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In the first part of the paper, we review the notion of an almost-complex struc-
ture and some topological obstructions for existence of such a structure. Also, we
present basic facts about twistor spaces as parametrization spaces of the almost-
Hermitian structures, i.e. orthogonal almost-complex structures, on a Riemannian
(or conformal) manifold. In the second part, we consider the problem of when an
almost-Hermitian structure on a Riemannian or conformal manifold determines a
harmonic or pseudo-harmonic map from the manifold into its twistor space. Recent
results on this problem by the author (and collaborators) are discussed mainly in the
case of a four-dimensional base manifold.
Since this survey is intended for a wide audience, including students, in both parts,

we emphasize mostly on elucidating examples rather than technicalities of the proofs.

1. Introduction. Recall that an almost-complex structure on a Riemannian mani-
fold is called almost-Hermitian or compatible if it is an orthogonal endomorphism of the
tangent bundle of the manifold. It is well-known that if a Riemannian manifold admits
an almost-Hermitian structure, it possesses many such structures, see, for example, [22].
Thus, it is natural to look for “reasonable” criteria that distinguish some of these struc-
tures. One way to obtain such criteria is to consider the almost-Hermitian structures
on a Riemannian manifold (M, g) as sections of its twistor bundle that parametrizes
the almost-Hermitian structures on (M, g). This is the bundle π : Z → M whose fibre
at a point p ∈ M consists of all g-orthogonal complex structures Ip : TpM → TpM
(I2p = −Id) on the tangent space of M at p. The fibre of the bundle Z is the com-
pact Hermitian symmetric space O(2m)/U(m), 2m = dimM , and its standard metric

G = −1

2
Trace(I1 ◦ I2) is Kähler-Einstein. The Levi-Civita connection of (M, g), as well

as any metric connection, gives rise to a splitting TZ = H ⊕ V of the tangent bundle
of Z into horizontal and vertical subbundles. This decomposition allows one to define a
1-parameter family of Riemannian metrics ht = π∗g+ tG, t > 0, for which the projection
map π : (Z, ht) → (M, g) is a Riemannian submersion with totally geodesic fibres. In the
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terminology of Besse’s work1 [6, Definition 9.7], the family ht is the canonical variation
of the metric g. Note also that each metric ht is compatible with the natural almost-
complex structures on Z, which have been introduced by Atiyah-Hitchin-Singer [4] and
Eells-Salamon [34] in the case when the dimension of the base manifold M is four.

Motivated by the theory of harmonic maps, C. M. Wood [71, 72] has suggested to
consider as “optimal” those almost-Hermitian structures J : (M, g) → (Z, h1) that are
critical points of the energy functional under variations through sections of Z. In general,
these critical points are not harmonic maps, but, by analogy, they are referred to as
“harmonic almost-complex structures” in [72]; they are also called “harmonic sections”
in [71], a term which seems more appropriate. In this context, a natural problem is when
the Atiyah-Hitchin-Singer or the Eells-Salamon almost-complex structure on the twistor
space of a Riemannian manifold (M, g) is a harmonic section of the twistor space. This
problem has been solved in [20] in the case when the base manifold M is of dimension
four.

Forgetting the bundle structure of Z, we can consider the almost-Hermitian structures
that are critical points of the energy functional under variations through arbitrary maps
M → Z, not just sections. These structures are genuine harmonic maps from (M, g)
into (Z, ht), and we refer to [33] for basic facts about harmonic maps. This point of
view is taken in [24, 26] where the problem of when an almost-Hermitian structure on a
Riemannian four-manifold is a harmonic map from the manifold into its twistor space is
discussed. In [24], the metric ht is defined via the Levi-Civita connection; it is defined
by means of a metric connection with totally skew-symmetric torsion in [26]. In [23]
(cf. also [22]), the Riemannian 4-manifolds (M, g) for which the Atiyah-Hitchin-Singer
or the Eells-Salamon almost-complex structure is a harmonic map from the twistor space
(Z, ht) of (M, g) into the twistor space of (Z, ht) are described.

If g and g1 = efg are conformal metrics, the Riemannian manifolds (M, g) and (M, g1)
have the same twistor space, i.e. the twistor space depends on the conformal class of g
rather than the metric g itself. Thus, it is natural to consider the twistor spaces in the
context of conformal geometry, see, for example, [4, 37]. The harmonic map techniques
has a useful extension in the conformal geometry introduced by G. Kokarev [49]. The
problem of when a Hermitian structure on a conformal manifold endowed with a Weyl
connection is a pseudo-harmonic map in the sense of Kokarev from the manifold into its
twistor space is discussed in [27].

The current paper is an extended version of the author’s talk at the 51-st Spring
Conference of UBM, April, 2022. In the first part of the paper, the notion of an almost-
complex structure and some topological obstructions for existence of such a structure
are reviewd. Also, basic facts about twistor spaces are given. In the second part, recent
results by author and collaborators on the harmonicity of an almost-Hermitian structure
on a Riemannian or conformal manifold are surveyed. Since the paper is intended for a
wide audience, the emphasis is on elucidating examples rather than the proofs.

1Arthur Besse is a pseudonym chosen by a group of French differential geometers, led by Marcel
Berger, following the model of Nicolas Bourbaki (editor’s note).
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2. Almost-complex structures.

2.1. Almost complex manifolds. We begin with some basics facts about almost-
complex manifolds referring to [47] for more details (see also [6]).

Recall that a linear complex structure on a real vector space V is an endomorphism
J of V such that J2 = −Id. Such an endomorphism allows one to render V a complex
vector space setting i.v = Jv for v ∈ V . Conversely, this identity on a complex vector
space defines a linear complex structure J on the underlying real vector space.

An almost-complex structure on a smooth (paracompact) manifold M is an endo-
morphism J of the tangent bundle TM of M with J2 = −Id, i.e. a collection of linear
complex structures Jp on the tangent spaces TpM of M smoothly depending on the point
p when it varies on the manifold. A smooth manifold endowed with a complex structure
is called almost-complex, a notion due to C. Ehresmann and H. Hopf in the late 40’s of
the last century (see, for example, [2, 67]).

Examples of almost-complex manifolds.

Example 1. Let M be a complex manifold and let (z1, . . . , zn) be complex-analytic
coordinates in a neighbourhood of a point p. Consider M as a smooth manifold. If
zk = xk + iyk, we can use the smooth coordinates (x1, . . . , xn, y1, . . . , yn) on M to define
an almost-complex structure Jp of the tangent space TpM of M at p setting

Jp
∂

∂xk

(p) =
∂

∂yk
(p), Jp

∂

∂yk
(p) = − ∂

∂xk

(p), k = 1, . . . , n.
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It is easy to see by means of the Cauchy-Riemann equations that Jp does not depend
on the choice of the complex coordinates (z1, . . . , zn). In this way we obtain an almost-
complex structure on M .

The conjugate functions (z̄1, . . . , z̄n) determine another structure of a complex mani-
fold on the set M . With this structure, M is usually denoted by M . It is clear that the
almost-complex structure of M is equal to −J .

This justify the following terminology. If J is an almost-complex structure on a
smooth manifold, −J is also an almost-complex structure, called conjugate of J .

When an almost-complex structure is defined by means of complex coordinates, we
drop the adjective “almost”.

Example 2. Let M be a parallelizable even-dimensional manifold and E1, . . . , E2m

a global frame of vector fields on M . Then setting JE2k−1 = E2k, JE2k = −E2k−1,
k = 1, . . . ,m defines an almost-complex structure on M .

Example 3. Every orientable two-dimensional smooth manifoldM admits an almost-
complex structure. In order to define such a structure, fix an orientation on M and take
any Riemannian metric on it. For each point p ∈ M , choose an oriented orthogonal basis
(e1, e2) with ‖e1‖ = ‖e2‖ of the tangent space TpM . Set Jpe1 = e2, Jpe2 = −e1. The
endomorphism Jp of TpM is a complex structure on TpM which does not depend on the
choice of the basis (e1, e2). For each point p, we can find an oriented orthogonal frame of
vector fields (X1, X2) with ‖X1‖ = ‖X2‖ in a neighbourhood U of p. A straightforward
consequence of this remark is that Jp depends smoothly on p. Thus, the endomorphisms
Jp determine an almost-complex structure J on M .

Clearly, if we take a metric g′ = efg conformal to g, f being a smooth function, we
get the same almost-complex structure. If we reverse the orientation of M , we obtain
the conjugate almost-complex structure −J .

Note also that it can be shown that any almost-complex structure J on a two-
dimensional manifold M is a complex structure, i.e. one can introduce complex co-
ordinates on M which yield J as in the preceding example (for this fact see Sec. 2.3).

Example 4. Consider the unit sphere S2 with its standard metric and orientation.
Denote by × the usual vector-cross product on R

3. Then the almost-complex structure
on S2, described in the preceding example, is given by Ja(v) = a × v for a ∈ S2 and
v ∈ TaS

2. This almost-complex structure comes from the well-known complex-analytic
atlas defined by means of the stereographic projection rendering S2 a complex manifold
biholomorphic to the complex projective line CP

1. Recall that identifying R
3 with the

imaginary quaternions, the vector-cross product is a× b = Im (ab) =
1

2
(ab − ba) where

the multiplication is in the algebra of quaternions. Similarly, identifying R
7 with the

imaginary octonions, one can define a vector-cross product in R
7, the multiplication

being this time in the algebra of octonions. Then the formula Ja(v) = a× v for a ∈ S6,
v ∈ TaS

6, yields an almost-complex structure on S6. This structure was defined by
A. Kirchhoff in 1947 (as well by C. Ehresmann in 1950). Shortly after that in 1951,
B. Eckmann and A. Frölicher as well as C. Ehresmann and P. Libermann showed that
this structure does not come from complex coordinates. We refer to [2, 3] for more
information about this story.

It is a result of A. Borel and J.-P. Serre (1953) that S2 and S6 are the only spheres
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that admit an almost-complex structure. As we have mentioned, every almost-complex
structure on S2 is complex, and it is a long-standing problem whether S6 admits any
complex structure. We refer to [2] for a nice overview on the history of this problem

Example 5. E. Calabi [14] has generalized the construction of the almost-complex
structure on S6 to every orientable hypersurface M in R

7. If n is a normal field on M , he
studied the almost-complex structure defined by Jv = n×v, v ∈ TM . He found necessary
and sufficient conditions for J to be induced by complex coordinates, and showed that
these conditions are not satisfied if M is compact.

Example 6. E. Calabi and B. Eckmann [13] have constructed complex structures on
the product of two odd-dimensional spheres S2n+1 × S2m+1. Consider the action of the
additive group C on C

n \ {0} and C
m \ {0}, n,m > 1, defined by ζ.(z, w) = (eζz, eτζw)

where τ is a fixed complex number with Im τ 6= 0. The quotient space is a complex
manifold diffeomorphic to S2n+1 × S2m+1.

Example 7. Any almost symplectic manifold M , i.e. admitting a non-degenerate
skew-symmetric 2-form Ω, possesses an almost-complex structure. To define one, fix a
Riemannian metric g on M . Then, as is well-known, the identity g(JX, Y ) = Ω(X,Y ),
X,Y ∈ TM , defines a unique almost-complex structure J , see, for example, [8]. Recall
that M is called symplectic if the form Ω is closed, dΩ = 0.

