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SOME PROPERTIES OF γ− AND P−SPACES

N. Kalamidas

Communicated by J. Jayne

Abstract. A γ-space with a strictly positive measure is separable. An
example of a non-separable γ−space with c.c.c. is given. A P−space with
c.c.c. is countable and discrete.

In this paper by a space we mean a Tychonoff space. Our terminology is
the standard one: any undefined term can be found in [1] or [2].

Is X is a space, then Cp(X) is the space of all real-valued continuous
functions on X, with the topology of pointwise convergence.

It is well known that Cp(X) is 1st−countable iff X is countable [2]. On
the other hand, there exist uncountable X’s with Cp(X) satisfying a weaker
property, the Frechet-Urysohn (F.U.) property (i.e. if A ⊂ Cp(X), f ∈ A implies
lim fn = f , for a suitable sequence (fn) with fn ∈ A). Such spaces are the
compact scattered, the Lindelöf P−spaces e.t.c. [3]. Spaces X for which Cp(X)
has the F.U. property are exactly the spaces with the so-called γ−property that
is the expression of the F.U. property on Cp(X) in terms of covering axioms of
X [2].

It is easy to see that a compact scattered space X with the countable chain
condition (c.c.c.) is separable. Indeed the set A = {x ∈ X : {x} is clopen} is
countable and dense. Below we prove the same result for a Lindelöf P−space (or
simply a P−space). The question arises whether this is also true on the general
class of γ−spaces or not.
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Theorem 1. There exists a non-separable γ−space with c.c.c..

P r o o f. Consider an uncountable set Γ and the space

Σω = {x ∈ {0, 1}Γ : |{γ ∈ Γ : πγ(x) 6= 0}| < ω}

(πγ is the usual γ−projection).

Then Σω has c.c.c. since it is dense in {0, 1}Γ, but it is not separable
since the family {π−1

γ {1} : γ ∈ Γ} does not contain any infinite subfamily with
non-empty intersection. Now we shall prove that Σω is a γ−space.

For k = 1, 2, . . . set

Σk = {x ∈ {0, 1}Γ : |{γ ∈ Γ : x(γ) 6= 0}| ≤ k}.

Every Σk is compact and Σω = ∪Σk. It follows that Σω is σ−compact, so it
preserves the Lindelöf property on finite powers and consequently t(Cp(Σω)) = ω
(t = tightness). Besides the generated algebra of {πγ : γ ∈ Γ} ∪ {1} is dense
in Cp(Σω). From these facts it follows that every continuous function on Σω

depends on a countable subset of Γ. So if f ∈ {fn : n = 1, 2, . . .} ⊂ Cp(Σω) and
A is the countable subset of Γ on which all f , fn depend, we may suppose that
these functions are defined on Σω ∩ ({0, 1}A × (0)Γ\A) which is countable, and
the result is immediate.

Remarks. (i) It is well known that {0, 1}Γ does not have a countable
dense subset, in case that |Γ| > 2ω. However, {0, 1}Γ (hence every dyadic space
too) contains a dense γ−subset.

(ii) Every Σk, is a γ−space as a closed subspace of a γ−space. It follows
that Σk, is compact scattered [2]. Certainly that can also be proved directly. In
this case we have that every continuous function on Σω has countable range and
consequently Theorem 5 of [2] does also imply that Σω is a γ−space.

(iii) In fact we proved that Σω does not have a strictly positive measure
(s.p.m) (i.e. a probability measure µ that is defined on the σ−field generated
by a pseudobase B for its topology and such that µ(B) > 0, for all non-empty
B ∈ B). The next theorem shows that here is a crucial point for the separability.

Theorem 2. Let X be a γ−space.

(a) If X has a s.p.m. then X is separable.

(b) A Borel finite measure µ on X, with the property µ{x} = inf{µ(U) :
U is clopen, x ∈ U} is of the form

∑

αkδxk
.

P r o o f. (a) Let µ be a s.p.m. on X, that is defined on the σ−field
generated by the pseudobase B. Notice that X has a base of clopen subsets [2].

For k = 1, 2, . . ., set

Jk =

{

U ⊂ X : U is clopen and ∃ V ∈ B such that V ⊂ U and µ(V ) ≥
1

k

}

.
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Then every infinite family in Jk contains an infinite subfamily with non-empty
intersection.

