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ABSTRACT. A ~-space with a strictly positive measure is separable. An
example of a non-separable y—space with c.c.c. is given. A P—space with
c.c.c. is countable and discrete.

In this paper by a space we mean a Tychonoff space. Our terminology is
the standard one: any undefined term can be found in [1] or [2].

Is X is a space, then Cp(X) is the space of all real-valued continuous
functions on X, with the topology of pointwise convergence.

It is well known that Cj,(X) is 15'—countable iff X is countable [2]. On
the other hand, there exist uncountable X’s with C,(X) satisfying a weaker
property, the Frechet-Urysohn (F.U.) property (i.e. if A C C,(X), f € A implies
lim f,, = f, for a suitable sequence (f,) with f, € A). Such spaces are the
compact scattered, the Lindel6f P—spaces e.t.c. [3]. Spaces X for which Cp(X)
has the F.U. property are exactly the spaces with the so-called y—property that
is the expression of the F.U. property on C,(X) in terms of covering axioms of
X [2].

It is easy to see that a compact scattered space X with the countable chain
condition (c.c.c.) is separable. Indeed the set A = {x € X : {z} is clopen} is
countable and dense. Below we prove the same result for a Lindel6f P—space (or
simply a P—space). The question arises whether this is also true on the general
class of y—spaces or not.
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Theorem 1. There exists a non-separable y—space with c.c.c..

Proof. Consider an uncountable set I' and the space
Yo={ze{0,1}' : [{yel : my(z) #0} <w}
(my is the usual y—projection).

Then ¥, has c.c.c. since it is dense in {0,1}1, but it is not separable
since the family {77 {1} : 4 € I'} does not contain any infinite subfamily with
non-empty intersection. Now we shall prove that X, is a y—space.

For k =1,2,... set

Sp={re{0,1}" : [{y €T :a(y) # 0} < k).

Every 3 is compact and ¥, = UXg. It follows that X, is o—compact, so it
preserves the Lindel6f property on finite powers and consequently ¢(Cp(X,,)) = w
(t = tightness). Besides the generated algebra of {m, : v € I'} U {1} is dense
in Cp(Xy,). From these facts it follows that every continuous function on X,
depends on a countable subset of I'. Soif f € {f,:n=1,2,...} C Cy(X,) and
A is the countable subset of I' on which all f, f, depend, we may suppose that
these functions are defined on ¥, N ({0,1}* x (0)r\a) which is countable, and
the result is immediate.

Remarks. (i) It is well known that {0,1}" does not have a countable
dense subset, in case that |[I'| > 2%. However, {0, 1} (hence every dyadic space
too) contains a dense y—subset.

(ii) Every Xy, is a y—space as a closed subspace of a y—space. It follows
that Xy, is compact scattered [2]. Certainly that can also be proved directly. In
this case we have that every continuous function on ¥, has countable range and
consequently Theorem 5 of [2] does also imply that ¥, is a y—space.

(iii) In fact we proved that ¥, does not have a strictly positive measure
(s.p.m) (i.e. a probability measure p that is defined on the o—field generated
by a pseudobase B for its topology and such that u(B) > 0, for all non-empty
B € B). The next theorem shows that here is a crucial point for the separability.

Theorem 2. Let X be a y—space.

(a) If X has a s.p.m. then X is separable.

(b) A Borel finite measure p on X, with the property p{x} = inf{u(U) :
U is clopen, x € U} is of the form ) gy, .

Proof. (a) Let p be a s.p.m. on X, that is defined on the o—field
generated by the pseudobase B. Notice that X has a base of clopen subsets [2].

For k =1,2,..., set

1
jk:{UCX : UisclopenandEIVGBsuchthatVCUand,u(V)>E}.
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Then every infinite family in Jj contains an infinite subfamily with non-empty
intersection.

We claim that there exists a finite F, C X such that F, N U # @, for
every U € Ji. Suppose not. Then 0 € {x,, : U € Ji}, so x,,, — 0, for a sequence
U, in Ji, contradictory to the property mentioned before for Jj.

(b) Consider the countable set A = {z € X : u{x} > 0} (because of the
finiteness of p). It is enough to prove that u(X) = u(A).

Suppose that p(A) < pu(X) and let 0 < § < p(X)—p(A). For every finite

)
F C X, choose a clopen Up such that I C Up and p(Ur) < p(A) + 5 Then
1 € {x,, : F'C X, finite}, so x,,, — 1 for a sequence (Up,). It follows that

)
w(X) = [1dp < supu(Up,) < u(A) + 3 < (X)), which is absurd.

Remark. Theorem 2(b) extends a previous result of Rudin for the class
of compact scattered spaces [3].

If X has a Baire s.p.m ,u,| a me‘tric can be defined in a natural way on
f—9g
C(X) by the type, p(f,g) /1+\f—g\ p
In case that X is a y—space the identity map id : Cp(X) — C,(X)
is continuous. What about the continuity of id~'? Certainly for uncountable
~v—spaces the answer is negative. But if X is a P—space (where Gs—sets are
open) then id~! is continuous.

[Suppose that / %
‘fnk(xO) — f(=z0)|
1+ fu, (w0) — f(0)|

k=1,2,... set
_ . (@) = f(2)]
U’“_{ T @ @) >5}'

Then NU; is a non- empty open subset of X, so u(NUg) > 0. On the other hand,

| fri — -
w(NUE) < / k d — 0, contradiction.
5) 1+] fnk a ]

Consequently, a Lindelof P—space with a Baire s.p.m. is countable and
discrete. Certainly, this is also followed by Theorem 2(a). In fact, a more general
result is valid:

dp — 0. We claim that f,, — 0. If not, then

> 9, for some xp € X, 6 > 0 and a subsequence (f, ). For

Theorem 3. A P—space with c.c.c. is countable and discrete.

Proof. Let X be a P—space with c.c.c. and z € X.
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We claim that {x} is clopen.
Suppose not. Then we construct pairwise disjoint clopen sets Vg, { < w™
such that = ¢ V¢ in the following way. If Vg, £ < £ have been defined, then Emﬁ Ve
<

is a clopen neighbourhood of z. Since Emﬁ V¢ # {z}, we find a clopen (since X
<
has a base of clopen subsets) subset V, C gme V§C with « ¢ V. The result follows
<

from the fact that X has c.c.c.
Remarks. (i) From the proof of Theorem 3 it follows that a Py+—space
X with kT.c.c. has cardinality |X| < k. We mention that this is not true if

X is simply a P—space. For example, the space X = ({O, 1}(2w)+> . (= the
w

space {0,1}*)" with the wt—box topology) is a P—space with (2)*.c.c. [2]
and | X| > (2¥)7.

(i) If X is a P—space and A C X is countable then A is closed. We note
that Shakhmatov constructed a non-separable, c.c.c. space, all countable subsets
of which are closed [4].
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