2.2. Topological obstructions for existence of almost-complex structures.

Every almost-complex structure on a manifold M induces on each tangent space ofM the
structure of a complex vector space, so the tangent bundle of TM becomes a (smooth)
complex bundle. Hence M is of even dimension and orientable. An immediate conse-
quence of this trivial remark is that no real projective space admits an almost-complex
structure. So, the vanishing of the first Stiefel-Whitney class w1(M) ∈ H1(M,Z2)
is a topological obstruction for existence of an almost-complex structure on an even-
dimensional manifold. We briefly discuss other topological obstructions in cohomological
terms on oriented compact manifolds. As we have noted, if dimM = 2, there is no other
obstructions. Suppose that dimM = 4. Let σ(M) and χ(M) be the signature and the
Euler characteristic of M . By the classical W.-T. Wu theorem [73] (as stated in [42]),
M admits an almost-complex structure if and only if there is h ∈ H2(M,Z) such that
h2[M ] = 3σ(M) + 2χ(M) and h ≡ w2(M) mod 2. In this case h is the first Chern
class of the complex bundle TM . In order to state another criterion for existence of an
almost-complex structure in dimension four, denote the intersection form on H2(M,Z)
by Q. Then by a result of A. Dessai [30, Theorem 1.4] in the reformulation of [53], M
admits an almost-complex structure if and only if σ(M) + χ(M) ≡ 0mod 4 and one of
the following conditions is satisfied: (i) Q is indefinite; (ii) Q is positive definite and the
Betti numbers b1 and b2 satisfy the inequality b1 − b2 ≤ 1; (iii) Q is negative definite
and, in case b2 ≤ 2, the number 4(b1 − 1) + b2 is the sum of b2 integer squares. Now, let
dimM = 6. According to a result by C. T. C. Wall [69, Theorem 9], the only obstruc-
tion for existence of an almost-complex structure in dimension 6 is the vanishing of the
third integer Stiefel-Whitney class, i.e. w2(M) to be mapped to zero by the Bockstein
homomorphism ∂ : H2(M,Z2) → H2(M,Z).
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Examples of almost-complex manifolds not admitting any complex struc-

ture.

Example 8. The first examples of this type have been constructed by A. Van de
Ven [67]. Consider the complex projective plane CP

2 as a smooth manifold with the
orientation induced by the complex structure. Denote this manifold by P

2. It has
been shown in [67] that the connected sum P

2♯(S1 × S3)♯(S1 × S3) admits an almost-
complex structure but does not possess any complex structure. The connected sum
(S1 × S3)♯(S1 × S3)♯(S2 × S2) has the same property.

Example 9. S.-T. Yau [74] has showed that (T 3♯RP3) × S1, where T 3 is the 3-
dimensional real torus, is a parallelizable 4-manifold, which does not admit a complex
structure.

Example 10. A parallelizable 4-manifold without any complex structure has also
been constructed by N. Brotherton [12].

No examples of almost-complex manifolds not admitting a complex structure are
known in dimensions greater than four.

S.-T. Yau’s conjecture [75, Problem 52]. Every compact almost-complex manifold of
dimension at least 6 admits a complex structure.

2.3. Integrable almost-complex structures. For a smooth manifold M , we de-
note the complexification of a tangent space TpM by TC

p M . Let J be an almost-complex

structure on M . Extend J by complex linearity to the complexification TCM of the
tangent bundle TM . The extension also satisfies the identity J2 = −Id, thus it has
eigenvalues ±i. As usual, denote the eigen-subbundles of TCM corresponding to (+i)
and (−i) eigenvalues of J by T (1,0)M and T (0,1)M .

An almost-complex structure J is called integrable if the subbundle T (1,0)M of TCM
is integrable (i.e. the Lie bracket of two vector fields with values in T (1,0)M is again such
a vector field). This is equivalent to T (0,1)M being integrable.

Denote by NJ the Nijenhuis tensor of J defined by

NJ(X,Y ) = −[X,Y ] + J [JX, JY ]− J [JX, Y ]− J [X, JY ]

where X,Y stand for vector fields on the manifold. It is a simple exercise that the
structure J is integrable if and only if its Nijehuis tensor NJ vanishes.

The following famous theorem is due to A. Newlander and L. Nirenberg
Theorem 1 ([55]). An almost-complex structure is complex, i.e. it is induced by a

complex-analytic atlas, if and only if it is integrable.
It is easy to see that in real dimension 2, every almost-complex structure is integrable.

3. Almost-Hermitian structures. For any almost-complex structure J , there is
a Riemannian metric g such that J is g-orthogonal: g(JX, JY ) = g(X,Y ) for ev-
ery tangent vectors X,Y at a point p. Just take any Riemannian metric h and set
g(X,Y ) = h(X,Y ) + h(JX, JY ). If (M, g) is a Riemannian manifold, a g-orthogonal
almost-complex structure is called almost-Hermitian or compatible with g. An impor-
tant role in the study of almost-Hermitian manifolds (M, g, J) is played by their funda-
mental, or Kähler, 2-form Ω(X,Y ) = g(JX, Y ), X,Y ∈ TM . Recall that if Ω is closed,
the almost-Hermitian manifold is called almost-Kähler or symplectic; if in addition J is
integrable, it is called Kähler. The latter condition is equivalent to ∇J = 0, where ∇ is
the Levi-Civita connection of the Riemannian metric g.
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Examples of almost-Hermitian manifolds.

Example 11. Let M be a parallelizable even-dimensional manifold with a global
frame E1, . . . , E2m of vector fields on it. Denote by g the Riemannian metric for which
the frame E1, . . . , E2m is orthonormal. Then the natural almost-complex structure J
defined above by JE2k−1 = E2k, JE2k = −E2k−1 is g-orthogonal.

Example 12. The complex structure on an oriented 2-dimensional manifold defined
by means of a Riemannian metric g on it is g-orthogonal. In particular, the standard
complex structure of S2 is Hermitian with respect to the standard metric gS2 of the
sphere.

Example 13. The complex projective space CPn endowed with Fubini-Study metric
is a Hermitian manifold. The standard biholomorphism S2 ∼= CP

1 defined by means of
the stereographic projection sends the metric 4gS2 on S2 to the Fubini-Study metric of
CP

1.

Example 14. The almost-complex structure on S6 defined above is compatible with
the standard metric on S6.

Example 15. The Calabi almost-complex structure on an oriented hypersurface in
R

7 is compatible with the metric on the hypersurface induced by the standard metric of
R

7.

Example 16. The Calabi-Eckmann complex structures on S2n+1 × S2m+1 are com-
patible with the product metric of the standard metrics of the spheres. The Calabi-
Eckmann Hermitian structure is Kähler exactly when n = 0 or m = 0; it is locally
conformally Kähler (but non-Kähler) if and only if n = 0,m ≥ 1 or n ≥ 1,m = 0 [39,
Theorem 4.4] (for the latter claim, see also [32, 66]).

Example 17. It is obvious that any Kähler manifold is symplectic. The first example
of a compact symplectic manifold which does not admit any Kähler structure has been
given by W. Thurston [65]. A second version of this example has been constructed by E.
Abbena [1] who also gave a natural associated metric for the symplectic structure. Let

(1) H =




1 x z
0 1 y
0 0 1


 , x, y, z ∈ R,

be the real Heisenberg group, and let G = H ×S1 be the direct product of the groups H
and S1. Let Γ be the discrete subgroup of G of the matrices (1) with integer entries. The
quotient space M = G/Γ is a compact smooth manifold. Let ei2πt → t be the standard

local coordinate on S1. The form Ω̃ = dt ∧ dx + dy ∧ (dz − xdy) is a left invariant
symplectic form on G, hence it descents to a symplectic form Ω on M . The vector fields

(2) E1 =
∂

∂x
, E2 =

∂

∂y
+ x

∂

∂z
, E3 =

∂

∂z
, E4 =

∂

∂t

dual to dx, dy, dz − xdy, dt are left invariant and constitute a global frame on G. Let g̃
be the metric on G for which this frame is orthonormal. Also, let J̃ is the almost-complex
structure on G for which J̃E1 = E4, J̃E2 = E3. Then Ω̃(Ek, El) = g̃(J̃Ek, El). The

left-invariant almost-Hermitian structure (g̃, J̃) on G, as well as Ω̃, descends to such a
structure (g, J) on M satisfying the identity Ω(X,Y ) = g(JX, Y ), X,Y ∈ TM . The

almost-complex structure J̃ is not integrable, hence neither is J . Thus, (g, J) is an
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almost-Kähler structure which is not Kähler. Moreover, M does not admit any Kähler
structure for topological reasons; it has an odd first Betti number, namely b1 = 3 ([1, 65]),
while, as is well-known, the odd Betti numbers of a Kähler manifold are even.

Example 18. Let HC be the complex Heisenberg group consisting of all matrices of
the form (1) with complex entries x, y, z ∈ C. Let Γ be the discrete subgroup for which
x, y, z have integer real and imaginary parts. Then the quotient space M = HC/Γ is a
compact complex 3-manifold known as the Iwasawa manifold. The complex structure of
M is compatible with the Riemannian metric g for which the real and imaginary parts
of the complex vector fields defined by (2) constitute an orthonormal frame. The Betti
numbers of the Iwasawa manifold are b1 = 4, b3 = 10, b5 = 4 and b0 = 1, b2 = 8, b4 =
8, b6 = 1, see, for example, [35]. Although all odd Betti numbers are even, the Iwasawa
manifold has no complex structure admitting a Kähler metric [ibid]. But the Iwasawa
manifold admits a symplectic form, hence an almost Kähler structure [16] (which, of
course, is non-integrable).

Remark 1. As is well-known, in complex dimension two, every compact complex
surfaces with even first Betti number admits a Kähler metric, see, for example, [5, Sec.
IV.3].

Example 19. Let (M, g) be a Riemannian manifold and π : TM → M its tangent
bundle. The Levi-Civita connection of (M, g) gives rise to a splitting T (TM) = H⊕V of
the tangent bundle of the manifold TM into horizontal and vertical subbundles. For any
a ∈ TM , the restriction of the differential π∗ a : Ta(TM) → Tπ(a)M to the horizontal
space Ha is an isomorphism of Ha onto Tπ(a)M . As usual, if X ∈ Tπ(a)M , we denote the

horizontal lift (π∗ a|Ha)
−1(X) of X by Xh

a . The vertical space Va is the tangent space
at a of the fibre Tπ(a)M of TM through the point a. We denote by Xv

a the image of X
under the standard identification Tπ(a)M ∼= Ta(Tπ(a)M) = Va. Following T. Nagano [54]
(see also [44, 31]), define an almost-complex structure J on the manifold TM setting

J(Xh, Y v) = (−Y h, Xv), X, Y ∈ TM.

This structure is integrable if and only if the Riemannian manifold (M, g) is flat ([54,
44, 31]). The almost-complex structure J is compatible with the Sasaki metric on TM .
Recall that this metric is defined by

h(Xh
1 + Y v

1 , X
h
2 + Y v

2 ) = g(X1, X2) + g(Y1, Y2).

Thus, we have an almost-Hermitian structure (h, J) on the manifold TM . It is almost-
Kähler [63] and is Kähler exactly when (M, g) is flat.

4. Basics about twistor spaces. The twistor theory has been originated by the
English physicist R. Penrose [56, 57] as a tool for transferring physical information from
the space-time into geometric data on a projective space with the aim to propose an
approach to the quantum gravity. The ideas of Penrose have been developed in the
context of Riemannian geometry by Atiyah, Hitchin and Singer [4] in the case of manifolds
of dimension four. From mathematical point of view, the basic idea is that the geometry
of a Riemannian manifold can be encoded in holomorphic terms of the so-called twistor
space associated to the manifold.

4.1. The manifold of compatible linear complex structures. Let V be a real
vector space of even dimension n = 2m endowed with an Euclidean metric g. Denote
by F (V ) the set of all complex structures on V compatible with the metric g, i.e. g-
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orthogonal. This set has the structure of an imbedded smooth submanifold of the vector
space so(V ) of skew-symmetric endomorphisms of (V, g). The tangent space of F (V )
at a point J consists of all endomorphisms Q ∈ so(V ) anti-commuting with J , and we
have the decomposition so(V ) = TJF (V ) ⊕ {S ∈ so(V ) : SJ − JS = 0} which is

orthogonal with respect to the metric G(S, T ) = −1

2
Trace(S ◦T ) on so(V ). The smooth

manifold F (V ) admits a natural almost-complex structure J defined by JQ = J ◦ Q
for Q ∈ TJF (V ). This structure is compatible with the metric G. It is not hard to find
an explicit formula for the Levi-Civita connection ∇ of G and to see that ∇J = 0, so
(G,J ) is a Kähler structure on F (V ). In particular, J is an integrable structure, hence
it is induced by complex coordinates. In fact, such coordinates can explicitly be defined
by means of the Cayley transformation of skew-symmetric endomorphisms. One can also
show that the metric G is Einstein.

