pessimistic scenario), or 24, 245 cases in the optimistic scenario. No
accounting for the priority of Vaccination plan for the vulnerable cases has
been applied.

3.11.3 Results for Germany

To obtain results for Germany, the algorithm has applied the second stopping
criterion for ”End of epidemic” (discussed in sections 3.9, 3.10). Below is
the Figure without vaccinations, where the algorithm has stopped since
the number of ICUs of the model

ICUmodel (T ) = 198

on the final date T = 4 Jan. 2023 has become less than

0.01 ∗BEDS = 200

https://covid19.healthdata.org/bulgaria?view=total-deaths&tab=trend
https://covid19.healthdata.org/bulgaria?view=total-deaths&tab=trend
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Figure 3.6: Germany, optimistic scenario, without vaccinations.

number of ICU beds. However on 4 Jan. 2023 less than 70% of the popula-
tion have got immunity, see Figure 3.6.

With 1, 400, 000 vaccinated persons per month we obtain the following
Figure 3.7 showing that the epidemic ends on Nov. 7, 2021, while the end
of epidemic is due to the first stop criterion - reaching the immunity of 70%
of the population.
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Figure 3.7: Germany, optimistic scenario, with vaccinations.

3.12 Identification of Strict and Relaxed regimes
by fitting SEIR model

In order to find proper Strict regime and Relaxed regime parameters, we
have fitted the classical SEIR model for different intervals of time in the
history of the epidemic in Bulgaria, up to today. This resulted in different
pairs of parameters (β, γ) which reflect the real state of the society. One of
the most important facts is that one may find the basic reproduction ratio
R0 for some specific periods of time; this is called effective Reproduction
ratio, denoted by Re . Below we provide the fitting of the SEIR model to
different periods of time and the resulting parameters (β, γ).

For finding the parameters β, γ we fit the model for a period of (strongly)
Relaxed measures, with open schools, restaurants, social venues, etc. This
was the period of time 30 Sep., 2020 - 25 Nov., 2020. We obtained the
following values

β = 0.1276, γ = 0.0279

hence,

R0 =
β

γ
≈ 4

The following Figures show the quality of the fitting which we consider as
satisfactory:
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Figure 3.8: Comparison between the Active cases vs. the infectious curve
I(t) of the SEIR model.

3.12.1 Active cases data vs. I(t) of SEIR model

In Figure 3.8 we provide a comparison between the Active cases vs. the
infectious curve I (t) of the SEIR model.

3.12.2 Recovered+Deaths data vs. Removed (R(t)) of SEIR
model

In Figure 3.9 we provide a comparison between the Recovered and Deaths
cases vs. the Removed curve R (t) of the SEIR model.

Results for Austria, Italy, UK and USA are provided in the Tool, where
one may choose the Relax and Strict regimes.
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Figure 3.9: Comparison between the Recovered + Deaths cases vs. the
Removed curve R(t) of the SEIR model.

3.13 Fitting of the classical SEIR model to Bul-
garian data

As we explained, one needs a serious research to find proper Strict regime
and Relaxed regime which will constitute the pieces of the splines for the
variable parameters β(t), γ(t) of the ATVBG-SEIR model.

We tried to find the parameters β, γ of classical SEIR in times of Strict
measures, during the months April-August. However the very fact that the
resulting basic reproduction ratio R0 is always bigger than one shows that
something goes wrong. The only explanation is that there existed a very big
incoming flow of work emigration and students (mainly Bulgarian citizens)
from abroad.

1. During the period 6 April, 2020 – 15 May, 2020, we have had very
strict measures in Bulgaria. We have fitted the SEIR model and ob-
tained the following parameters

β = 0.0517, γ = 0.0156

which give the basic reproduction ratio

R0 =
β

γ
= 3.3118

2. During the period 15 May, 2020 – 31 July, 2020, we had some relax-
ation – restaurants, etc. are open, but NO schools, and we have the
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summer seasonal effect, we got the following parameters for the fitted
SEIR model:

β = 0.0434, γ = 0.0254

which results in

R0 =
β

γ
= 1.7092 > 1

Again, the explanation is that many seasonal workers and Bulgarian
students came from abroad and brought the infection.

3. Also for the period 15 May, 2020 – 31 August, 2020, we obtained:

β = 0.0495, γ = 0.0327

which gives

R0 =
β

γ
= 1.5142 > 1.

4. For 1 June, 2020-15 Sept., 2020, we have

β = 0.0685, γ = 0.0469

Hence,

R0 =
β

γ
= 1.4601 > 1

5. However only close to September we got R0 < 1 , which may be
explained with a very strong seasonal effect. For the period 1 Aug.,
2020-20 Sept, 2020, we got the parameters

β = 0.0252, γ = 0.0363

Hence,

R0 =
β

γ
= 0.6958 < 1

6. On the other hand, we have chosen as a Strict regime the one which
we got in the winter, for 1 Dec., 2020-4 Jan., 2020, namely

β = 0.0208, γ = 0.0291

Hence,

R0 =
β

γ
= 0.7134 < 1

7. We have chosen as a Relax regime the one in the period 15 Sept.,
2020 – 15 Oct., 2020, namely

β = 0.0436, γ = 0.0215

Hence,

R0 =
β

γ
= 2.0
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Based on the above we have defined one possible Relaxed regime by
putting:

RelaxRegime = (β = 0.0902, γ = 0.0159)

For the Strict regime we have inspected different periods. For the period
of officially introduced Strict measures (no schools, no restaurants, etc.), 1
Dec. – 29 Dec., 2020, we have fitted the SEIR model and obtained the
parameters

(β = 0.0199, γ = 0.0288)

with basic reproduction ratio

R0 =
β

γ
≈ 0.691.

Hence, we have put

StrictRegime = (β = 0.0199, γ = 0.0288)

In our research to find appropriate parameters for the Strict and Relaxed
regimes, we have inspected different sub-intervals of the period 1 April – 15
Sep., 2020.

For the period with partial measures (no schools, but open restaurants,
etc.), 1 Aug – 15 Sep., 2020, we obtained

(β = 0.0312, γ = 0.0367) , R0 = 0.8524

Further, for the period with relaxed measures (open schools, open restau-
rants, etc.), 1 Oct.-30 Oct., 2020, we obtained the following parameters of
the fitted classical SEIR model

(β = 0.0871, γ = 0.0162) , R0 = 5.4

and for the period with the same relaxed measures, 15 Sep.-15 Oct., 2020,
we obtained

(β = 0.0436, γ = 0.0215) , R0 = 2.0

As a result of the above, one may define several models which may be
considered in the range of most optimistic to most pessimistic:

For Bulgaria:
The optimistic scenario is with the following parameters:

RelaxRegime = (β = 0.0436, γ = 0.0215) , R0 = 2.0

StrictRegime = (β = 0.0199, γ = 0.0288) , R0 = 0.6915

The mild scenario:

RelaxRegime = (β = 0.0599, γ = 0.0141) , R0 = 4.239

StrictRegime = (β = 0.0218, γ = 0.0270) , R0 = 0.8056



3.13. FITTING OF SEIR MODEL 83

The pessimistic scenario:

RelaxRegime = (β = 0.0902, γ = 0.0159) , R0 = 5.7

StrictRegime = (β = 0.0218, γ = 0.0270) , R0 = 0.8056

For Germany:
The optimistic scenario:

RelaxRegime = (β = 0.0835, γ = 0.0419) , R0 = 2.0

StrictRegime = (β = 0.0337, γ = 0.0816) , R0 = 0.4125

The pessimistic scenario:

RelaxRegime = (β = 0.0946, γ = 0.0368) , R0 = 2.5713

StrictRegime = (β = 0.0337, γ = 0.0816) , R0 = 0.4125

For UK:
The optimistic scenario:

RelaxRegime = (β = 0.0435, γ = 0.0209) , R0 = 2.0818

StrictRegime = (β = 0.0134, γ = 0.0150) , R0 = 0.8968

The pessimistic scenario:

RelaxRegime = (β = 0.0499, γ = 0.0047) , R0 = 10.6923

StrictRegime = (β = 0.0134, γ = 0.0150) , R0 = 0.8968

For Austria:
The optimistic scenario:

RelaxRegime = (β = 0.1333, γ = 0.0790) , R0 = 1.6870

StrictRegime = (β = 0.0750, γ = 0.1130) , R0 = 0.6632

The pessimistic scenario:

RelaxRegime = (β = 0.1233, γ = 0.0574) , R0 = 2.1490

StrictRegime = (β = 0.0750, γ = 0.1130) , R0 = 0.6632

For USA:
The optimistic scenario:

RelaxRegime = (β = 0.0108, γ = 0.0058) , R0 = 1.8793

StrictRegime = (β = 0.0159, γ = 0.0243) , R0 = 0.6535
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The pessimistic scenario:

RelaxRegime = (β = 0.0141, γ = 0.0053) , R0 = 2.6426

StrictRegime = (β = 0.0159, γ = 0.0243) , R0 = 0.6535

For Italy:
The optimistic scenario:

RelaxRegime = (β = 0.0317, γ = 0.0111) , R0 = 2.8627

StrictRegime = (β = 0.0258, γ = 0.0328) , R0 = 0.7885

The pessimistic scenario:

RelaxRegime = (β = 0.0554, γ = 0.0100) , R0 = 5.5381

StrictRegime = (β = 0.0258, γ = 0.0328) , R0 = 0.7885

It should be noted that the final duration of the epidemic forecasted
by the optimistic and the pessimistic scenarios is not that big; the main
difference is that one needs more lockdowns (periods with Strict regime) in
the case of the pessimistic scenarios.