We claim that there exists a finite Fk ⊂ X such that Fk ∩ U 6= Ø, for
every U ∈ Jk. Suppose not. Then 0 ∈ {χ

U
: U ∈ Jk}, so χ

Un
→ 0, for a sequence

Un in Jk, contradictory to the property mentioned before for Jk.
(b) Consider the countable set A = {x ∈ X : µ{x} > 0} (because of the

finiteness of µ). It is enough to prove that µ(X) = µ(A).
Suppose that µ(A) < µ(X) and let 0 < δ < µ(X)−µ(A). For every finite

F ⊂ X, choose a clopen UF such that F ⊂ UF and µ(UF ) < µ(A) +
δ

2
. Then

1 ∈ {χ
UF

: F ⊂ X, finite}, so χ
UFn

→ 1 for a sequence (UFn). It follows that

µ(X) =
∫

1dµ ≤ sup
n

µ(UFn) ≤ µ(A) +
δ

2
< µ(X), which is absurd.

Remark. Theorem 2(b) extends a previous result of Rudin for the class
of compact scattered spaces [3].

If X has a Baire s.p.m µ, a metric can be defined in a natural way on

C(X) by the type, ρ(f, g) =

∫

|f − g|

1 + |f − g|
dµ.

In case that X is a γ−space the identity map id : Cp(X) → Cρ(X)
is continuous. What about the continuity of id−1? Certainly for uncountable
γ−spaces the answer is negative. But if X is a P−space (where Gδ−sets are
open) then id−1 is continuous.

[Suppose that

∫

|fn − f |

1 + |fn − f |
dµ → 0. We claim that fn → 0. If not, then

|fnk
(x0) − f(x0)|

1 + |fnk
(x0) − f(x0)|

> δ, for some x0 ∈ X, δ > 0 and a subsequence (fnk
). For

k = 1, 2, . . . set

Uk =

{

x ∈ X :
|fnk

(x) − f(x)|

1 + |fnk
(x) − f(x)|

> δ

}

.

Then ∩Uk is a non-empty open subset of X, so µ(∩Uk) > 0. On the other hand,

µ(∩Uk) ≤
1

δ

∫

|fnk
− f |

1 + |fnk
− f |

dµ → 0, contradiction.]

Consequently, a Lindelöf P−space with a Baire s.p.m. is countable and
discrete. Certainly, this is also followed by Theorem 2(a). In fact, a more general
result is valid:

Theorem 3. A P−space with c.c.c. is countable and discrete.

P r o o f. Let X be a P−space with c.c.c. and x ∈ X.
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We claim that {x} is clopen.
Suppose not. Then we construct pairwise disjoint clopen sets Vξ, ξ < ω+

such that x /∈ Vξ in the following way. If Vξ, ξ < ℓ have been defined, then ∩
ξ<ℓ

V c
ξ

is a clopen neighbourhood of x. Since ∩
ξ<ℓ

V c
ξ 6= {x}, we find a clopen (since X

has a base of clopen subsets) subset Vℓ ⊂ ∩
ξ<ℓ

V c
ξ with x /∈ Vℓ. The result follows

from the fact that X has c.c.c.
Remarks. (i) From the proof of Theorem 3 it follows that a Pk+−space

X with k+.c.c. has cardinality |X| ≤ k. We mention that this is not true if

X is simply a P−space. For example, the space X =
(

{0, 1}(2ω )+
)

ω+
(= the

space {0, 1}(2ω )+ with the ω+−box topology) is a P−space with (2ω)+.c.c. [2]
and |X| ≥ (2ω)+.

(ii) If X is a P−space and A ⊂ X is countable then A is closed. We note
that Shakhmatov constructed a non-separable, c.c.c. space, all countable subsets
of which are closed [4].
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REF ERENC ES

[1] W. W. Comfort, S. Negrepontis. Chain Conditions in Topology. Cam-
bridge Tracts in Math. vol. 79, Cambridge University Press, 1982.

[2] J. Gerlits, Zs. Nagy. Some properties of C(X), I. Topology Appl. 14

(1983), 151-161.

[3] W. Rudin. Continuous functions on compact spaces without perfect subsets.
Proc. Amer. Math. Soc. 8 (1957), 39-42.

[4] D. B. Shakhmatov. A pseudocompact Tychonoff space, all countable sub-
sets of which are closed and C∗−embedded. Topology Appl. 22 (1986), 139-
144.

Department of Mathematics

Section of Mathematical Analysis and Applications

University off Athens

Panepistemiopolis

157 84 Athens

Greece Received June 10, 1996