The group O(V ) ∼= O(2m) of orthogonal transformations of V acts on F (V ) by
conjugation and the isotropy subgroup at a fixed complex structure J0 is isomorphic to
the unitary group U(m). Therefore F (V ) can be identified with the homogeneous space
O(2m)/U(m). In particular, dimF (V ) = m2 − m. Note also that the manifold F (V )
has two connected components F±(V ): if we fix an orientation on V , these components
consist of all complex structures on V compatible with the metric g and inducing the
positive/negative orientation of V ; each of them has the homogeneous representation
SO(2m)/U(m).

The metric g of V induces a metric on Λ2V given by

(3) g(v1 ∧ v2, v3 ∧ v4) =
1

2
[g(v1, v3)g(v2, v4)− g(v1, v4)g(v2, v3)].

Then we have an isomorphism so(V ) ∼= Λ2V , which sends S ∈ so(V ) to the 2-vector S∧

for which

(4) 2g(S∧, u ∧ v) = g(Su, v), u, v ∈ V.

This isomorphism is an isometry with respect to the metric
1

2
G on so(V ) and the metric

g on Λ2V .

Suppose that V is of dimension four. Then the Hodge star operator defines an endo-
morphism ∗ of Λ2V with ∗2 = Id. Hence we have the orthogonal decomposition

Λ2V = Λ2
+V ⊕ Λ2

−V,

where Λ2
±V are the subspaces of Λ2V corresponding to the (±1)-eigenvalues of the op-

erator ∗. Let (e1, e2, e3, e4) be an oriented orthonormal basis of V . Set

(5) s±1 = e1 ∧ e2 ± e3 ∧ e4, s±2 = e1 ∧ e3 ± e4 ∧ e2, s±3 = e1 ∧ e4 ± e2 ∧ e3.

Then (s±1 , s
±
2 , s

±
3 ) is an orthonormal basis of Λ2

±V . The orientation of Λ2
±V determined

by this basis does not depend on the choice of the basis (e1, e2, e3, e4) (see, for example,
[22]).

It is easy to see that the isomorphism ϕ → ϕ∧ identifies F±(V ) with the unit sphere
S(Λ2

±V ) of the Euclidean vector space (Λ2
±V, g) (so, the factor 1/2 in (3) is chosen in order

to have spheres with radius 1). Under this isomorphism, if J ∈ F±(V ), the tangent space
TJF (V ) = TJF±(V ) is identified with the orthogonal complement (RJ)⊥ of the space
RJ in Λ2

±V . Moreover, the restriction of the complex structure J to F±(V ) is identified
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with the complex structure of the unit sphere in Λ2
±V . Thus (JQ)∧ = ±(J∧×Q∧) where

× is the vector-cross product on the 3-dimensional Euclidean space (Λ2
±V, g) endowed

with the orientation defined above.

4.2. The twistor space of a Riemannian manifold. Let (M, g) be a Riemannian
manifold of even dimension. The twistor space of (M, g) is the bundle π : Z → M
whose fibre at a point p ∈ M is the manifold F (TpM) of all complex structures of the
tangent space TpM compatible with the metric gp. If M is oriented, we can consider the
bundles overM whose fibre at p is the manifold of compatible complex structures yielding
the positive and, respectively, the negative orientation of TpM . The latter bundles are
disjoint open subsets of Z and are frequently called the positive and the negative twistor
spaces of (M, g), respectively. They are usually denoted by Z+ and Z−. IfM is connected
and oriented, they are the connected components of the manifold Z. Clearly, changing
the orientation interchanges the role of the positive and negative twistor spaces. If M is
oriented and of dimension four, Z± can be identified with the unit sphere subbundle of
Λ2
±TM , the latter vector bundle being the the subbundle of Λ2TM corresponding to the

(±1)-eigenvalue of the Hodge star operator ∗.
4.3. The Atiyah-Hitchin-Singer and Eells-Salamon almost-complex struc-

tures on a twistor space. The manifold Z admits two almost-complex structures J1

and J2 defined, respectively, by Atiyah-Hitchin-Singer [4] and Eells-Salamon [34] in the
case when the base manifold M is of dimension four.

The bundle Z can be considered as a subbundle of the bundle A(TM) of skew-
symmetric endomorphisms of the tangent bundle TM . The Levi-Civita connection of
(M, g) determines a connection on the bundle A(TM), both denoted by ∇. The horizon-
tal space of the vector bundle A(TM) with respect to ∇ at a point J ∈ Z is tangent to Z.
Hence we have the splitting TZ = H⊕V of the tangent bundle of Z into horizontal and
vertical subbundles. For every J ∈ Z, the horizontal subspace HJ of TJZ is isomorphic
to the tangent space Tπ(J)M via the differential π∗J , and we set

Jk|HJ = (π∗|HJ)
−1 ◦ J ◦ (π∗|HJ ), k = 1, 2.

The vertical subspace VJ of TJZ is the tangent space at J to the fibre of the bundle Z
through J . This fibre is the complex manifold F (Tπ(J)M) we have discussed. Denote its
complex structure by JVJ

. Then the almost-complex structures Jk are defined on the
vertical space VJ by

J1|VJ = JVJ
, J2|VJ = −JVJ

.

The decomposition TZ = H⊕V allows one to define a natural 1-parameter family of
Riemannian metrics ht, t > 0, on the manifold Z in the following (standard) way. The
metric ht on HJ is the lift of the metric g of Tπ(J)M , ht|HJ = π∗g. On the vertical space
VJ , the metric ht is defined as t times the metric G of the fibre through J . Finally, the
horizontal space HJ and the vertical space VJ are declared to be orthogonal. For J ∈ Z
and X ∈ Tπ(J)M , we denote the horizontal lift (π∗|HJ)

−1(X) of X by Xh
J . Then for

X,Y ∈ Tπ(J)M and V,W ∈ VJ

(6) ht(X
h
J + V, Y h

J +W ) = g(X,Y ) + tG(V,W ).

The almost-complex structures J1 and J2 are both compatible with each metric ht.
Thus, for a fixed t, we have two almost-Hermitian structures on the twistor space which
have intensively been studied by many authors.
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4.4. Integrability of the Atiyah-Hitchin-Singer and Eells-Salamon almost-

complex structures. It is a result of Eells and Salamon [34] that the almost-complex
structure J2 is never integrable, so it does not come from complex coordinates. Never-
theless, J2 is very useful for constructing harmonic maps. The integrability condition
for J1 has been found by Atiyah, Hitchin, and Singer [4]. To state their result, we first
recall a well-known curvature decomposition.

Let R(X,Y, Z) = ∇[X,Y ]Z −∇X∇Y Z+∇Y ∇Y Z be the curvature tensor of the Levi-
Civita connection ∇ of (M, g). The curvature operator R corresponding to the curvature
tensor is the endomorphism of Λ2TM defined by

g(R(X ∧ Y ), Z ∧ U) = g(R(X,Y )Z,U), X, Y, Z, U ∈ TM.

Denote by s the scalar curvature of the manifold (M, g) and let ρ : TpM → TpM be its
Ricci operator defined by g(ρ(X), Y ) = Ricci(X,Y ), X,Y ∈ TM . It is well-known that
the curvature operator R decomposes as (cf. e.g. [6, Sec. 1 G], [61])

R =
2s

n(n− 1)
Id+ B +W

where the operator W corresponds to the Weyl conformal tensor W , while B corresponds
to the traceless Ricci tensor and is defined by

B(X ∧ Y ) =
2

n− 2
[X ∧ ρ(Y ) + ρ(X) ∧ Y − 2s

2n+ 1
X ∧ Y ], X, Y ∈ TpM.

Note that this differs from [6] by a factor
1

2
(the curvature operator therein is

1

2
R) because

of the factor 1/2 in our definition of the induced metric on Λ2TM . The decomposition
of R is known as the Ricci decomposition.

The Riemannian manifold (M, g) is Einstein exactly when B = 0. It is locally confor-
mally flat if and only if W = 0. The manifold is of constant sectional curvature c exactly
when B = W = 0 and s = n(n− 1)c.

Suppose that M is oriented and of dimension 4. In this case, the operator B sends
Λ2
±TM into Λ2

∓TM . Moreover, the Weyl operator has an additional decomposition
W = W+ + W−, where W± is the restriction of W to Λ2

±TM and zero on Λ2
∓TM ,

i.e. W± =
1

2
(W ± ∗W) where ∗ is the Hodge star operator on Λ2TM . The manifold

(M, g) is called self-dual (anti-self-dual) if W− = 0 (resp. W+ = 0). Let g̃ = efg be a

Riemannian metric conformal to g and W̃ its Weyl tensor. Then we have g̃ = e2fg for
the induced metrics on Λ2TM . Hence W̃ = e−fW since W̃ (X,Y )Z = W (X,Y )Z for
all X,Y, Z ∈ TM . Note also that the Hodge star operator on Λ2TM does not change
when the metric on M is replaced by a conformal metric. Therefore the self-duality
(anti-self-duality) condition is invariant under conformal changes of the metric .

In connection with the last observation, note that the Atiyah-Hitchin-Singer almost
complex structure J1 is invariant under conformal changes of the metric of M , while the
Eells-Salamon one J2 is not, see Sec. 9.

Note also that changing the orientation of M interchanges the roles of Λ2
−TM and

Λ2
+TM , hence the roles of W− and W+.

The integrability condition for the almost-complex structure J1 on Z± has been found
by Atiya, Hitchin and Singer.

Theorem 2 ([4]). Let (M, g) be an oriented Riemannian 4-manifold. The almost-
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complex structure J1 on the negative twistor space Z− (resp. positive twistor space Z+)
of (M, g) is integrable if and only if (M, g) is self-dual (resp. anti-self-dual).

If dimM ≥ 6, the almost-complex structure J1 is integrable if and only if (M, g) is
locally conformally flat (see, e.g., [59]). Thus the case of a 4-dimensional base manifold
is more interesting in this context.

Examples. Let (M, g) be an oriented Riemannian 4-manifold and ∇ its Levi-Civita
connection. In the following examples, Z+ and Z− stand for the positive and negative
twistor spaces, respectively. The first five examples are taken from [4] (see also [6, Sec.
13 D]), for the last two we refer to [68].

Suppose that the bundle π : Λ2
+TM → M admits a global orthonormal frame

s+1 , s
+
2 , s

+
3 , so that it is isomorphic to the trivial bundle M × R

3 by the map σ =
3∑

i=1

xis
+
i → (π(σ), x = (x1, x2, x3)). Clearly such a frame exists if M is paralleliz-

able. The restriction f of the trivialization map Λ2
+TM

∼= M × R
3 to Z+ is obviously

a (smooth) isomorphism of the bundle Z+ onto the bundle M × S2. Denote by Ik the
almost-complex structure on M × S2 corresponding under f to the structure Jk on Z+,
k = 1, 2. If we assume in addition that the frame s+1 , s

+
2 , s

+
3 is parallel, ∇s+i = 0, the

structure Ik has a simple explicit description since each horizontal spaceHσ is mapped by
f∗ onto the subspace Tπ(σ)M of Tf(σ)(M×S2) ∼= Tπ(σ)M×TxS

2. For σ ∈ Z+, denote by
Kσ the complex structure on Tπ(σ)M defined by g(KσX,Y ) = 2g(σ,X∧Y ), X,Y ∈ TM .

Also, denote the standard complex structure of S2 by I. Let (X,V ) ∈ T(p,x)(M × S2).