3.14 Fitting of SEIR model to German data

We have carried out similar research of the German data.
As in the case of Bulgarian data, we have found appropriate periods with

relaxed (1 Sep. – 31 Oct., 2020 ) and strict measures (10 Apr – 10 June,
2020 ), to which we have fitted the classical SEIR model. Thus we have
chosen the following StrictRegime and RelaxRegime for the ATVBG-SEIR
model for Germany:

StrictRegime = (β = 0.0337, γ = 0.0816) , R0 =
β

γ
≈ 0.4125

RelaxRegime = (β = 0.0835, γ = 0.0419) , R0 =
β

γ
≈ 2.0

3.15 Lockdown Scenarios Tool – a short descrip-
tion

The above results have been obtained by the specially designed Lockdown
Tool, at http://atvbg-seir.eu.

We have implemented the methodology of the ATVBG-SEIR model in
the Lockdown Tool, where the end-user may play with several parameters
which is the best way to get a feeling of the strengths of the model to make
forecasts.

http://atvbg-seir.eu
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1. P1: (C3) (default value is 3, input by a Slider) – this is the escalation
parameter, which is an escalation factor showing the ratio between the
unreported cases and reported cases, i.e.

All cases = C3 ∗Reported cases

2. P2: (C21) (default is 21; input by a Slider; min=15, max=45). This
is a fixed number of days showing the lengths of the lockdown periods
(of Strict measures).

3. P3: (C06) (default for Bulgaria is 0.6% = 0.006, for Germany is
1.4% = 0.014, for Italy is 0.5% = 0.005; input by a Slider; min = 0.1%
and max = 3%). This number shows the ICUs as a percentage of the
Active Cases. We find it by a regression on the data for every country,
during the last three months; data available at https://www.worldo

meters.info/coronavirus/#countries

4. P4: (BEDS) (default for Bulgaria is 1, 100, for Germany is 10, 000;
input by a Slider). This number shows the upper limit of ICU beds
reserved for the COVID-19 cases. It is announced in the database
https://www.worldometers.info/coronavirus/#countries, but
seems to be variable for every country since the authorities always
keep higher reserves for emergencies. It is difficult to download true
data about the daily occupancy of the ICU beds.

5. P5: (C70) (default value is 70% = 0.7; input by a Slider; min = 40%;
max = 90%). This number is the percentage of the population that
has to be immune, for the epidemic to be assumed ended.

6. P6: (C01) (default value is 1% = 0.01; input by a Slider; min = 0.2%,
max = 5%). This is the percentage of the upper Limit of ICUs. If the
model requires number of ICUs less than this, we assume end of the
epidemic.

7. P7: (VACCINATIONS) (default value is 0; Input in a box). This
is the total number of vaccinated persons per month (as usually
planned); let us remind that every vaccinated person gets two vac-
cinations in a short time.

8. P8: (VACCINATIONS PLAN) - A table to enter the number of
vaccines (NOT vaccinated people) delivered per month. It is though
assumed as in P7 that a vaccinated person gets two vaccines in a short
interval of time.

9. P9: (User Defined Scenario) – The user may enter the values of
StrictRegime and RelaxRegime for every particular country. We

https://www.worldometers.info/coronavirus/#countries
https://www.worldometers.info/coronavirus/#countries
https://www.worldometers.info/coronavirus/#countries
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have found the values of some optimistic and pessimistic scenarios
for Bulgaria, Germany and other countries for which we have found
sufficiently good data in section 3.13 above.

The main parameters which may be manipulated are P4 and P7–P8,
and they are strongly influencing the dynamics of the epidemic in a sin-
gle country. The reason is that in critical situations health authorities are
apparently forced to take additional ICU beds from the reserve (for other
diseases) and give them to COVID-19 patients. Varying the Vaccination
plan by the parameters P7 or P8 may be very helpful for optimizing the
future vaccination strategy.

On the other hand, we have added in the Tool a dropdown list of opti-
mistic/pessimistic scenarios for every country, constructed by using the list
of several pairs of RelaxRegime with different basic reproduction numbers
R0 .

3.16 Final Remarks

There are two main factors which may reduce the duration of the epidemic
provided by our models.

1. In principle, in our study we do not account seasonal effects. An excuse
is that while in the winter the immunity of the people is very low, it is
very high in the summer, which causes a compensating effect. However
we compensate this by providing optimistic and pessimistic scenarios.

2. We also ignore the fact that the immunization targets on the first
line many super-spreaders, which may very essentially influence the
dynamics and reduce the duration of the epidemic.

3.17 Modeling of the Seasonal effect for COVID-
19 spread

Due to the lack of sufficient information at present, the best approach to
modeling the seasonal behaviour of the Covid-19 spread appears to be a
direct analogy with the seasonal behaviour of the standard Flu, see the
review article Audi et al. [2020].

A large number of scientific papers have investigated the rich nonlinear
effects caused by periodically varying contact rates β (t) in epidemic models,
and some excellent reviews exist, see e.g. Altizer et al. [2006], Grassly and
Fraser [2006].

The modeling of the seasonal effect for the standard Flu ( Flu peak
and Flu low seasons) appears to be a very non-trivial task and there is a
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huge amount of research in the area, see David et al. [2000], Buonomo et al.
[2018]. However it seems that there is no final satisfactory solution, and the
seasonality of these infection spreads is still under active research. The main
problem is to compare the amplitude of the infectious curve during the peak
season and the level of the infectious curve during the low season. However
not less trivial problem is to determine which is the best shape of the curve
during the low season, but also to determine the borders betweent the peak
and the low seasons.

The first acceptable from epidemiological point of view model, was de-
signed by Dietz Dietz [1976], Buonomo et al. [2018]. He was the first to
investigate the effects of one-year periodic contact rate β (t) in the classical
SIR and SEIR models. He considered a periodically varying contact rate
β (t) given by the model:

β (t) = βm (1 +A cos (ωt)) .

Here, the parameter A measures the degree of seasonality of the contact
rate. Further, more complicated models were considered by others, e.g.

β (t) = β0 (1 + β1φ (t))

where the degree of the seasonality was measured by the function

φ (t) =
0.68 + cos (ωt)

1 + (2/3) cos (ωt)
.

In the Science paper David et al. [2000], another version of the above was
used:

β (t) = β0 (1 + β1)
φ(t) .

From this simple model very interesting conclusions were made: It is not
necessary to complicate the analysis of the measles among children by ex-
plicitly modeling age structure in the host population, namely, term-time
forced SEIR model behaves almost identically to favored about year 2000
age-structured models (the year of the publication of David et al. [2000] is
2000), indicating that the critical ingredient in measles models is a realis-
tic seasonal forcing function rather than explicit modeling of heterogeneous
transmission.

Others use various simple models, as in Irena et al. [2019], which we
provide visualized in Figure 3.10:

The difficulty to determine the amplitude of the infectious curve for a
particular year is clear from the following Figure 3.11, (available at the CDC
web-site, of Health and Services [2020], ”Missouri Weekly Influenza Surveil-
lance Report 2018-2019 Influenza Season”), which provides the infectious
curve for the years 2015− 2019 in Missouri:

In case we do not need a precise estimate but just a crude one, we may
use a simple shift of the curves during the summer season with about 4.5−5
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Figure 3.10: Various seasonal models.
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Figure 3.11: Influenza cases in Missouri for the years 2015-2019.
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Figure 3.12: Lockdown Scenario Tool, for Bulgaria, starting on May 4, 2021,

months. A related rough estimate of the number of infectious cases and
number of fatalities is also not difficult to calculate.

However, another more sophisticated but still simple to implement ap-
proach to the seasonality gives a reasonable approximation to the real pic-
ture, and extends the ATVBG-SEIR model. Namely, we assume that during
the low season 15-May-2021 – 15-sep-2021, the ”summer effect” is verysim-
ilar to the effect caused by the Strict Containment measures, i.e. we use
the parameters β (t) and γ (t) in the ATVBG-SEIR model to be the same as
in the StrictRegime = (β = 0.0199, γ = 0.0288), provided above in section
3.13.

By applying the Lockdown Scenario Tool, for Bulgaria, starting on May
4, 2021, we obtain the resulting curve of ICUs on Figure 3.12.

We see that there appears a ”slowing period” of about 4− 5 months for
the summer of 2021 and 2022.

3.18 Modeling of the Loss of Immunity (after 9
months)

An important problem for the long-term control of the further development
of the COVID-19 pandemic is to proper model the effects of the Limited
immunity due to either vaccination or to the natural course of the disease.

The data from Wuhan ([Nature, 2021, see Bibliography of Chapter 1],
[He et al., 2021, see Bibliography of Chapter 1]) show that the natural
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immunity lasts for about 9 months for the majority cases. On the other hand
the immunity due to the vaccinations is quite disputable – some sources say
it lasts for 5 months to 12 or more.

We have to reconsider the system of equations in the SEIR model: First
of all we have the data Rdata(t) and Deaths (t) which are usually considered
as representative until the StartDate for the SEIR model. On the other
hand, after the StartDate (of our SEIR model), we consider the variables
S,E, I,R. We may extend the whole series of Sn+1 by defining

Sn = Sdatan, for n ≤ StartDate;

Here, for n < StartDate, we have put

Sdatan = N −Rdatan −Deathsn −ACn
Rrecn = Rdatan,

Let us recall that in our algorithm we have assumed that the number fatal-
ities will be determined by the formula

Deaths (t) = D0 ∗ TotalInf (t)

As we have decided for our model SEIR to have a coefficient D0 (see (3.15))
we put

Rrecn = Rn −Deathsn, for n ≥ StartDate

Thus we have defined the time series Rrecn for all times n, i.e. for n <
StartDate and for n ≥ StartDate.

We assume that the loss of natural immunity (after the course of
disease) is after nine months which are roughly 270 days but the loss of the
vaccination immunity is after six months. Now we reconsider our SEIR
system with Limited Immunity condition:

Sn+1 = Sn −
βnSnIn
N

− Vn +Rrecn−270 + Vn−180

En+1 = En +
βnSnIn
N

− σEn

In+1 = In + σEn − γnIn
Rn+1 = Rn + γnIn + Vn −Rrecn−270 − Vn−180

The simplest approach to render the above in a Matlab code is to take an
absolute start as January 1, 2020 or so for all countries except for China, or
even earlier, and put zeros before the real start of the data series.

For the Matlab code, we have to modify the basic function SEIR spline
where we have to use the Historical data in order to create the above new
variables Rrecn and Vn.
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Chapter 4

Software Platforms Used for
the Web-based Tools

In the present chapter we provide more details of the implementation of the
Web-based instruments.

Brief overview of the Jupyter Project

The name Jupyter is used for a project and a community for develop-
ing open source software and services for interactive computing. Project
Jupyter started as a spin-off project from IPython developed by Fernando
Perez in 2001 as an enhanced Python interpreter. Interactive Python or
namely IPython is originally developed for the Python language as a com-
mand shell for interactive computing. The Jupyter system supports over 100
programming languages (called “kernels” in the Jupyter ecosystem) includ-
ing Python, Java, R, Julia, Matlab, Octave, Scheme, Processing, Scala, and
many more. Out of the box, Jupyter will only run the IPython kernel, but
additional kernels may be installed. Software applications under Jupyter
project are intended to support interactive data science and scientific com-
puting. We provide the list of the main components which are contained in
the Jupyter project:

� Jupyter Notebook - A web based interface to programming environ-
ments of Python, Julia, R and many others

� JupyterLab - Modern web based integrated interface for all notebooks,
editors, consoles, etc.

� Jupyter Client - This is a service which contains the reference im-
plementation of the Jupyter protocol. It is also a client library for
starting, managing and communicating with Jupyter kernels.

� Jupyter kernels - These are execution environments for every program-
ming language of Jupyter.
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� IPykernel - Package that provides IPython kernel to Jupyter.

� QtConsole - Qt based terminal for Jupyter kernels similar to IPython.

� nbviewer - HTML viewer for Jupyter notebooks

� nbconvert - Converts Jupyter notebook files in other formats

For more details, we refer to Chapter 5 of the online book ”Jupyter
Notebook ecosystem”, see https://jupyter4edu.github.io/jupyter-ed

u-book/jupyter.html.

On the other hand, IPython offers more features compared to the stan-
dard Python:

� Acts as a main kernel for Jupyter notebook and other front end tools
of Project Jupyter.

� Possesses object introspection ability. Introspection is the ability to
check properties of an object during runtime.

� Syntax highlighting.

� Stores the history of interactions.

� Tab completion of keywords, variables and function names.

� Magic command system useful for controlling Python environment and
performing OS tasks.

� Ability to be embedded in other Python programs.

� Provides access to Python debugger.

Brief overview of the Jupyter Notebook

The Jupyter Notebook was developed as a concept of a computable docu-
ment, see https://ipython-books.github.io/chapter-3-mastering-th

e-jupyter-notebook/. Using ”notebook” or ”notebook documents” as a
web application one can create and share computable documents that con-
tain live executable programming code, visualizations and interactive web
elements. The Jupyter Notebook is one of the ideal tools to help you gain
the web environment for performing data science analysis in real time.

The Notebook ecosystem: Jupyter notebooks are represented as JavaScript
Object Notation (JSON) documents. JSON is a language-independent, text-
based file format for representing structured documents. As such, notebooks
can be processed by any programming language, and they can be converted
to other formats such as Markdown, HTML, LaTeX/PDF, and others.

https://jupyter4edu.github.io/jupyter-edu-book/jupyter.html
https://jupyter4edu.github.io/jupyter-edu-book/jupyter.html
https://ipython-books.github.io/chapter-3-mastering-the-jupyter-notebook/
https://ipython-books.github.io/chapter-3-mastering-the-jupyter-notebook/
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There is an ecosystem of tools around the Notebook. Notebooks are
being used to create slides, teaching materials, blog posts, research papers,
and even books.

Architecture of the Jupyter Notebook: Jupyter implements a two-process
model, with a kernel and a client. The client is the interface offering the
user the ability to send code to the kernel. The kernel executes the code
and returns the result to the client for display. In the Read-Evaluate-Print
Loop (REPL) terminology, the kernel implements the Evaluate, whereas the
client implements the Read and the Print of the process.

The client can be a Qt widget if we run the Qt console, or a browser if
we run the Jupyter Notebook. In the Jupyter Notebook, the kernel receives
entire cells at once, so it has no notion of a notebook. There is a strong
decoupling between the linear document containing the notebook, and the
underlying kernel.

All communication procedures between the different processes are im-
plemented on top of the ZeroMQ (or ZMQ) messaging protocol (http:
//zeromq.org). The Notebook communicates with the underlying ker-
nel using WebSocket, a TCP-based protocol implemented in modern web
browsers.

Connecting multiple clients to one kernel: In a notebook, typing connect-
info in a cell gives the information we need to connect a new client (such as
a Qt console) to the underlying kernel.

JupyterHub: JupyterHub, available at https://jupyterhub.readt

hedocs.io/en/latest/, is a Python library that can be used to serve
notebooks to a set of end-users, for example students of a particular class,
or lab members in a research group. It handles user authentication and
other low-level details.

Security in notebooks: It is possible for an attacker to put malicious
code in a Jupyter notebook. Since notebooks may contain hidden JavaScript
code in a cell output, it is theoretically possible for malicious code to execute
surreptitiously when the user opens a notebook. For this reason, Jupyter
has a security model where HTML and JavaScript code in a notebook can
be either trusted or untrusted. Outputs generated by the user are always
trusted. However, outputs that were already there when the user first opened
an existing notebook are untrusted.

The security model is based on a cryptographic signature present in every
notebook. This signature is generated using a secret key owned by every
user.

History and Development of IPython and Jupyter
System

IPython was originally developed by Fernando Perez in 2001. Its cur-
rent version is IPython7.0.1 which requires Python 3.4 version or higher.

http://zeromq.org
http://zeromq.org
https://jupyterhub.readthedocs.io/en/latest/
https://jupyterhub.readthedocs.io/en/latest/
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IPython 6.0 was the first version to support Python 3. Users having Python
2.7 should work with IPython’s version 2.0 to 5.7 The concept of compu-
tational notebooks started in 80s decade when MATLAB and Mathematica
were released. These GUI frontends to the interactive shell had features like
text formatting, adding graphics, table and adding mathematical symbols.
SAGE notebook is also a web based notebook. Creaters of IPython started
working on notebook interface for IPython shell in 2005. IPython notebook
soon added support of other languages like R and Julia. It was in 2014,
that Perez started Jupyter project as a spin-off project from IPython, since
IPython project was becoming big with products like notebook server and
Qt console added to it. Since IPython 4.0, all additional components were
shifted to Project Jupyter and adding support of other languages to IPython
notebook. IPython continues to focus on improvement of its enhanced inter-
preter feature. It also provides primary kernel to Jupyter notebook frontend.