Then IkX = Kf−1(p,x)X and IkV = (−1)k+1IV .

Similar considerations hold for Z−.

Example 20. Consider M = R
4 with its standard flat metric. Set Ej =

∂

∂xj

,

j = 1, 2, 3, 4, and define s+i , i = 1, 2, 3, by means of E1, . . . , E4 via (5). The sections
s+1 , s

+
2 , s

+
3 of Λ2

+R
4 are parallel, hence the twistor space (Z+,Jk) is biholomorphic to

(R4 × S2, Ik). Note also that the Atiyah-Hitchin-Singer almost-complex structure J1 is
integrable, i.e. it is a complex structure since the base manifold R

4 is flat. Hence I1
is a complex structure on R

4 × S2. Similarly (Z−,Jk) ∼= (R4 × S2, Ik). Identifying R
4

with C
2, we get another complex structure on R

4 × S2, the product one. The complex
structure I1 is different from the product complex structure on R

4 × S2.

Example 21. LetM = R
4/Γ be a torus, Γ being a lattice. Consider the torusM with

the flat metric induced by the metric of R4. The vector fields Ej on R
4 descend to a global

orthonormal frame on the torus. The corresponding sections s+1 , s
+
2 , s

+
3 of Λ2

+TM are
parallel, so the twistor space (Z+,Jk) of the torus is biholomorphic to ((R4/Γ)×S2, Ik).
The almost-complex structure I1 is integrable. Similarly for the negative twistor space.
Note that the structure I1 has earlier been considered by A. Blanchard [9, Exemple de
fibration au sense de la proposition I.2.2].

Example 22. The product metric of S1×S3 is locally conformally flat. The manifold
S1 × S3 is parallelizable, hence its positive and negative spaces are isomorphic to S1 ×
S3 × S2. Other descriptions of the twistor space of S1 × S3 can be seen in [19, 21] and
in [43, Sec. 8].
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Example 23. In order to deal with the twistor space of the unit 4-sphere M = S4,
we identify S4 with the quaternionic projective line HP

1. This can be done in the same
way as the 2-sphere S2 is identified with the complex projective line CP

1. Write the
quaternions as z1 + z2j with z1, z2 ∈ C. The twistor space Z+ of S4 can be identified
with the complex projective space CP

3, the projection map π : Z+
∼= CP

3 → S4 ∼= HP
1

being given in homogeneous coordinates by [z1, z2, z3, z4] → [z1+z2j, z3+z4j]. Similarly
for the negative twistor space. The sphere S4 is locally conformally flat, so the Atiyah-
Hitchin-Singer almost-complex structure on both twistor spaces Z+ and Z− of S4 is
integrable. It coincides with the complex structure of CP3. We refer to [70, Sec. 5.12] or
[25] for details.

Example 24. Consider the complex projective space M = CP
2 as a smooth mani-

fold endowed with the Fubini-Study metric and the orientation induced by the complex
structure. The twistor spaces Z± of this manifold can be identified as smooth manifolds
with the complex flag manifold F3 = F1,2. Recall that the points of F3 are pairs (l,m) of
a complex line l and a complex plane m in C

3 such that l ⊂ m. In this setting, the projec-
tion map π : Z±

∼= F3 → CP
2 is (l,m) → l⊥∩m, where l⊥ is the orthogonal complement

of l in C
3 with respect to the standard Hermitian metric of C3. Note that this map is

neither holomorphic, nor anti-holomorphic. The Riemannian manifold CP
2 is self-dual,

but not anti-self-dual. Hence the Atiyah-Hitchin-Singer almost-complex structure J1 is
integrable on the negative twistor space Z−, but not on the positive one. Under the
diffeomeorphism Z−

∼= F3, the structure J1 coincides with the complex structure of F3.
Details can be found in [25], for example.

Remark 2. Example 24 is one of the reasons that many authors prefer to consider
the negative twistor space Z−. But, as we shall see, in some cases it is more appropriate
to deal with the positive twistor space Z+.

Example 25. Consider the unit four-ball B4 with its metric of constant negative
sectional curvature. Then the positive and the negative twistor spaces are isomorphic to

{[q1, q2] ∈ CP
3 : |q1| > |q2|},

the projection map being given by

[q1, q2] → q1q2|q1|−1; q1, q2 ∈ H ∼= C
2.

Example 26. Let CB2 be the unit four-ball with the Kähler metric of constant
negative holomorphic sectional curvature, the Bergman metric. This metric is self-dual,
but not anti-self-dual. Set

A2 = CP
2 \ CB2 = {[z] ∈ CP

2 : −|z0|2 + |z1|2 + |z2|2 > 0}.
Then the positive and negative twistor spaces of CB2 are isomorphic to

{([z], [w]) ∈ A2 × A
∗
2 : −z0w0 + z1w1 + z2w2 = 0}.

Note that any Kähler metric of constant holomorphic sectional curvature on a complex
surface is self-dual; it is anti-self-dual exactly when its scalar curvature vanishes.

5. The energy functional on maps into twistor spaces. Let (M, g) and (N, h)
be Riemannian manifolds. If D is a relatively compact open subset of M , the energy
functional assigns to every map ϕ : M → N the integral

ED(ϕ) =

∫

D

‖ϕ∗‖2g,hvol
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where, at a point p ∈ M , ‖ϕ∗‖g,h is the Hilbert-Schmidt norm of the linear map ϕ∗p :
TpM → Tϕ(p)N taken with respect to g and h.

Example 27. Let M = R
3 and N = R be equipped with their standard metrics.

The energy of a smooth function ϕ : R3 → R is the classical Dirichlet integral

ED(ϕ) =

∫

D

[(
∂ϕ

∂x1
)2 + (

∂ϕ

∂x2
)2 + (

∂ϕ

∂x3
)2]dx1dx2dx3.

A variation of a map ϕ : M → N is a 1-parameter family {ϕs} of smooth maps
ϕs : M → N with ϕ0 = ϕ, smoothly depending on s. In other words, this is a smooth
map Φ : M × (−ε, ε) → N such that Φ(p, 0) = ϕ(p) for all p ∈ M ; in these terms,
ϕs(p) = Φ(p, s).

Recall that a smooth map ϕ : (M, g) → (N, h) is called harmonic if it is a critical point
of the energy functional for all relatively compact open subset of M and all variations of
the map ϕ.

Let J be a compatible almost-complex structure on a Riemannian manifold (M, g)
with twistor space (Z, ht). The almost-complex structure J defines a section J : M ∋
p → Jp ∈ Z of the twistor bundle π : Z → M . Conversely, any section of this bundle
is a compatible almost-complex structure on (M, g). We shall consider two classes of
variations of the map J : (1) All ϕs are sections of the twistor bundle Z (i.e. compatible
almost-complex structures); (2) ϕs are just smooth maps M → Z, not necessarily sec-
tions. Variations of class (1), hence of class (2), always exist, see, for example, [22]. Fix
one of the classes (1) or (2). The map J is a critical point of the energy functional if for
every variation {ϕs} of J in the given class, and for every relatively compact open set D
in M

d

ds
ED(ϕs)|s=0 = 0.

Let ∇ be the Levi-Civita connection of (M, g). If K is a compatible almost-complex
structure on (M, g), we have K∗X = Xh + ∇XK for every X ∈ TM where Xh is the
horizontal lift of X and ∇XK is the vertical part of K∗X . Then ‖K∗‖2g,ht

= t‖∇K‖2g +
dimM . Hence

ED(K) = t

∫

D

‖∇K‖2gvol + (dimM)vol(D).

Therefore if J is a critical point of the energy functional for one of metrics ht, it is a
critical point for all of these metrics. Another obvious consequence is that the Kähler
structures (∇K = 0) provide the absolute minimum of the energy functional on the space
of sections of Z.

G. Bor, L. Hernández-Lamoneda and M. Salvai [10] have given sufficient conditions
for an almost-Hermitian structure to minimize the energy functional on the space of
sections of the twistor bundle. We state their main result in a slightly different form.

Theorem 3. ([10]) Let (M, g) be a compact Riemannian manifold and let J be a
compatible almost-complex structure on it. Suppose that

(1) dimM = 4, the manifold (M, g) is anti-self-dual and the almost-Hermitian struc-
ture (g, J) is Hermitian or almost-Kähler,

or
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(2) dimM = 6 and the almost-Hermitian structure (g, J) is nearly-Kähler, i.e. (∇XJ)(X) =
0, X ∈ TM , where ∇ is the Levi-Civita connection of g,
or

(3) dimM ≥ 6, (M, g) is locally conformally flat and the almost-Hermitian structure
(g, J) is locally conformally Kähler.

Then the almost-complex structure J is an energy minimizer.

Examples of non-Kähler minimizers of the energy functional on the space

of sections of the twistor bundle.

Example 28 ([10]). C. LeBrun [50] has constructed anti-self-dual Hermitian struc-
tures on the blow-ups (S1 × S3)♯ nCP2 of the Hopf surface S1 × S3. Blow-ups do not
affect the first Betti number, so any blow up of the Hopf surface has b1 = 1, hence it
does not admit a Kähler metric.

Example 29. I. Kim [46] has shown the existence of anti-self-dual non-Kähler almost-
Kähler structures on CP

2♯ nCP2, n ≥ 11, (S2 ×Σ)♯ nCP2, Σ being a Riemann surface of
genus ≥ 2, and (S2 × T 2)♯ nCP2, n ≥ 6.

Example 30. The metric on S6 is locally conformally flat and the almost-Hermitian
structure of S6 is nearly-Kähler.

Example 31. The Calabi-Eckmann Hermitian structure on S1 × S2m+1 is locally
conformally flat and locally conformally Kähler [32, 66].

II. Harmonic and pseudo-harmonic almost-Hermitian structures

6. “Distinguished” almost-Hermitian structures. It is well known that if a
Riemannian manifold (M, g) admits an almost-Hermitian structure, it possesses many
such structures. In [22, 24], for example, this is shown by considering an almost-Hermitian
structure on (M, g) as a section of the twistor bundle π : Z → M . Thus, it is natural to
look for “reasonable” criteria that distinguish some of these structures.

E. Calabi and H. Gluck [15] have proposed to single out as “the best ones” those
almost-Hermitian structures J on (M, g) whose image J(M) in the twistor space Z of
(M, g) is of minimal volume with respect to metric h1 on Z defined by (6). They have
proved that the almost-Hermitian structure on the 6-sphere S6 considered above can be
characterized by that property.

Motivated by the harmonic map theory, C. Wood [71, 72] has suggested to consider
as “optimal” those almost-Hermitian structures J : (M, g) → (Z, h1) that are critical
points of the energy functional under variations through sections of Z. In general, these
critical points are not harmonic maps, but, by analogy, they are referred to as “harmonic
almost-complex structures” in [72]; they are also called “harmonic sections” in [71].

Let us also note that these two approaches are not equivalent, but in both of them,
the twistor space plays an essential role.

Forgetting the bundle structure of Z, we can consider the almost-Hermitian structures
that are critical points of the energy functional under variations through arbitrary maps
M → Z, not just sections. These structures are genuine harmonic maps from (M, g)
into (Z, h1), and we refer to [33] for basic facts about such maps. This point of view
has been taken in [24, 26] where the problem of when an almost-Hermitian structure on
a Riemannian four-manifold is a harmonic map from the manifold into its twistor space
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is discussed. Also, in [23, 22], the problem of when the Atiyah-Hitchin-Singer or Eells-
Salamon almost-complex structure is a harmonic map from the twistor space (Z, ht) of
a Riemannian 4-manifold into the twistor space of Z is explored.