Brief overview of the Bokeh Library and
Environment

Bokeh library and Environment are competitive to Jupyter NOtebook, see
https://docs.bokeh.org/en/latest/docs/reference/server.html.
However, Bokeh is not only competitive but may be also combined with
Jupyter Notebook.

Thus, we used Bokeh for the frontend part of the implementation – it in-
cludes libraries with widgets, controls, interactive UI elements: “bokeh.server”
is the analog to the Jupyter Notebook. It provides a customizable Bokeh
Server Tornadocore (webserver) application, popular among the web-programming
people. The architecture of Bokeh is such that high-level “model objects”
(representing things like plots, ranges, axes, glyphs, etc.) are created in
Python, and then converted to a JSON format that is consumed by the client
library, BokehJS. By itself, this flexible and decoupled design offers advan-
tages, for instance it is easy to have other languages (R, Scala, Lua, etc.)
drive the exact same Bokeh plots and visualizations in the browser. The ca-
pability to synchronize between Python and the browser is the main purpose
of the Bokeh Server. By far the most flexible way to create interactive data
visualizations using the Bokeh server is to create Bokeh Applications, and
serve them with a Bokeh server. In this scenario, a Bokeh server uses the
application code to create sessions and documents for all clients (typically
browsers) that connect. On the Figure below: A Bokeh server (left) uses
Application code to create Bokeh Documents. Every new connection from
a browser (right) results in the Bokeh server creating a new document, just
for that session. The diagram of the Bokeh server is provided in Figure 4.1.

In our implementation we created a Bokeh application which is run NOT
under Bokeh server but within a Jupyter Notebook. This required the cre-
ation of integration buffer and customized configuration. The application

https://docs.bokeh.org/en/latest/docs/reference/server.html 
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Figure 4.1: Bokeh server

code is executed in the Bokeh server every time a new connection is made,
to create the new Bokeh Document (aka Notebook) that will be synced to
the browser. The application code also sets up any callbacks that should be
run whenever properties such as widget values are changes.

Running a Bokeh server (application): see the link https://docs.bok

eh.org/en/latest/docs/user guide/server.html The primary purpose
of the Bokeh server is to synchronize data between the underlying Python
environment and the BokehJS library running in the browser.

Bokeh server makes it easy to create interactive web applications that
connect front-end UI events to running Python code. Bokeh creates high-
level Python models, such as plots, ranges, axes, and glyphs, and then con-
verts these objects to JSON to pass them to its client library, BokehJS. For
more information on the latter, see the description of BokehJS. This flexible
and decoupled design offers some advantages. For instance, it is easy to have
other languages, such as R or Scala, drive Bokeh plots and visualizations in
the browser.

However, keeping these models in sync between the Python environment
and the browser would provide further powerful capabilities:

� respond to UI and tool events in the browser with computations or
queries using the full power of Python

� automatically push server-side updates to the UI elements such as
widgets or plots in the browser

https://docs.bokeh.org/en/latest/docs/user_guide/server.html
https://docs.bokeh.org/en/latest/docs/user_guide/server.html
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� use periodic, timeout, and asynchronous callbacks to drive streaming
updates

This is where the Bokeh server comes into play. The documentation of
Bokeh is available at the link https://github.com/bokeh/bokeh.

Bokeh is not only an environment, but may be used as an interactive
visualization library for modern web browsers. It provides elegant, concise
construction of versatile beautiful graphics, and affords high-performance
interactivity over large or streaming datasets. Bokeh can help anyone who
would like to quickly and easily make interactive plots, dashboards, and data
applications. With Bokeh, one can create JavaScript-powered visualizations
without writing any JavaScript yourself. It is available in Anaconda Python
distribution. Bokeh is a Sponsored Project of NumFOCUS, see https:

//docs.bokeh.org/en/latest/index.html.
The following references are very useful for initial encounter with Jupyter

and Bokeh:

1. Karlijn Willems, Jupyter Notebook Tutorial: The Definitive Guide, at
https://www.datacamp.com/community/tutorials/tutorial-ju

pyter-notebook

2. Tutorialspoint – Jupyter Tutorial, at https://www.tutorialspoint

.com/jupyter/ipython introduction.htm

https://github.com/bokeh/bokeh
https://docs.bokeh.org/en/latest/index.html 
https://docs.bokeh.org/en/latest/index.html 
https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://www.tutorialspoint.com/jupyter/ipython_introduction.htm
https://www.tutorialspoint.com/jupyter/ipython_introduction.htm


Chapter 5

Software Implementation of
the Tools

In the present chapter we provide more details about software development
of implemented web based tools and some key concepts are given.

The Dissertation represents a contribution to Computational Epidemiol-
ogy by modeling of contagious diseases in particular of COVID-19. Study of
new models for analyzing of epidemic outbreaks including their software im-
plementations as Web-based interactive instruments and tools for analysis,
predictions and decision support.

5.1 Overview of some key concepts

When creating models of processes happening in real world the models are
based on an understanding of the process leading to the observed data.
Mathematical model is a simplified mathematical construct related to a part
of reality. In other cases we can make difference between Data modeling and
Mathematical modeling. One can discover and match an interesting pattern
of data, but not able or with little possibility to explain the process by build-
ing a mathematical model and this modeling is referred to data modeling.
Calibrating (finding values for parameters) for the models is required by run-
ning simulations / models to generate data and make fitting with the real
and observed data. Software models are related to the development process
and there are many different methodologies and software approaches.
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5.2 Software approach

Test-Driven Development (TDD) is used for implementation of the tools
described by following stages:

1. Write a test, watch it fail. If it passes, the code already covers the
required functionality.

2. Write a code to pass the test. All previous tests have to pass. The
new code adds to the existing functionality.

3. Refactor: revise code if necessary improve the code without changing
behavior or any functionality at this stage.

4. Repeat 1-2-3

5.3 Software Application

Implemented tools can be used by users as a regular web applications, be-
yond that the tools have special mode with more complex structure as com-
putable documents known as IPython (Jupyter) Notebooks and they are
interactive runtime environments made of cells and group of cells. Each cell
may contain both data and executable code. The Model View Controller
(MVC) design pattern or something that looks like it (for example widgets
in Bokeh) is also applicable for implemented tools and almost all UI-based
applications.

5.4 Software Environment

The Web based tools are stored and computed on a server side. The access
and running is provided by web browsers. The environment allows in parallel
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multiple users to run independently their own experiments. If needed addi-
tional security restrictions could be enabled for user authorizations, access
levels and etc. The implemented web based tools can be used as Software
as Service within cloud computing platforms and provide all benefits like
scalability and load balancing.

Bokeh library is chosen and used because its wide array of widgets, plot
tools, and UI events that can trigger real Python callbacks, it allows to
develop interactive web applications that connect front-end UI events to
running Python code.

5.5 Data sources

The Data sources are provided as datasets / collections stored in various
formats: CSV, XLSX, JSON. For some datasets is provided API interface
/ REST. Serial data is needed to be processed different order of columns
and different labels are used. There are data sources storing data in rows
instead of columns. Also used different formats of dates. All of this requires
additional data processing.

5.6 Data pipeline

� Retrieve data – using program interface to connect and extract datasets
for each country

� Process data – transform it into single input data format for TVBG /
ATVBG tools.

� Verify data – check records for gaps / missing inconsistent data

� Data cleansing – / Remove or Correct gaps if it possible to use average
/ smooth

� Data generation – in order to find the best prediction scenarios it’s
required to run thousands times models which is heavy computational
task and produce significant amount of data.

5.7 Input Data

The CSV format is chosen as major data format for the implemented web
based tools. This is common widely used format for serial data / time series.
If necessary format can be easily changed to any other suitable format for
serial data.

The main Input data is daily updated time series of the following:

� S – Susceptible
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� E – Exposed

� I – Infectious

� R – Removed

� ICU – used in ATVBG-SEIR

Model parameters are determined by the user or / and by fitting SEIR
model with real data. For more detailed description see section for Compart-
mental SEIR models NumPy and Pandas are specialized Python libraries for
storing and manipulating data series, multi-dimensional data. Pandas pro-
vides many different IO connectors to SQL, BigQuery, CSV, HDF5, JSON
etc.

If needed the data could be scaled at different levels. It depends of
data sources and size of regional units. For countries with large territory
and population it is reasonable to do regional data modeling and apply the
developed tools for predictions scenarios on separate regions.

5.8 Software Tools basic processing steps

The following figure shows back-end part of implemented web tools. It’s
possible to run tools in parallel for each country by different regions inde-
pendently.
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5.9 TVBG-SEIR Tool Web Interface

TVBG-SEIR tool with short-term SEIR model based on splines for COVID-
19 prediction scenarios (see Chapter 2). The following is a part of web
interface of the tool.

We assume that in the Country XX the COVID-epidemy started on
date T1. We identify two Key dates T2 and T3 when the Govt of XX has
introduced Restrictive measures to reduce the Infection Transmission rate
(given by a coefficient Beta in the SIR/SEIR models) and to increase the
Removal rate (given by a coefficient Gamma in the SIR/SEIR models)). In
China these are 30-Jan-2020 and 12-Feb-2020. In Bulgaria they are 14-Mar-
2020 and 20-Mar-2020. The model sets two nodes of the splines for Beta
and Gamma which are chosen by optimization for fitting to the data.

Beta is reduced by the following measures: washing hands, wearing
masks, keeping social distance and soc. isolation (no meetings, staying
at home), visiting less stores. Gamma is increased by: fast identification
of infected people and subsequent fast hospitalization/isolation until they
recover, applying proper medication, etc. The USER may create different
scenarios of the Future by using the following Control parameters:

5.9.1 Program input control parameters

1. Third Date: Fix a Third date T4 to strengthen / weaken the
Restrictive measures during the next days.

2. Coef1: Decide whether to relax or to strengthen the Transmission
rate of today (Beta1) by choosing a number Coef1 in the interval [0.2,
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1.4]; here 1 means the same ”amount of measures” as until today; 0.2
means about 5 times less measures; in fact, the formula for the new
value B2 of the rate is roughly Beta2 = (1.6-Coef1)*Beta1.

3. Coef11: This coefficient says how much the USER wants to relax the
Level of the Restrictive measures (which determine the Transmission
rate) after the Third Date T4. For example, if Coef11 is 1.8, this
means that we impose ”5 times less measures immediately after Third
Date”. If Coef11 is 1, this means that we preserve the same level of
the measures immediately after Third Date. Roughly, we have the
new Transmission rate Beta3 = Coef11*Beta2.

4. Coef2: The same about the new value Gamma2 of the Removal rate;
we put roughly Gamma2 = Coef2*Gamma1, where Gamma1 is the
rate until today.

5. Coef22: This is analogous to coefficient Coef11 but relaxes the mea-
sures which determine the Removal rate (Gamma).

5.9.2 Program input control Widgets

Here is an EXAMPLE of input data (Interactive Widgets, Sliders, Drop list)

5.9.3 Program output result

The output result from TVBG-SEIR Tool for a given input parameters.
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5.9.4 Program code

from ipywidgets import interact, interactive, fixed, interact_manual

from ipywidgets import Button, HBox, VBox, widgets, Label

from IPython.display import Image, display, HTML, Javascript

from pathlib import Path

import os, glob, math

display(HTML("""<style>.container { width:98% !important;}

.widget-readout, .widget-label {font-size: 16px; font-weight: bold} .widget-readout

{color: blue;}

.widget-hslider {width: 360px;} .widget-dropdown {width: 420px; font-weight: bold;}

</style>"""))

datapath = "FIGURES/"

Country = [dI for dI in os.listdir(datapath) if os.path.isdir(os.path.join(datapath,dI))]

Country.sort()

if '.ipynb_checkpoints' in Country:

Country.remove('.ipynb_checkpoints')

def getlist(Country):

datapath = 'FIGURES/' + Country + '/'
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listOfImageNames = [datapath + dI for dI in os.listdir(datapath)]

N = len(listOfImageNames)-1

def f(n):

if N != -1:

imgfile = Path(datapath + str(n) + '.jpg')

if imgfile.exists():

display(Image(imgfile))

else:

display(Image("datasets/DIVERGENT_MODEL.jpg"))

style = {'description_width' : 'initial', 'handle_color' : 'lightblue'}

Td = widgets.IntSlider(min=5, max=25, step=10, value=5, description='Third restriction Date ', style=style)

Coef1 = widgets.FloatSlider(min=0.2, max=1.5, step=0.2, value=1.0, description='Coef1 for Transm. rate', style=style)

Coef2 = widgets.FloatSlider(min=0.6, max=1.8, step=0.2, value=1.0, description='Coef2 for Removal rate', style=style)

Coef11 = widgets.FloatSlider(min=1.0, max=1.8, step=0.4, value=1.0, description='Coef11 relaxing after 3rd date', style=style)

Coef22 = widgets.FloatSlider(min=1.0, max=1.8, step=0.4, value=1.0, description='Coef22 relaxing after 3rd date', style=style)

L_Td = HBox([Td, Label(value="( The number of days between Today and Third restr. Date )")])

L_Coef1 = HBox([Coef1, Label(value="( Weaker Level <===> Stronger Level of Measures )")])

L_Coef2 = HBox([Coef2, Label(value="( Weaker Level <===> Stronger Level of Measures )")])

L_Coef11 = HBox([Coef11, Label(value="( From Same Level ===> To Weaker Level )")])

L_Coef22 = HBox([Coef22, Label(value="( From Same Level ===> To Weaker Level )")])

ui = widgets.VBox([L_Td, L_Coef1, L_Coef2, L_Coef11, L_Coef22], style=style )

def fsliders(Td, Coef1, Coef2, Coef11, Coef22):

Coef11, Coef22 = Coef11-0.80, Coef22-0.80

Td = math.ceil(Td/10)

C1, C2 = Coef1/0.2, Coef2/0.2

C1, C2 = round(C1), round(C2)

Coef11, Coef22 = Coef11/0.4, Coef22/0.4

Coef11, Coef22 = math.ceil(Coef11), math.ceil(Coef22)

Num = 49*3*3*(Td-1) + 7*3*3*(C1-1) + 3*3*(C2-3) + 3*(Coef11-1) + Coef22

f(Num)

output = widgets.interactive_output(fsliders, {'Td': Td, 'Coef1': Coef1, 'Coef2': Coef2, 'Coef11': Coef11, 'Coef22': Coef22})

output.layout.height = '900px'

output.layout.width = '90%'

output.layout.align_items = 'stretch'

controls = widgets.VBox([ui])

display(ui,output)

interact(getlist,Country=Country);
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from IPython.display import HTML

HTML('''<script>

code_show=true;

function code_toggle() {

if (code_show){

$('div.input').hide();

} else {

$('div.input').show();

}

code_show = !code_show

}

$( document ).ready(code_toggle);

</script>

<form action="javascript:code_toggle()">

<input type="submit" value="Toggle on/off the raw code."></form>''')

5.10 ATVBG-SEIR Tool Web Interface

Lockdown Scenarios Tool based on ATVBG-SEIR Model for long-term pre-
dictions based on splines (see Chapter 3) ATVBG-SEIR is a tool that can
be used to predict the length of the COVID19 pandemic and the number of
lockdowns needed to extinguish it in Germany and in Bulgaria. The users
can use this tool either with the default provided parameters or by changing
them using the provided Slider buttons and arrows to fine-tune. Default
parameter values incl. limits are described in the legend below. If you are
interested in the results for other countries, please contact the authors of
the tool which are happy to collaborate. The ATVBG-SEIR tool is pro-
vided to advance the knowledge about COVID19 pandemic and is intended
to be used only for research, education and public decision making. Program
input control parameters

5.10.1 Program input control parameters

1. P1: Escalation parameter, which is an escalation factor showing the
ratio between the unreported cases and reported cases, i.e. All cases
= P1 * Reported cases. (default value is 3, input by a Slider; min=1,
max=10)

2. P2: Fixed number of days showing the lengths of the lockdown periods
(of Strict measures). (default is 21; input by a Slider; min=7, max=60)

3. P3: This number shows the ICUs as a percentage of the Active Cases.
(default for Bulgaria is 0.6
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4. P4: This number shows the upper limit of ICU beds reserved for
the Covid-19 cases. (default for Bulgaria is 1100, for Germany is
10000; input by a Slider). It is announced in the database https:

//www.worldometers.info/coronavirus/#countries, but seems to
be variable for every country since the authorities always keep higher
reserves for emergencies. It is difficult to download true data about
the daily occupancy of the ICU beds.

5. P5: This number is the percentage of the population that has to be
immune, for the epidemic to be assumed ended. (default value is 70

6. P6: This is the percentage of the upper Limit of ICUs. If the model
requires number of ICUs less than this, we assume end of the epidemic.
(default value is 1

7. P7: VACCINATIONS number is the total number of vaccinated per-
sons per month (as usually planned); (default value is 0; Input in a
box). Let us remind that every vaccinated person gets two vaccina-
tions in a short time. Actual values (per month) for Bulgaria are about
120,000; for Germany - about 1,400,000.

8. P8: A table to enter the number of vaccines (NOT vaccinated people)
delivered per month.

9. P9: The user enters parameters (Beta, Gamma) for Strict regime and
Relax regime.

NOTE:

� If not Figure displayed, please refresh the page (from the Browser) or
click on Cell (on the top bar), then Run All, and wait a bit, since the
calculations of the Model take a minute or even more.

� If necessary to fine-tune the sliders of the parameters below (especially
for P4), click on the Slider button, then use the arrows to fine-tune.