Two conformal metrics have the same twistor spaces, thus it is natural to consider
the twistor spaces in the context of conformal geometry, see, for example, [4, 37]. The
harmonic map technique has a useful extension in the conformal geometry due to G.
Kokarev [49] who has introduced the notion of a pseudo-harmonic map. The pseudo-
harmonic maps share some important properties with the harmonic maps [49], to mention
here only the unique continuation one. So, it is natural to ask when an almost-Hermitian
structure on a conformal manifolds determines a pseudo-harmonic map from the manifold
into its twistor space. This problem is studied in [27].

6.1. Harmonic sections of twistor spaces. The Euler-Lagrange equation for the
critical points of the energy functional under variations through sections of the twistor
space (harmonic sections) has been found by C. Wood [71, 72]. A compatible almost-
complex structure J on a Riemannian manifold (M, g) is a harmonic section if and only
if

(7) [J,∇∗ ∇J ] = 0,

where the bracket means “commutator”, ∇ is the Levi-Civita connection of (M, g) and
∇∗ is its formally adjoint operator.

Clearly any Kähler structure (∇J=0) is a harmonic section; in fact, as we have
mentioned, the Kähler structures are absolute minima of the energy functional on the
space of sections of the twistor bundle.

Examples of non-Kähler harmonic sections ([72]).

Example 32. The almost-Hermitian structure on S6 is a harmonic section. More
generally, every nearly-Kähler structure is so.

Example 33. The Abena-Thurston almost-Kähler structure is a harmonic section.

Example 34. The Calabi-Eckman Hermitian structure on S2n+1 × S2m+1 is a non-
Kähler harmonic section.

Example 35. The Nagano-Sasaki almost-Kähler structure on the tangent bundle
TM of a Riemmanian manifold (M, g) is a non-Kähler harmonic section if and only if
the manifold is non-flat and has harmonic curvature, i.e. δR = 0; if dimM = 2 this
structure is a harmonic section if and only if M is of constant curvature. Note that
the identity δR = 0 implies that the scalar curvature of M is constant. Every Einstein
manifold provides an example of manifold with harmonic curvature.

If Ω(X,Y ) = g(JX, Y ) is the fundamental 2-form of the almost-Hermitian structure
(J, g), equation (7) is equivalent to

(8) (∇∗∇Ω)(X,Y ) = (∇∗∇Ω)(JX, JY ), X, Y ∈ TM.

Note that for the rough Laplacian ∇∗∇ we have ∇∗∇Ω = −Trace∇2Ω, see, for exam-
ple, [6].

Let Ω̂ be the section of Λ2TM corresponding to the 2-form Ω under the isomorphism
Λ2TM ∼= Λ2T ∗M determined by the metric on Λ2TM defined by (3). Thus, g(Ω̂, X ∧
Y ) = Ω(X,Y ), and if E1, . . . , Em, JE1, . . . , JEm is an orthonormal frame of TM , Ω̂ =
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2
m∑

k=1

Ek ∧ JEk. Denote by R(Ω) the 2-form corresponding to R(Ω̂). Then we have

R(Ω)(X,Y ) = g(R(Ω̂), X ∧ Y ).
Using the Weitzenböck formula, one can prove the following useful observation.
Lemma 1 ([20]). A compatible almost-complex structure J on a Riemannian manifold

(M, g) is a harmonic section if and only if

(9) ∆Ω(X,Y )−∆Ω(JX, JY ) = R(Ω)(X,Y )−R(Ω)(JX, JY ), X, Y ∈ TM,

where ∆ is the Laplace-de Rham operator of (M, g).

7. Harmonicity of the the Atiyah-Hitchin-Singer and Eells-Salamon almost-

complex structures. Lemma 1 has been used in [20] to prove the following statement.
Theorem 4 ([20])). Let (M, g) be an oriented Riemannian 4-manifold and let (Z−, ht)

be its negative twistor space. Then:
(i) The Atiyah-Hitchin-Singer almost-complex structure J1 on (Z−, ht) is a harmonic

section if and only if (M, g) is a self-dual manifold.
(ii) The Eells-Salamon almost-complex structure J2 on (Z−, ht) is a harmonic section

if and only if (M, g) is a self-dual manifold with constant scalar curvature.
This theorem can be considered as a variational interpretation of the self-duality

condition.

Example 36. Changing the orientation of M gives the corresponding result for the
positive twistor space (Z+, ht). Recall that the Fubini-Study metric on CP

2 is self-dual,
but not anti-self-dual. Thus, the structure J1 on the negative twistor space of CP2 is a
harmonic section, while on the positive twistor space it is not. A similar remark holds
for J2.

Now, consider again a compatible almost-complex structure J on a Riemannian man-
ifold (M, g) as a map from the manifold into its twistor space (Z, ht). If this map is a
critical point of the energy functional under variations of arbitrary maps M → Z, not
just sections, it is a bona fide harmonic map. Let us recall the corresponding Euler-
Lagrange equation it this case. Let J∗TZ be the pull-back of the tangent bundle TZ
under the map J : M → Z. Then we can consider the differential J∗ : TM → TZ as a
section of the vector bundle Hom(TM, J∗TZ) → M . Let D∗ be the connection on J∗TZ
induced by the Levi-Civita connection D on TZ. The Levi-Civita connection ∇ on TM
and the connection D∗ on J∗TZ induce a connection ∇̃ on Hom(TM, J∗TZ). Recall
that the second fundamental form of the map J is, by definition, the bilinear form

IIJ (X,Y ) = (∇̃XJ∗)(Y ), X, Y ∈ TM.

For tangent vectors X,Y of M at a point p, the value of the second fundamental form
lies in the fibre of J∗TZ at p, the latter being isomorphic to TJ(p)Z. Note also that the
form IIJ (X,Y ) is symmetric since the connections D and ∇ are torsion-free.

The map J : (M, g) → (Z, ht) is harmonic if and only if

Traceg ∇̃J∗ = 0.

Recall also that the map J : (M, g) → (Z, ht) is totally geodesic (i.e. maps geodesics to

geodesics) exactly when ∇̃J∗ = 0.
By the Vilms theorem (see, for example, [6, Theorem 9.59]), the projection map

π : (Z, ht) → (M, g) is a Riemannian submersion with totally geodesic fibres, a property
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which can also be proved by an easy direct computation. Taking into account this
fact, one can compute the Levi-Civita connection of the metric ht in terms of the Levi-
Civita connection and the curvature of the base manifold (M, g). Then one can derive
the following formula for the second fundamental form of J which has a crucial role in
studying harmonicity of the map J : (M, g) → (Z, ht).

Proposition 1 ([22, 23, 24]). For every X,Y ∈ TpM ,

∇̃J∗(X,Y ) =
1

2
V(∇2

XY J +∇2
Y XJ)

−t[(R((J ◦ ∇XJ)∧)Y )hJ(p) + (R((J ◦ ∇Y J)
∧)X)hJ(p)],

where V means ”the vertical component” and ∇2
XY J = ∇X∇Y J −∇∇XY J is the second

covariant derivative of J .

Remark 3. The coefficient of the curvature terms (the horizontal part of ∇̃J∗(X,Y ))

differs from that in [22, 23] by a factor
2

n
, n = dimM , since the inner product on the

endomorphisms of TM used therein is
1

n
TraceAtB , while it is

1

2
TraceAtB here (as

well as in [24]).

Remark 4. For every I ∈ Z, we have the orthogonal decomposition

A(Tπ(I)M) = VI ⊕ {S ∈ A(Tπ(I)M) : IS − SI = 0}.
This implies that the Euler-Lagrange equation [J,∇∗ ∇J ] = 0 is equivalent to the condi-
tion that the vertical part of ∇∗∇J = −Trace∇2J vanishes. Thus, by Proposition 1, J
is a harmonic section if and only if

(10) V Trace ∇̃J∗ = 0.

Proposition 1 implies immediately the following.
Corollary 1. If (M, g, J) is Kähler, the map J : (M, g) → (Z, ht) is a totally geodesic

isometric imbedding.

Proposition 1 has been used in [23] to prove the following.
Theorem 5. ([22, 23]) Each of the Atiyah-Hitchin-Singer and Eells-Salamon almost-

complex structures on the negative twistor space Z− of an oriented Riemannian four-
manifold (M, g) determines a harmonic map from (Z−, ht) into its twistor space if and
only if (M, g) is either self-dual and Einstein, or is locally the product of an open interval
in R and a 3-dimensional Riemannian manifold of constant curvature.

Remark 5. Every manifold that is locally the product of an open interval in R and
a 3-dimensional Riemannian manifold of constant curvature c is locally conformally flat
with constant scalar curvature 6c. It is not Einstein unless c = 0, i.e. Ricci flat.

Remark 6. According to Theorems 4 and 5, the conditions under which J1 or J2 is
a harmonic section or a harmonic map do not depend on the parameter t of the metric
ht. Taking certain special values of t, we can obtain a metric ht with nice properties (cf.,
for example, [17, 18, 51]).

8. Almost-Hermitian structures on 4-manifolds that are harmonic maps

from the manifold into its twistor space. Recall that the metrics ht on the twistor
space of a manifold M depends on the choice of a connection on M . In this section, we
consider the following two cases: (i) M is a Riemannian manifold endowed with its Levi-
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Civita connection; (ii) M is a Riemannian manifold endowed with a metric connection
with totally skew-symmetric torsion.

Let J be a compatible almost-complex structure on M . Considering M with the
orientation determined by J , the map from M into the twistor space determined by J
takes its values in the positive twistor space.

In what follows, the positive twistor space Z+ is simply called “the twistor space” of
(M, g) and is denoted by Z.

In the next two paragraphs, (M, g) denotes a four-dimensional Riemannian manifold
with a compatible almost-complex structure J . The twistor space is considered as the unit
sphere subbundle of Λ2

+TM . Under this interpretation of the twistor space, the map from
M into Z determined by J is the section J = J∧ of Λ2

+TM where J∧ is defined via (4).
Note also that for the curvature terms in Proposition 1 we have (J◦∇XJ)∧ = J∧×∇XJ∧,
the vector-cross product in the fibres of Λ2

+TM .

As is well-known, in dimension four, there are three basic classes in the Gray-Hervella
classification [39] of almost-Hermitian structures: Hermitian, almost-Kähler (symplectic)
and Kähler structures. If (g, J) is Kähler, the map J : (M, g) → (Z, ht) is a totally
geodesic isometric imbedding. So, we shall discuss the cases when the structure (g, J) is
Hermitian, i.e. J is integrable and when (g, J) is almost-Kähler.

8.1. The base manifold is endowed with the Levi-Civita connection. Denote
the Ricci tensor of (M, g) by ρ and let ρ∗ be the ∗-Ricci tensor of the almost-Hermitian
manifold (M, g, J). Recall that the latter is defined by

ρ∗(X,Y ) = Trace{Z → R(JZ,X)JY }.
Note that ρ∗(X,Y ) = ρ∗(JY, JX) by the identity g(R(JZ,X)JY, Z) =
− g(R(Z, JY )J(JX), JZ). Equivalently, ρ∗(X, JX) = 0.

The case of integrable J . Suppose that the almost-complex structure J is inte-
grable. Denote by B the vector field on M dual to the Lee form θ = −δΩ◦J with respect
to the metric g.

Using Proposition 1, one can prove the following.
Theorem 6 ([24]). Suppose that the almost-complex structure J is integrable. Then

the map J : (M, g) → (Z, ht) is harmonic if and only if dθ is a (1, 1)-form w.r.t. J and
ρ(X,B) = ρ∗(X,B) for every X ∈ TM .

The proof of this result and (10) give
Corollary 2. The map J : (M, g) → (Z, ht) representing an integrable almost-

Hermitian structure J on (M, g) is a harmonic section if and only if the 2-form dθ
is of type (1, 1) w.r.t. J .

Remark 7. The 2-form dθ of a Hermitian surface (M, g, J) is of type (1, 1) if and
only if the ⋆-Ricci tensor ρ∗ is symmetric ([24]).