� The number of fatalities (Deaths) is calculated without taking into
account that the vaccination is targeting the most vulnerable to Covid-
19, hence practically will be much less.

5.10.2 Program input control Widgets

https://www.worldometers.info/coronavirus/#countries
https://www.worldometers.info/coronavirus/#countries
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5.10.3 Program output result
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5.10.4 Program code

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

# LOCKDOWN TOOL based on ATVBG-SEIR Model

import sys, os, warnings

sys.path.insert(1, '../src')

import csv

import math

import pandas as pd

import numpy as np

import scipy as sc

from scipy.io import loadmat

from scipy.optimize import minimize

import scipy.interpolate as sci

import time

from datetime import date, datetime

from lockdowns_utils import *
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from ipywidgets import interact

from bokeh.plotting import figure, show

from bokeh.plotting import output_file, output_notebook, reset_output

from bokeh.io import push_notebook

from bokeh.layouts import row, column, widgetbox

from bokeh.models.widgets import Slider, TextInput, Dropdown, Button, Select, Panel, Tabs

from bokeh.models import ColumnDataSource, Div, CheckboxGroup

from bokeh.application import Application

from bokeh.application.handlers import FunctionHandler

from IPython.display import clear_output, Image

import bokeh

from bokeh.io import curdoc

from bokeh.io import reset_output

# from tornado.log import enable_pretty_logging

# enable_pretty_logging()

from IPython.display import HTML, Javascript

# display(Javascript('IPython.notebook.execute_cells_below()'))

display(HTML("<style>.container { width:98% !important;} </style>"))

# output_notebook()

warnings.filterwarnings('ignore')

#Setting up initial parameters

Ime = 'bg' # 'ger', 'it', 'bg'

Sigma = 1/5.2

Drate = 0.03

t_step = 1

KK = 0.4 # steepness of the splines

RK = 1 # Runga-Kutte option

C3 = 3 # multiplier

C21 = 21 # THIS IS THE LENGTH OF THE Strict LOCKDOWNS - WE TAKE IT CONSTANT

C06 = 0.6 # Set how many ICU are occupied as a Percentage of the Active cases

BEDS = 1100 # Set Limit for max number of ICU beds

VACCINE = 0

# Define global data: with Python this all has to go in the same cell - alternative to container.map needs to be explored

DATAcell = { 'bg' : {'Country':'Bulgaria', 'datafile':'bulgaria_coronavirus__.csv', 'N':7*pow(10,6), 'St-End_Date':['14-Mar-2020', '31-Mar-2020'], 'new_St_Date': '8-Mar-2020'},

'it' : {'Country':'Italy', 'datafile':'italy_coronavirus__.csv', 'N':60*pow(10,6), 'St-End_Date':['1-Mar-2020', '3-Apr-2020'], 'new_St_Date': '21-Feb-2020'},

'ger': {'Country':'Germany','datafile':'germany_coronavirus__.csv', 'N':83*pow(10,6), 'St-End_Date':['5-Mar-2020', '8-Apr-2020'], 'new_St_Date': '25-Feb-2020'},
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'sp': {'Country':'Spain', 'datafile':'spain_coronavirus.csv', 'N':47*pow(10,6), 'St-End_Date':['5-Mar-2020', '12-Mar-2020'], 'new_St_Date': '25-Feb-2020'},

'uk': {'Country':'UK', 'datafile':'uk_coronavirus__.csv', 'N':66*pow(10,6), 'St-End_Date':['5-Mar-2020', '3-Apr-2020'], 'new_St_Date': '25-Feb-2020'},

'rus': {'Country':'Russia', 'datafile':'russia_coronavirus.csv', 'N':150*pow(10,6), 'St-End_Date':['15-Mar-2020', '4-Apr-2020'], 'new_St_Date': '6-Mar-2020'},

'us': {'Country':'USA','datafile':'usa_coronavirus__.csv', 'N':333*pow(10,6), 'St-End_Date':['3-Jun-2020', '15-Jun-2020'], 'new_St_Date': '1-Jun-2020'},

'fr': {'Country':'France', 'datafile':'france_coronavirus.csv', 'N':67*pow(10,6), 'St-End_Date':['10-Mar-2020', '9-Mar-2020'], 'new_St_Date': '25-Feb-2020'},

'au': {'Country':'Austria', 'datafile':'austria_coronavirus__.csv', 'N':9*pow(10,6), 'St-End_Date':['10-Jul-2020', '20-Aug-2020'], 'new_St_Date': '1-Jul-2020'}

}

# setting up the workspace

basedir = os.getcwd()

datadir = os.path.abspath("../datasets/")

os.makedirs(datadir, exist_ok=True)

# download for bg

# Data_Download(Ime,datadir)

#######################################################

# Setup widgets

C3 = Slider(title="P1 Escalation factor [1-10]",

value=4, start=1, end=10, step=1)

C21 = Slider(title="P2 Length of the Strict measures [7-60]",

value=21, start=15, end=45, step=1)

C06 = Slider(title="P3 Percentage of the ICUs from the Active Cases [0.1-3]", value=0.6, start=0.1, end=3, step=0.1)

BEDS = Slider(title="P4 Number of ICU beds [500 - 100 000]", value=1000, start=500, end=100000, step=100)

C70 = Slider(title="P5 Percentage of the population that has to be immune", value=70, start=40, end=90, step=5)

C01 = Slider(title="P6 percentage of the upper Limit of ICUs", value=1, start=0.2, end=30, step=0.1)

VACCINATION = TextInput(title="P7 Number of vaccinated persons per month", value="100 000")

select = Select(title="Select Country", value='Bulgaria', options = ['Austria','Bulgaria','Germany','UK','USA','Italy'] )

select_scenario = Select(title="Select Scenario (optimistic -> pessimistic)", value='-', options = ['-','Optimistic','Realistic','Pessimistic'] )

select_seasonal = Select(title="Select Seasonal Effect", value='-', options = ['-','Yes','No'] )

button = Button(label="Press, wait for Update", button_type="success")

status_div = Div(text="", style={'font-size': '200%', 'color': 'red'})

label_vac_div = Div(text="P8 VACCINATION PLAN: Define for each month number of vaccines. (IN THOUSANDS)", style={'width':'100%', 'font-weight': 'bold'})

checkbox_dates = CheckboxGroup(labels=['Enable (Disables P7 input)'], active=[])

checkbox_beta_gamma = CheckboxGroup(labels=['P9 USER DEFINED SCENARIO:'], active=[])

M1 = TextInput(title="2021 Jan", value="0")

M2 = TextInput(title="2021 Feb", value="0")

M3 = TextInput(title="2021 Mar", value="0")

M4 = TextInput(title="2021 Apr", value="0")

M5 = TextInput(title="2021 May", value="0")

M6 = TextInput(title="2021 June", value="0")
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M7 = TextInput(title="2021 July", value="0")

M8 = TextInput(title="2021 Aug", value="0")

M9 = TextInput(title="2021 Sep", value="0")

M10 = TextInput(title="2021 Oct", value="0")

M11 = TextInput(title="2021 Nov", value="0")

M12 = TextInput(title="2021 Dec", value="0")

Q1 = row(M1, M2, M3, M4)

Q2 = row(M5, M6, M7, M8)

Q3 = row(M9, M10, M11, M12)

RelaxBeta = TextInput(title="Relax Regime Beta:", value="")

RelaxGamma = TextInput(title="Relax Regime Gamma:", value="")

StrictBeta = TextInput(title="Strict Regime Beta:", value="")

StrictGamma = TextInput(title="Strict Regime Gamma:", value="")

BeGa = row(StrictBeta, StrictGamma, RelaxBeta, RelaxGamma)

StrictBeGa = ["",""]

RelaxBeGa = ["",""]

BeGa.visible = False

VACmonthly = []

# Setup Callbacks

def updatedata():

# Get the current slider values

C3_ = C3.value

C21_ = C21.value

C06_ = C06.value

BEDS_ = BEDS.value

C70_ = C70.value

C01_ = C01.value

VACCINATION_ = VACCINATION.value

Ime = select.value

VACCINATION_ = VACCINATION_.replace(' ','')

VACCINATION_ = VACCINATION_.replace(',','')

if not VACCINATION_.isdigit():

VACCINATION_ = "0"

VACCINATION.value = "0"

if checkbox_dates.active:

VACmonthly = []
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for mvac in [M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12]:

VACmonthly.append(mvac.value)

else: VACmonthly = []

if checkbox_beta_gamma.active:

StrictBeGa = [BeGa.children[0].value, BeGa.children[1].value]

RelaxBeGa = [BeGa.children[2].value, BeGa.children[3].value]

else:

StrictBeGa, RelaxBeGa = ["",""], ["",""]

fig = MAIN(DATAcell, C01_, C3_, C21_, C06_, C70_,

BEDS_, VACCINATION_, VACmonthly, Ime,

checkbox_dates.active, StrictBeGa, RelaxBeGa,

select_scenario.value, select_seasonal.value)

tab1 = Panel(child=fig[0], title="ICU")

tab2 = Panel(child=fig[1], title="Total Infected")

tab3 = Panel(child=fig[2], title="Removed")

tab4 = Panel(child=fig[3], title="Deaths")

tabs = Tabs(tabs=[ tab1, tab2, tab3, tab4 ])

layout.children[0] = row(tabs, d1, inputs)

button.disabled=False

status_div.text = ""

def set_country_defaults(attrname, old, new):

Ime = select.value

select_scenario.value = '-'

select_seasonal.value = '-'

if Ime == "Bulgaria":

C3.value = 4

C21.value = 45 # 21

C06.value = 0.6

BEDS.value = 1100

C70.value = 70

C01.value = 1

VACCINATION.value = "120 000"

select_scenario.options = ['-','Optimistic','Realistic', 'Pessimistic']

select_seasonal.options = ['-','Yes','No']

M1.value = "76"

M2.value = "107"

M3.value = "124"

M4.value = "520"

M5.value = "77"

M6.value = "0"

M7.value = "595"
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if Ime == "Germany":

C3.value = 3

C21.value = 21

C06.value = 1.4

BEDS.value = 10000

C70.value = 70

C01.value = 1

VACCINATION.value = "1 400 000"

select_scenario.options = ['-','Optimistic', 'Pessimistic']

select_seasonal.options = ['-']

if Ime == "UK":

C3.value = 3

C21.value = 21

C06.value = 0.16

BEDS.value = 2000

C70.value = 70

C01.value = 1

VACCINATION.value = "1 000 000"

select_scenario.options = ['-','Optimistic', 'Pessimistic']

select_seasonal.options = ['-']

if Ime == "USA":

C3.value = 3

C21.value = 21

C06.value = 0.1835

BEDS.value = 0.3*2.7*33200

C70.value = 70

C01.value = 1

VACCINATION.value = "5 600 000"

select_scenario.options = ['-','Optimistic', 'Pessimistic']

select_seasonal.options = ['-']

if Ime == "Austria":

C3.value = 3

C21.value = 21

C06.value = 1.8

BEDS.value = 1000

C70.value = 70

C01.value = 1

VACCINATION.value = "150 000"

select_scenario.options = ['-','Optimistic', 'Pessimistic']

select_seasonal.options = ['-']

if Ime == "Italy":
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C3.value = 3

C21.value = 21

C06.value = 0.45

BEDS.value = 2764

C70.value = 70

C01.value = 1

VACCINATION.value = "2 000 000"

select_scenario.options = ['-','Optimistic', 'Pessimistic']

select_seasonal.options = ['-']

# Set up layouts and add to document

inputs = column(select, select_scenario, select_seasonal, C3, C21,

C06, BEDS, C70, C01, VACCINATION,

button, status_div)

d1 = Div(text = '<div style="position: absolute; left:-580px; top:130px">

<img src="imi-bas-logo.png" style="width:380px; height:380px; opacity: 0.2">

</div>')

if checkbox_dates.active:

Q1.visible = True

Q2.visible = True

Q3.visible = True

else:

Q1.visible = False

Q2.visible = False

Q3.visible = False

if checkbox_beta_gamma.active:

BeGa.visible = True

else:

BeGa.visible = False

layout = column(row(Div(text='<div style="width:800px; height:600px">

<img src="bg_default_plot.png"></div>'), d1, inputs),

row(label_vac_div, checkbox_dates, checkbox_beta_gamma), BeGa, Q1, Q2, Q3)

def click_bnt():

status_div.text = "Please wait ... Running ..."

button.disabled=True

button.background = "#FF0000"

curdoc().add_next_tick_callback(updatedata)

def next_tick():

time.sleep(200)
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button.disabled=False

def show_months(attr, old, new):

if checkbox_dates.active:

Q1.visible = True

Q2.visible = True

Q3.visible = True

VACCINATION.disabled=True

else:

Q1.visible = False

Q2.visible = False

Q3.visible = False

VACCINATION.disabled=False

def show_beta_gamma(attr, old, new):

if checkbox_beta_gamma.active:

Q1.visible = False

Q2.visible = False

Q3.visible = False

BeGa.visible = True

if checkbox_dates.active:

Q1.visible = True

Q2.visible = True

Q3.visible = True

VACCINATION.disabled=True

BeGa.children[0].value = BeGa.children[0].value.replace(',','.')

BeGa.children[1].value = BeGa.children[1].value.replace(',','.')

BeGa.children[2].value = BeGa.children[2].value.replace(',','.')

BeGa.children[3].value = BeGa.children[3].value.replace(',','.')

else: BeGa.visible = False

def modify_doc(doc):

doc.add_root(row(layout, width=800, height=900))

doc.title = "ATVBG-SEIR"

select.on_change('value', set_country_defaults)

button.on_click(click_bnt)

checkbox_dates.on_change('active', show_months)

checkbox_beta_gamma.on_change('active', show_beta_gamma)

handler = FunctionHandler(modify_doc)

app = Application(handler)

reset_output()

output_notebook(hide_banner=True)

show(app, notebook_url="http://213.191.194.141:8890")



Chapter 6

Contributions, Conclusions,
Further directions

6.1 Contributions

6.1.1 Scientific Contributions

The main scientific contributions of the present work are as follows:

1. The building of new models of SEIR type which are with time-varying
parameters based on splines. The discrete models are intuitive and
are easy to be understood for people inexperienced in continuous Dy-
namical systems.

2. The first model TVBG-SEIR is based on spline models for the SEIR
parameters (of transmission and removal rates), generates scenarios
for a short term forecasting, with a two month time horizon; there is
a set of parameters (for relaxation and tightening of the containment
measures for Covid-19—) which may be varied to obtain different sce-
narios.

3. The second model ATVBG-SEIR differs essentially from the first, gen-
erates scenarios for a long term forecasting and thus permits the gen-
eration of projections in the horizon of about several years. It has at
disposal a set of parameters which are specific for every country: esca-
lation, length of lockdown periods, percentage of ICUs, limit of ICUs,
two types of vaccination plans, and a couple of technical parameters.

6.1.2 Applied Scientific Contributions

The main applied scientific contributions of the present work are as follows:

1. I have developed two web-based instruments (software as a web-service).
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2. The first instrument is based on the TVBG-SEIR model and im-
plements an interactive mean (visualization of the scenarios and the
curves of the SEIR models) for generation of short-term predictions
/ projections, via web-controls for the interactive variation of the pa-
rameters. It is implemented by means of Jupyter Notebook and Bokeh
software package (Version 2.3) for a general client server.

3. The second developed web-based instrument is using the ATVBG-
SEIR model, and deals with generation of long-term prediction sce-
narios/projections. These scenarios include customizable vaccination
plans, and also a proper model of the seasonal effect. There is an
option allowing for the user to change a large variety of models (and
model parameters) in an interactive way.

4. I have provided a short description of the software solution based on
Jupyter Notebook and Bokeh software package.

5. In collaboration with prof. Kounchev we applied our methods and
models mainly to data of Bulgaria, however we provide also some
examples of applications of models to data for different countries, as
Germany, Austria, Italy, UK, USA.

6.1.3 Publications

The main publications:

1. Kounchev O., Simeonov G., Kuncheva Zh., 2021. Estimation of the
Duration of Covid-19 Epidemic in a Single Country, with or without
Vaccinations. The Case of Bulgaria and Germany, Comptes rendus
de l’Acade’mie bulgare des Sciences, Vol. 74, No. 5, pp. 677-686,
DOI: 10.7546 / CRABS.2021.05.05

2. Kounchev O., Simeonov G., Kuncheva Zh., 2021. Scenarios for the
spread of COVID-19 analyzed by the TVBG-SEIR spline model, Biomath
10 (2021), 2103087, http://dx.doi.org/10.11145/j.biomath.2021.03.087

3. Kounchev O., Simeonov G., Kuncheva Zh., How Long ’Lockdowns’ Are
Needed to End the COVID-19 Epidemic in a Single Country, with or
without Vaccinations, (January 14, 2021). Available at SSRN: https:
//ssrn.com/abstract=3766521orhttp://dx.doi.org/10.2139/s

srn.3766521

4. Kounchev O., Simeonov G., Kuncheva Zh., 2020, The TVBG-SEIR
spline model for analysis of COVID-19 spread, and a Tool for predic-
tion scenarios, arXiv:2004.11338, https://arxiv.org/pdf/2004.11338

https://ssrn.com/abstract=3766521 or http://dx.doi.org/10.2139/ssrn.3766521
https://ssrn.com/abstract=3766521 or http://dx.doi.org/10.2139/ssrn.3766521
https://ssrn.com/abstract=3766521 or http://dx.doi.org/10.2139/ssrn.3766521
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5. Stanchev, P., Ancheva, H., Pavlov, R., Simeonov, G., The eleventh na-
tional information day: Open science, Open Data, Open Access, Bul-
garian Open Science Cloud, DiPP2020, 2020-September, pp. 275–281