Remark 8. In higher dimensions, Theorem 6 holds for locally conformally Kähler
manifolds (M, g, J) with dimM ≥ 6. This follows from Theorem 10 below.

The case of symplectic J. Recall that an almost-Hermitian manifold is called
almost-Kähler (or symplectic) if its fundamental 2-form is closed.

The Nijenhuis tensor N(X,Y ) of J is skew-symmetric, so it determines a section of
the bundle Hom(Λ2TM, TM) denoted again by N . Denote by Λ2

0TM the subbundle of
Λ2
+TM orthogonal to J (thus Λ2

0TpM = VJ(p)).
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Under this notation we have the following.
Theorem 7 ([24]). Let (M, g, J) be an almost-Kähler 4-manifold. Then the map

J : (M, g) → (Z, ht) is harmonic if and only if the ∗-Ricci tensor ρ∗ is symmetric and

Trace{Λ2
0TM ∋ a → R(τ)(N(a))} = 0.

The proof makes use of Proposition 1 and the Weitzenböck formula.

Example 37 ([24]). Primary Kodaira surfaces. Every primary Kodaira surface
M can be obtained in the following way [48, p.787]. Let ϕk(z, w) be the affine transfor-
mations of C2 given by

ϕk(z, w) = (z + ak, w + akz + bk),

where ak, bk, k = 1, 2, 3, 4, are complex numbers such that

a1 = a2 = 0, Im(a3a4) = mb1 6= 0, b2 6= 0

for some integerm > 0. The maps ϕk generate a group G of transformations acting freely
and properly discontinuously on C

2, and M is the quotient space C
2/G. The complex

two-dimensional manifold M = C
2/G is compact.

It is well-known that M can also be described as the quotient of C2 endowed with a
group structure by a discrete subgroup Γ. The multiplication on C

2 is defined by

(a, b).(z, w) = (z + a, w + az + b), (a, b), (z, w) ∈ C
2,

and Γ is the subgroup generated by (ak, bk), k = 1, . . . , 4 (see, for example, [11]). Every
Γ-left-invariant object on C

2 descends to a globally defined object on M and both of
them will be denoted by the same symbol. Thus, instead on M , we shall deal with
Γ-left-invariant objects on C

2.

As in [21], take a frame of left-invariant (under the group C
2) vector fields A1, . . . , A4

such that

(11) [A1, A2] = −2A4, [Ai, Aj ] = 0 otherwise.

These identities are satisfied, for example, by the following left-invariant frame

(12) A1 = − ∂

∂x
− x

∂

∂u
+ y

∂

∂v
, A2 =

∂

∂y
+ y

∂

∂u
+ x

∂

∂v
, A3 =

∂

∂u
, A4 =

∂

∂v
,

where x+ iy = z, u+ iv = w.

Let g be the Riemannian metric for which the frame A1, . . . , A4 is orthonormal.

Complex structures on primary Kodaira surfaces. It is a result by K. Hasegawa [41]
that every complex structure on M is induced by a left-invariant complex structure on
C

2. It is not hard to see ([52, 21]) that a left-invariant almost-complex structure J on
C

2 compatible with the metric g is integrable if and only if it is given by

(13) JA1 = ε1A2, JA3 = ε2A4, ε1, ε2 = ±1.

Denote by θ the Lee form of the Hermitian structure (g, J), where J = Jε1,ε2 is defined
by means of the latter identities.

Using (11), one can easily find that the non-zero covariant derivatives ∇Ai
Aj are

∇A1
A2 = −∇A2

A1 = −A4, ∇A1
A4 = ∇A4

A1 = A2, ∇A2
A4 = ∇A4

A2 = −A1.

This implies that the Lie form is θ(X) = −2ε1g(X,A3). Therefore

(14) B = −2ε1A3, ∇θ = 0.
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Thus, dθ = 0. Set for short Rijk = R(A1, Aj)Ak. Then the non-zero Rijk are

R121 = −3A2, R122 = 3A1, R141 = A4,

R144 = −A1, R242 = A4, R244 = −A2.

Set also ρij = ρ(Ai, Aj), ρ
∗
ij = ρ∗(Ai, Aj). Then

(15)
ρij = 0 and ρ∗ij = 0 except

ρ11 = ρ22 = −2, ρ44 = 2, ρ∗11 = ρ∗22 = −3.

It follows from (14), (15) and Theorem 6 that the map J : (M, g) → (Z, ht) corresponding
to J is harmonic.

It is easy to give an explicit description of the twistor space (Z, ht) ([21]), since Λ
2
+M

admits a global orthonormal frame defined by

s+1 = ε1A1 ∧ A2 + ε2A3 ∧A4, s+2 = A1 ∧A3 + ε1ε2A4 ∧ A2,

s+3 = ε2A1 ∧ A4 + ε1A2 ∧ A3.

Then we have a natural diffeomorphism f : Z ∼= M × S2 defined by

3∑

k=1

xks
+
k (p)) →

(p, x1, x2, x3) under which J becomes the section p → (p, 1, 0, 0). Denote the pushforward
of the metric ht under f again by ht. For x = (x1, x2, x3) ∈ S2, set

u1(x) = ε1ε2(−x3, 0, x1), u2(x) = ε2(x2,−x1, 0),

u3(x) = 0, u4(x) = ε1(0, x3,−x2).

The differential f∗ sends the horizontal lifts Ah
i i = 1, . . . , 4, at a point σ =

3∑

k=1

xks
+
k (p) ∈

Z to the vectors Ai + ui of TM ⊕ TS2. Then, if X,Y ∈ TpM and P,Q ∈ TxS
2,

ht(X + P, Y +Q) = g(X,Y ) + t

〈
P −

4∑

i=1

g(X,Ai)ui(x), Q −
4∑

j=1

g(Y,Aj)uj(x)

〉

where 〈·, ·〉 is the standard metric of R3.

Almost-Kähler structures on primary Kodaira surfaces. Now suppose again that J is
a left-invariant almost-complex structure on C

2 compatible with the metric g. Then the
almost-Hermitian structure (g, J) is almost-Kähler (symplectic) if and only if J is given
by ([52, 21])

JA1 = −ε1 sinϕA3 + ε1ε2 cosϕA4, JA2 = − cosϕA3 − ε2 sinϕA4,

JA3 = ε1 sinϕA1 + cosϕA2, JA4 = −ε1ε2 cosϕA1 + ε2 sinϕA2,

ε1, ε2 = ±1, ϕ ∈ [0, 2π).

The Nijenhuis tensor of such a structure is not zero, so it is not Kählerian. Suppose that
J = Jε1,ε2 is determined by these identities and set

(16)
E1 = A1, E2 = −ε1 sinϕA3 + ε1ε2 cosϕA4,

E3 = cosϕA3 + ε2 sinϕA4, E4 = A2.

Then E1, . . . , E4 is an orthonormal frame of TM for which JE1 = E2 and JE3 = E4.
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Computing the curvature components R(Ei, Ej)Ek, then ρ∗(Ei, Ej), one can see that
the ∗-Ricci tensor is symmetric. Define an orthonormal frame s+l , l = 1, 2, 3, of Λ2

+TM
by means of E1, . . . , E4 via (5). Computing the values N(Ei, Ej) of the Nijenhuis tensor,
one gets

Trace{Λ2
0TM ∋ a → R(τ)(N(a))} = R(s2)(N(s2)) +R(s3)(N(s3)) = 0.

Thus, by Theorem 7, J defines a harmonic map (M, g) → (Z, ht).

As in the preceding case, it is easy to find an explicit description of the twistor
space Z of M and the metric ht ([21]). The frame {s+1 , s+2 , s+3 } gives rise to an obvious
diffeomorphism f : Z ∼= M × S2 under which J becomes the map p → (p, 1, 0, 0).
The differential f∗ of this diffeomorphism sends the horizontal lifts Eh

i , i = 1, . . . , 4, to
Ei + ui ∈ TM ⊕ TS2, where

u1(x) = (x3ε1ε2 cosϕ, x3ε2 sinϕ,−x1ε1ε2 cosϕ− x2ε2 sinϕ),

u2(x) = (x2ε1ε2 cosϕ,−x1ε1ε2 cosϕ, 0), u3(x) = (x2ε2 sinϕ,−x1ε2 sinϕ, 0)

u4(x) = (−x3ε2 sinϕ, x3ε1ε2 cosϕ, x1ε2 sinϕ− x2ε1ε2 cosϕ).

for x = (x1, x2, x3) ∈ S2. Then, if X,Y ∈ TpM and P,Q ∈ TxS
2,

(17) ht(X + P, Y +Q) = g(X,Y ) + t

〈
P −

4∑

i=1

g(X,Ei)ui(x), Q −
4∑

j=1

g(Y,Ej)uj(x)

〉
.

Example 38 ([24]). Four-dimensional Lie groups with a non-integrable left-

invariant almost-Kähler structure. By a result of A. Fino [36], for every left-invariant
(non-integrable) almost-Kähler structure (g, J) with J-invariant Ricci tensor on a 4-
dimensional Lie group M , there exists an orthonormal frame of left-invariant vector
fields E1, . . . , E4 such that

JE1 = E2, JE3 = E4

and

[E1, E2] = 0, [E1, E3] = sE1 +
s2

t
E2, [E1, E4] =

s2 − t2

2t
E1 − sE2

[E2, E3] = −tE1 − sE2, [E2, E4] = −sE1 −
s2 − t2

2t
E2, [E3, E4] = −s2 + t2

t
E3

where s and t 6= 0 are real numbers. Using this table one can compute the ∗-Ricci and
Nijenhius tensors. The computation shows that J defines a harmonic map by virtue of
Theorem 7.

Example 39 ([24]). Inoue surfaces of type S
0. Let us recall the construction

of these surfaces ([45]). Take a matrix A ∈ SL(3,Z) with a real eigenvalue α > 1
and two complex eigenvalues β and β, β 6= β. Choose eigenvectors (a1, a2, a3) ∈ R

3 and
(b1, b2, b3) ∈ C

3 of A corresponding to α and β, respectively. Then the vectors (a1, a2, a3),
(b1, b2, b3), (b1, b2, b3) are C-linearly independent. Denote the upper-half plane in C by
H and let Γ be the group of holomorphic automorphisms of H× C generated by

go : (w, z) → (αw, βz), gi : (w, z) → (w + ai, z + bi), i = 1, 2, 3.

The group Γ acts on H× C freely and properly discontinuously. Then M = (H× C)/Γ
is a compact complex surface known as the Inoue surface of type S0. It has been shown
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by F. Tricerri [64] that every such a surface admits a locally conformally Kähler metric
g obtained from the Γ-invariant Hermitian metric

(18) g =
1

v2
(du⊗ du+ dv ⊗ dv) + v(dx⊗ dx+ dy ⊗ dy), u+ iv ∈ H, x+ iy ∈ C.

Instead on M , we work with Γ-invariant objects on H×C. Let Ω be the fundamental 2-
form of the Hermitian structure (g, J) on H×C, J being the standard complex structure.
Then

dΩ =
1

v
dv ∧ Ω.

Hence the Lee form is θ = d ln v. In particular, dθ = 0, i.e. (g, J) is a locally conformally
Kähler structure. Set

(19) E1 = v
∂

∂u
, E2 = v

∂

∂v
, E3 =

1√
v

∂

∂x
, E4 =

1√
v

∂

∂y
.

These are Γ-invariant vector fields constituting an orthonormal frame such that JE1 =
E2, JE3 = E4, and E2 = B, the dual vector field of θ. In fact, what is important for
our considerations is not the specific definition of the vector fields (19), but the property
that E1, . . . , E4 constitute an orthonormal frame of Γ-invariant vector fields such that

(20)

JE1 = E2, JE3 = E4,

[E1, E2] = −E1, [E2, E3] = −1

2
E3, [E2, E4] = −1

2
E4,

all other [Ei, Ej ] = 0.

Then we have the following table for the Levi-Civita connection ∇ of g:

∇E1
E1 = E2, ∇E1

E2 = −E1,

∇E3
E2 =

1

2
E3, ∇E3

E3 = −1

2
E2, ∇E4

E2 =
1

2
E4, ∇E4

E4 = −1

2
E2,

and all other ∇Ei
Ej = 0. It follows from these identities that B = E2 and

ρ(Ek, B) = ρ∗(Ek, B) = 0 for k = 1, 3, 4, ρ(E2,B) =
1

2
, ρ∗(E2,B) = −1.

By Corollary 2, J : (M, g) → (Z, ht) is a harmonic section. However J is not a harmonic
map by Theorem 6.

8.2. The base manifold is endowed with a metric connection with to-

tally skew-symmetric torsion. Let (N, h), (N ′, h′) be Riemannian manifolds and
f : N → N ′ a smooth map. If f∗TN ′ is the pull-back bundle of the bundle TN ′ under
the map f , we can consider the differential f∗ : TN → TN ′ as a section of the bundle
Hom(TN, f∗TN ′). Suppose we are given connections D and D′ on TN and TN ′, respec-
tively. Denote by D′∗ the connection on f∗TN ′ induced by the connection D′ of TN ′.
The connections D and D′∗ give rise to a connection D̂ on the bundle Hom(TN, f∗TN ′).
Define a bilinear form on N setting

IIf (D,D′)(X,Y ) = (D̂Xf∗)(Y ), X, Y ∈ TN.

If D and D′ are torsion-free, this form is symmetric. Recall that the map f is harmonic
if for the Levi-Civita connections ∇ and ∇′ of TN and TN ′,

Traceh IIf (∇,∇′) = 0.
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Now, suppose that D andD′ are metric connections with totally skew-symmetric torsions
T and T ′, i.e. the trilinear form

T (X,Y, Z) = h(T (X,Y ), Z), X, Y, Z ∈ TN,

is skew-symmetric, and similarly for T ′(X,Y, Z) = h′(T ′(X,Y ), Z). Recall that, on a
Riemannian manifold, there is a unique metric connection with a given torsion; for an
explicit formula see, for example, [40, Sec. 3.5, formula (14)]. Since the torsion 3-forms
T and T ′ are skew-symmetric,

(21) DXY = ∇XY +
1

2
T (X,Y ), D′

XY = ∇′
XY +

1

2
T ′(X,Y ).

A simple computation gives the following.
Proposition 2 ([26]). Let f : (N, h) → (N ′, h′) be a smooth map of Riemannian

manifolds endowed with metric connections D and D′ with totally skew-symmetric tor-
sions T and T ′. Denote the Levi-Civita connections of (N, h) and (N, h′) by ∇ and ∇′.
Then

Traceh IIf (D,D′) = Traceh IIf (∇,∇′).

Corollary 3. A map f : N → N ′ is harmonic if and only if

Traceh IIf (D,D′) = 0.

This observation suggests that the metric connections with skew-symmetric torsion
can be used for studying harmonic maps between Riemannian manifolds endowed with
additional structures that are preserved by such connections.

Now, let again (M, g) be an oriented (connected) Riemannian manifold of dimension
four, J a compatible almost-complex structure on it and J : M → Z the map of M into
the positive twistor space determined by J .

Let D be a metric connection on M . As we have noted, any metric connection gives
rise to a splitting TZ = H⊕V into horizontal and vertical subbundles which allows one
to define a 1-parameter family of Riemannian metrics ht = hD

t on the twistor space as
in (6).

Denote the Levi-Civita connection of ht by D̃. One can compute the second funda-
mental form

IIJ(D, D̃)

along the same lines as in the case of Levi-Civita connections.

Suppose that the metric connection D has totally skew-symmetric torsion T , so
T (X,Y, Z) = g(T (X,Y ), Z) is a skew-symmetric 3-form. Let ∗ : ΛkT ∗M → Λ4−kT ∗M ,
k = 0, . . . , 4, be the Hodge star operator. Set τ = ∗T . Clearly, the 1-form τ uniquely
determines the 3-form T , hence the connection D.

Let RD be the curvature tensor of the connection D. The Ricci tensor and ∗-Ricci
tensor of D are defined by

ρD(X,Y ) = Trace{Z → g(RD(X,Z)Y, Z)},
ρ∗D(X,Y ) = Trace{Z → g(RD(JZ,X)JY, Z)}.

As above, we denote the Lee form of the almost-Hermitian manifold (M, g, J) by θ, so
θ = −δΩ ◦ J .

Further on, we shall frequently identify TM and T ∗M by means of the metric g.
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The case of integrable J . Using Corollary 3 and the formula obtained for IIJ(D, D̃)
in [26], one can prove the following.

Theorem 8. ([26]) An integrable almost-Hermitian structure J determines a har-
monic map J : (M, g) → (Z, hD

t ) if and only if 2-form

dθ − dτ − ıBT
is of type (1, 1) with respect to J and for every X ∈ TM

ρD(X,B)− ρ∗D(X,B)− ρD(X, τ) + ρ∗D(X, τ) = 0.

Remark 9. Note that for the Levi-Civita connection, i.e. τ = 0, this theorem
coincides with Theorem 6.

Remark 10. If D is the metric connection with totally skew-symmetric torsion deter-
mined by the 1-form τ = θ, the conditions of this theorem are trivially satisfied. In fact,
in this case, D is Bismut-Strominger connection [7, 62], the unique metric connection
with totally skew-symmetric torsion preserving the complex structure (DJ = 0). Actu-
ally, the fact that the map J is harmonic when we endow M with the Bismut-Strominger
connection follows directly from the formula obtained for the second fundamental form of
J. It is natural to ask if there are other metric connections with totally skew-symmetric
torsion on M for which J is harmonic.

Example 40 ([26]). Primary Kodaira surfaces. In the notation above, let J be
the complex structure defined by (13). Denote the dual frame of A1, . . . , A4 by α1, . . . , α4.
Thus θ = −2ε1α3. Any left-invariant 1-form τ is of the form τ = a1α1 + · · · + a4α4,
where a1, . . . , a4 are real constants. The form

dθ − dτ − ıBT = 2(ε1 − 1)a4α1 ∧ α2 − 2ε1(a2α1 ∧ α4 − a1α2 ∧ α4)

is of type (1, 1) w.r.t. J if and only if a1 = a2 = 0. Let D be the metric connection with
totally skew-symmetric torsion T determined by the form τ . It is not hard to obtain the

values of DAi
Aj = ∇Ai

Aj+
1

2
T (Ai, Aj), i, j = 1, . . . , 4, then to compute the components

RD(Ai, Aj)Ak of the curvature tensor of D. Of course, the next step is to compute
ρD(Ai, Aj) and ρ∗D(Ai, Aj). As a result, one sees that the identity

ρD(Z,B)− ρ∗D(Z,B) − ρD(Z, τ) + ρ∗D(Z, τ) = 0

is satisfied for every Z ∈ TM if and only if

(1− ε1)a4 = 0, (1− ε1)(2− a3)a4 = 0.

Clearly, if ε1 = 1, the system is satisfied for any a3 and a4, and if ε1 6= −1, the solution
of the system is a4 = 0, a3-arbitrary. Thus, on a Kodaira surface, there are many
metric connections with totally skew-symmetric torsion for which the complex structures
J defines a harmonic map from (M, g) into its twistor space (Z, hD

t ) .

Example 41 ([26]). Inoue surfaces of type S
0. Recall that the map J : (M, g) →

(Z, ht) is not harmonic, if we use the Levi-Civita connection of (M, g) in order to define
the metric ht, but it is harmonic if we use the Bismut-Strominger connection of (M, g, J).
In the notation of Sec. 8.1, denote the dual frame of of the frame of vector fields E1, . . . , E4

by η1, . . . , η4. The 1-forms η1, . . . , η4 are Γ-invariant. Take a Γ-invariant 1-form τ =
a1η1 + · · ·+ a4η4 where a1, . . . , a4 are real constants. Denote by D the connection which
is metric w.r.t. g and has totally skew-symmetric torsion determined by τ . Proceeding
in a way similar to that in the preceding example, one can see that the map J : (M, g) →
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(Z, hD
t ) is harmonic exactly when τ coincides with the Lee form θ, i.e. D is the Bismut-

Strominger connection.

The case of symplectic J. As above, let Λ2
0TM be the subbundle of Λ2

+TM
orthogonal to RJ. Set

κD(X) = Trace{Λ2
0TM ∋ a → g(RD(N(a) ∧X), a)}, X ∈ TM.

Note that if D is the Levi-Civita connection,

g(RD(N(a) ∧X), a) = g(RD(a)N(a), X),

hence

κD(X) = g(Trace{Λ2
0TM ∋ a → RD(a)(N(a))}, X).

Let ρ∗ be the ∗-Ricci tensor of (M, g, J) with respect to the Levi-Civita connection.
Theorem 9. ([60]) Let (M, g, J) be an almost-Kähler 4-manifold. Then the map

J : (M, g) → (Z, hD
t ) is harmonic if and only if for every X,Y ∈ TM the tensor

2ρ∗(X,Y ) + dτ(X,Y )− 1

2
g(N(X,Y ), τ)

is of type (1, 1) with respect to J and

κD(X) + ρD(X, τ)− ρ∗D(X, τ) = 0

Remark 11. If D is the Levi-Civita connection, then τ = 0 and this theorem coin-
cides with Theorem 7.

Remark 12. By [38, Proposition 4], an almost-Kähler manifold admits a metric
connectionD with totally skew-symmetric torsion for which the almost-complex structure
J is parallel (DJ = 0) if and only if the structure is Kählerian. Thus, in this case the
Bismut-Strominger connection is the Levi-Civita one.

Example 42 ([60]). Primary Kodaira surfaces. As above, we view each primary
Kodaira surface M as the quotient of C

2 considered as a multiplicative group by a
subgroup Γ. In general, we do not make any difference between Γ-invariant objects
on C

2 and objects on M = C
2/Γ. Let A1, . . . , A4 be a frame of left-invariant vector

fields satisfying the commutation relations (11), say the frame (12). Also, let g be
the Riemannian metric for which this frame is orthonormal. Let E1, . . . , E4 be the
g-orthonormal frame defined by (16). As we have remarked, if J = Jε1,ε2 is the almost-
complex structure for which JE1 = E2, JE3 = E4, then (g, J) is an almost-Kähler
structure (and any such a structure on M is of this type). Denote the dual frame of
E1, . . . , E4 by γ1, . . . , γ4. Any left-invariant 1-form on C

2 is of the form τ = a1γ1 + · · ·+
a4γ4 where a1, . . . , a4 are real constants. Let D be the metric connection with totally
skew-symmetric torsion determined by the form τ . After a long computation, one can
see that J determines a harmonic map from (M, g) to (Z, ht) if and only if the torsion
of the connection D is determined by the form τ = a2γ2 + a3γ3, where the constants a2
and a3 satisfies the identity ε1a2 cosϕ+ a3 sinϕ = 0.

Example 43 ([60]). Four-dimensional Lie groups with a non-integrable left-

invariant almost-Kähler structure. The description of four-dimensional Lie groups
M admitting a non-integrable left-invariant almost-Kähler structure (g, J) with J-invari-
ant Ricci tensor found by A. Fino [36] has been given in the preceding paragraph. Let
D be the metric connection with totally skew-symmetric torsion determined by a left-
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invariant form τ . A tedious computation shows that J yields a harmonic map (M, g) →
(Z, hD

t ) if and only if τ = 0, i.e. D is the Levi-Civita connection of the metric g.