6.1.4 Lectures delivered

1. O. Kounchev, G. Boyadzhiev, G. Simeonov Short and medium term
forecasts for Omicron variant - Examples on Bulgarian data, (2021),
Spring Scientific Session of Sofia University ”St. Kliment Ohridski” at
Faculty of Mathematics and Informatics (FMI) – 26.03.2022, Section:
Covid-19 mathematical models and forecasts, https://www.fmi.un
i-sofia.bg/bg/proletna-nauchna-sesiya-na-fmi-2022

2. Georgi Simeonov, ATVBG-SEIR Scenarios Tool for Estimation of
Covid-19 duration with and without vaccinations, (2021), Spring Sci-
entific Session of Sofia University ”St. Kliment Ohridski” at Faculty of
Mathematics and Informatics (FMI) – 27.03.2021, Section: Covid-19
mathematical models and forecasts, https://www.fmi.uni-sofia.
bg/bg/proletna-nauchna-sesiya-na-fmi-2021

3. O. Kounchev and G. Simeonov, How Long ’Lockdowns’ Are Needed
to End the COVID-19 Epidemic in a Single Country, with or with-
out Vaccinations, (2021), Interdisciplinary Seminar on Biomathemat-
ics and Scientific Computing – 18.02.2021 https://math.bas.bg/?p

=10124,https://researchseminars.org/seminar/BMNI

4. Georgi Simeonov, NI4OS-Europe – National Open Science initiatives
in Europe to the European Open Science Cloud (EOSC), Annual re-
porting session for 2020, department SofTIS, IMI-BAS.

6.2 Conclusions and further directions

The main conclusions of the present work are:

1. The compartmental models of the SIR/SEIR family are very flexi-
ble approach which is easy to adapt to analyze the data related to
the pandemic of Covid-19. In particular, one may model successfully
the introduction of containment measures with a strength changing in
time, by means of spline coefficients in the usual system of differential
or difference equations.

2. The SEIR type models are flexible and allow for a direct incorporation
of information about different vaccination plans, hence they provide an
adequate modeling of the whole picture, by modeling the combinatin
of containment measures and vaccinations.

https://www.fmi.uni-sofia.bg/bg/proletna-nauchna-sesiya-na-fmi-2022
https://www.fmi.uni-sofia.bg/bg/proletna-nauchna-sesiya-na-fmi-2022
https://www.fmi.uni-sofia.bg/bg/proletna-nauchna-sesiya-na-fmi-2021
https://www.fmi.uni-sofia.bg/bg/proletna-nauchna-sesiya-na-fmi-2021
https://math.bas.bg/?p=10124,https://researchseminars.org/seminar/BMNI
https://math.bas.bg/?p=10124,https://researchseminars.org/seminar/BMNI
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3. The model TVBG-SEIR represents a useful mean for short term pre-
diction and may be used by the health authorities for short term plan-
ning of containment measures. The web-based tool built atop of the
model is providing an immediate help to the policy makers for planning
in the dynamic pandemic situation.

4. The model ATVBG-SEIR represents a useful mean for long term pre-
diction and may be used for decision making in the long run of the
global assessment of the casualties caused by the pandemic as well as
for estimating the vaccination policies.

As further directions, we would point out to the building of new mod-
els for describing the dynamics of disease spread by the new variants of
Covid-19 as Delta. It is also a challenge to model the ”mixed dynamics”
where two variants are dominant - the Alpha, Delta and Omicron variants.

6.3 Statement of Originality

I declare that the dissertation on the topic: ”Modeling and Analysis of Big
Data for Covid-19 Epidemic” presented in connection with the procedure
for obtaining the educational and scientific degree ”Doctor” at the Institute
of Mathematics and Informatics, Bulgarian Academy of Sciences is my work.

Citation of all sources of information, text, illustrations, tables, images and
others are marked according to the standards. The main dissertation results
and contributions of the dissertation research are original and are not bor-
rowed from other research and publications.

It is original work except where due reference is made. It has not been and
shall not be submitted for the award of any degree or diploma to any other
institution of higher learning.
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Chapter 7

APPENDICES

7.1 APPENDIX. Use of Mathematical Models in
Epidemiological Studies

Below we provide some quotes from Handbook of Epidemiology, [Straif-
Bourgeois et al., 2014, see Bibliography to chapter 1], which represents a
justified praise of the mathematical modeling in Epidemiology:

Although mathematical modeling has been around for a long time, until
recently, it was not much used as a tool for public health, but was considered
a specialized research area for applied mathematicians and theoretical biol-
ogists. This started to change with the advent of the HIV pandemic, when
mathematical models were first used to predict future epidemic spread, and
to analyze the impact of behavior change on HIV incidence (Kaplan and
Brandeau 1994). However, the breakthrough for mathematical modeling as
a public health tool came with the concerns that smallpox virus could be
used in a deliberate release and lead to devastating outbreaks in the only
partially immune populations of present societies. How can public health
policy be developed against threats with pathogens that are not circulating
at present? There is no way to conduct epidemiological investigations, and
the only available data in the case of smallpox were from before the eradi-
cation era. Therefore, to design policy, knowledge from historical smallpox
outbreaks had to be combined with data about present-day society, and pos-
sible interventions had to be tested on the basis of this available information.
Mathematical modeling provided a flexible tool to do that and was used to
analyze possible vaccination strategies and other interventions.

”Later, the experience with the global spread of SARS caused by a novel
strain of corona virus – and the threat of a future pandemic with a new
strain of influenza A initiated national and international efforts to better
prepare for large outbreaks of emerging infections. Mathematical modeling
was widely used for investigating optimal strategies for dealing with a new
influenza pandemic. These response plans came into action during the pan-
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demic with new influenza A H1N1 emanating from Mexico in the spring of
2009. Even as the pandemic was still unfolding, first mathematical modeling
studies started to deliver valuable data analyses almost in real time.

Besides supporting public health policy in designing prevention and in-
tervention strategies, mathematical modeling of infectious diseases has con-
tributed greatly to increasing the understanding of the intricate relationships
between clinical and biological determinants of infection and human contact
and risk behavior patterns that lead to transmission. The importance of
core groups of high sexual activity in the transmission dynamics of sexually
transmitted infections (Hethcote and Yorke 1984), the impact of concurrent
partnerships on the spread of HIV (Morris and Kretzschmar 1997), the im-
portance of hosts being infectious before the appearance of symptoms for
disease control (Fraser et al. 2004), and the connectedness of modern so-
cieties in a small world network (Watts and Strogatz 1998) are just some
examples for how mathematical modeling has shaped the present paradigms
of infectious disease epidemiology.

The following story about the team of mathematical modelers in Epi-
demiology at Imperial college has played an essential role in forming the
proper health policy during the outbreak of Covid-19 in UK, see the link
https://www.imperial.ac.uk/stories/coronavirus-modelling/ for
the full story:

Media reports have suggested that an update to the Imperial college
team’s model in early March was a critical factor in jolting the UK gov-
ernment into changing its policy on the pandemic. The researchers initially
estimated that 15% of hospital cases would need to be treated in an intensive-
care unit (ICU), but then updated that to 30%, a figure used in the first
public release of their work on 16 March. That model showed the UK health
service, with just over 4, 000 ICU beds, would be overwhelmed.

Government officials had previously talked up a theory of allowing the
disease to spread while protecting the oldest in society, because large num-
bers of infected people would recover and provide herd immunity for the
rest. But they changed their course on seeing the new figures, ordering
social-distancing measures. Critics then asked why social distancing hadn’t
been discussed earlier, why widespread testing hadn’t happened, and why
modellers had even chosen the 15% figure, given that a January paper
showed that more than 30% of a small group of people with COVID-19 in
China needed treatment in ICUs.

”As for the Chinese data on ICUs, clinicians had looked at them, but
noted that only half the cases seemed to need invasive mechanical ventila-
tors; the others were given pressurized oxygen, so might not need an ICU bed.
On the basis of this and their experience with viral pneumonia, clinicians
had advised modellers that 15% was a better assumption.”

”The key update came the week before Ferguson briefed government
officials at Downing Street. Clinicians who had been talking to horrified

https://www.imperial.ac.uk/stories/coronavirus-modelling/
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colleagues in Italy said that pressurized oxygen wasn’t working well and
that all 30% of the severe hospitalized cases would need invasive ventilation
in an ICU. Ferguson says the updated models’ mortality projections didn’t
change hugely, because many predicted deaths are likely to occur in the
community rather than in hospitals. But the understanding of how health
services would be overwhelmed, and the experience of Italy, led to a sudden
focusing of minds, he says: government officials swiftly pivoted to social-
distancing measures (see ‘Lockdowns keep infections at bay’).”
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