9. Almost-Hermitian structures on Weyl manifold that are pseudo-harmonic

maps from the manifold into its twistor space. If g and g1 = efg are conformal
metrics, then clearly every g-orthogonal endomorphism of any tangent space TpM is g1-
orthogonal and vice versa. Hence the Riemannian manifolds (M, g) and (M, g1) have the
same twistor space, i.e. the twistor space depends on the conformal class of g rather than
the metric g itself. Recall that the definitions of the Atiyah-Hitchin-Singer and Eells-
Salamon almost-complex structures depend on the decomposition TZ = H ⊕ V into
horizontal and vertical parts, this decomposition being yielded by the Levi-Civita con-
nection of the metric on the base manifold M . As is well known [4], the Atiyah-Hitchin-
Singer almost-complex structures on Z defined by means of two conformal metrics g and
g1 = efg coincide as well as their integrability condition (anti/self-duality). Thus, the
Atiyah-Hitchin-Singer almost-complex structure is invariant under conformal changes of
the metric of M . On the other hand, the Eells-Salamon almost-complex structures is
not conformally invariant [34]. In fact, it is not hard to show [28] that among all almost
complex structures on the twistor space defined by means of a morphism of the twistor
bundle ([29]), the Atiyah-Hitchin-Singer almost-complex structures is the only one which
is invariant under conformal changes of the base manifold metric.

Given a smooth manifold M endowed with a class c of conformal Riemannian metrics,
it is natural to consider connections preserving the conformal class in the sense that for
every Riemannian metric g in c, there exists a 1-form ϕg such that DXg = ϕg(X)g for
every X ∈ TM ; obviously, such a form is unique. In the particular case c = {g} and
ϕg = 0, this condition reduces to the requirement that D is a metric connection. Of
special interest are those connections preserving c that have vanishing torsion. These are
the Weyl connections studied in different aspects by many authors.

Let J be an almost-complex structure on M compatible with one, hence with all
metrics in the conformal class c. As above, give M the orientation induced by J and
consider J as map from M into the positive twistor space Z of the Riemannian metrics
in c. In this context, as we have already mentioned, it is natural to ask when the map
J : M → Z is pseudo-harmonic in the sense of G. Kokarev [49]. Here is the relevant
definition.

Let M and M ′ be smooth manifolds endowed with torsion-free connections D and
D′, respectively. Let g be a Riemannian metric on M . A smooth map ϕ : M → M ′

is called pseudo-harmonic in [49] if the trace of its second fundamental form defined by
means of D and D′ vanishes, Traceg IIϕ(D,D′) = 0. Clearly, this condition is invariant
under conformal changes of the metric g.

Let (M, c) be a conformal manifold and D a Weyl connection on it. For g ∈ c, denote
the Levi-Civita connection of g by ∇g. Then

(22) DXY = ∇g
XY − 1

2
[ϕg(X)Y + ϕg(Y )X − g(X,Y )ϕ♯

g ],

where the 1-form ϕg is determined by Dg = ϕg ⊗ g and ϕ♯
g is the dual vector field of

the form ϕg with respect to the metric g: g(ϕ♯
g, Z) = ϕg(Z). If g1 = efg is another
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Riemannian metric in the conformal class, f being a smooth function, then

(23)
∇g1

X Y = ∇g
XY +

1

2
[X(f)Y + Y (f)X − g(X,Y )∇gf ],

ϕg1 = df + ϕg, ϕ♯

g1 = e−f(ϕ♯
g +∇gf),

where ∇gf is the gradient of f with respect to g, g(∇gf,X) = X(f) for X ∈ TM .

Note that if g is a Riemannian metric and ϕ is a 1-form on a manifold, there is a
unique Weyl connection for the conformal class c of g such that ϕg = ϕ. Indeed, for
any conformal metric g1 = efg, set ϕg1 = df + ϕg. Then, by (23), the right-hand side
of (22) does not depend on the choice of a metric in c, so identity (22) defines a Weyl
connection.

Consider the bundle Z as a subbundle of the bundle A(TM) of the endomorphisms
of TM that are skew-symmetric with respect to one Riemannian metric in c, hence with
respect to all such metrics. Denote the connection on the vector bundle Hom(TM, TM)
induced by D also by D. Endow the bundle Hom(TM, TM) with the metric G(a, b) =
1

2
Traceg{TM ∋ X → g(aX, bX)}, where g is a Riemannian metric in c. Clearly the

metric G does not depend on the particular choice of g. It is easy to see that the induced
connection D preserves the metric G (DG = 0) as well as the bundle A(TM). The
horizontal space of the vector bundle A(TM) with respect to D at a point I ∈ Z is
tangent to Z, and we have the decomposition TZ = H⊕V . Fix a metric g ∈ c. As in the
preceding sections, using the decomposition TZ = H ⊕ V , we can define a 1-parameter
family of Riemannian metrics on Z setting g̃t(X

h + V, Y h +W ) = g(X,Y ) + tG(V,W ),
t > 0. Then the projection map π : (Z, g̃t) → (M, g) is a Riemannian submersion with

totally geodesic fibres. Denote the Levi-Civita connection of g̃t by D̃, and define a new
torsion-free connection D′ = D′

g,t on Z as follows. Let I ∈ Z. Let X,Y be vector fields
on M in a neighbourhood of p = π(I), and let V,W be vertical vector fields on Z in a
neighbourhood of I. Set

(24)
(D′

XhY
h)I = (DXY )hI +

1

2
RD(X,Y )I,

D′
V X

h = D̃V X
h, D′

XhV = D̃XhV, D′
V W = D̃V W.

Note that the summand RD(X,Y )I in the first formula is a vertical vector at I. Also,
the fibres of the bundle π : Z → M are still totally geodesic submanifolds when Z is
considered with the connection D′.

Suppose that the almost-complex structure J is integrable. Let

θ = − 2

n− 2
δΩ ◦ J

be the Lee form of the Hermitian structure (g, J). If n = 4, this form satisfies the identity

(25) dΩ = θ ∧ Ω.

For n ≥ 6, this identity is satisfied if and only if (g, J) is a locally conformally Kähler
structure. If identity (25) is satisfied by a Hermitian structure (g, J), it is also satisfied
by any Hermitian structure (g1, J) with g1 = efg, f being a smooth function, since
Ω1 = efΩ and θ1 = θ + df by the first identity of (23). As is well-known, if n ≥ 6,
identity (25) implies dθ = 0. Note also that, in any dimension, an Hermitian structure
(g, J) is locally conformally Kähler if and only if dΩ = θ∧Ω and dθ = 0, see, for example,
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[32, 66]. Clearly, if (g, J) is such a structure, then for any metric g1 conformal to g, the
structure (g1, J) is also locally conformally Kähler.

The Ricci and the ∗ Ricci tensors are defined by

ρD(X,Z) = Traceg{Y → g(RD(X,Y )Z, Y )},
ρ∗D(X,Z) = Traceg{Y → g(RD(JY,X)JZ, Y )},

where g is a metric in the conformal class c. Clearly, ρD and ρ∗D do not depend on the
particular choice of the metric g.

Computing the curvature RD by means of (22), one can obtain the following formulas
for the tensors ρD and ρ∗D.

Proposition 3. ([27]) Let ρg and ρ∗g be the Ricci tensor and the ⋆-Ricci tensor with
respect to a Riemannian metric g ∈ c. Then

ρD(X,Z) = ρg(X,Z) +
n− 1

2
(∇g

Xϕg)(Z)− 1

2
(∇g

Zϕg)(X)

−n− 2

4

[
‖ϕg‖2g(X,Z)− ϕg(X)ϕg(Z)

]
− 1

2
(δgϕg)g(X,Z).

ρ∗D(X,Z) = ρ∗g(X,Z) + (∇g
Xϕg)(Z)− 1

2

[
(∇g

Zϕg)(X)− (∇g
JXϕg)(JZ)

]

+
1

4

[
ϕg(X)ϕg(Z) + ϕg(JX)ϕg(JZ)− ‖ϕg‖2g(X,Z)

]

+
1

2

[
δg(J∗ϕg)− ϕg(δ

gJ)
]
g(X, JZ),

where the norms and the codifferential are taken with respect to the metric g.
As is well-known, ρg(X,Z) = ρg(Z,X) and ρ∗g(X,Z) = ρ∗g(JZ, JX). Proposition 3

and these identities imply the following.

Corollary 4. ρD(X,Z)− ρD(Z,X) =
n

2
dϕg(X,Z).

ρ∗D(X,Z)− ρ∗D(JZ, JX) = dϕg(X,Z) + dϕg(JX, JZ).
Corollary 5. (1) The Ricci tensor ρD is symmetric if and only if dϕg = 0.

(2) The ∗-Ricci tensor ρ∗D satisfies the identity ρ∗D(X,Z) = ρ∗D(JZ, JX) for all X,Z ∈
TM if and only if the (1, 1)-component of dϕg w.r.t. J vanishes.

Claim (1) is well-known. Note also that, by (23), the 2-form dϕg does not depend on
the choice of g ∈ c.

Under the notation above, we have the following.
Theorem 10 ([27]). Let (M, c) be a conformal n-dimensional manifold with a Weyl

connection D, let g ∈ c and set ϕ = ϕg. Suppose that J is a Hermitian structure
on (M, c) such that Lee form θ of (g, J) satisfies identity (25). Let D′ be the torsion-
free connection on Z defined by (24). Then J determines a (D,D′)-pseudo-harmonic
map from M into the positive twistor space Z of (M, c) if and only if the following two
conditions are satisfied.

(i) The 2-form

d(θ − ϕ) +
n(n− 4)

2(n− 2)
θ ∧ ϕ

is of type (1, 1) with respect to J .
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(ii) For every tangent vector Z ∈ TM ,(n
2
− 1

)
dϕ((θ − ϕ)♯, Z)− dϕ(J(θ − ϕ)♯, JZ)− (θ − ϕ)(JZ)dϕ(J∧)

−ρD((θ − ϕ)♯, Z) + ρ∗D(J(θ − ϕ)♯, JZ) = 0

where ♯ : T ∗M → TM is the isomorphism defined by means the metric g.
Corollary 6. In the notation of Theorem 10, if dimM = 4, J determines a (D,D′)-

pseudo-harmonic map from M into the positive twistor space Z of (M, c) if and only if
the 2-form d(θ − ϕ) is of type (1, 1) with respect to J and

(θ − ϕ)(JZ)dϕ(J∧) + ρD((θ − ϕ)♯, Z)− ρ∗D(J(θ − ϕ)♯, JZ) = 0 for Z ∈ TM.

Remark 13. If c consists of a single metric g and we set ϕg = 0, then D is the
Levi-Civita connection of g and D′ is the Levi-Civita connection of g̃t. In this case,
Corollary 6 coincides with [24, Theorem 1].

If D is the Weyl connection determined by g and the 1-form ϕ = θ, then conditions
(i) and (ii) of Theorem 10 are trivially satisfied, hence J : M → Z is a pseudo-harmonic
map. This follows directly from the formula for the second fundamental form IIJ (D,D′)
obtained in [27] since DJ = 0 by (22) and the following well-known formula

2(∇g
XJ)(Y ) = g(JX, Y )θ♯ − g(θ♯, Y )JX + g(X,Y )Jθ♯ − g(Jθ♯, Y )X.

In fact, D is the unique Weyl connection preserving the conformal class of g and such
that DJ = 0 ([66]).

Example 44 ([27]). Primary Kodaira surfaces. Recall that we consider each
primary Kodaira surface M as the quotient of C2 considered as a multiplicative group by
a certain subgroup Γ. Let J = Jε1,ε2 be the left-invariant complex structure on C

2 defined
by (13). Denote the dual basis of A1, . . . , A4 by α1, . . . , α4. Thus θ = −2ε1α3. Also, let
again g be the metric for which the frame A1, . . . , A4 is orthonormal. Any left-invariant
1-form ϕ is of the form ϕ = a1α1 + · · ·+ a4α4, where a1, . . . , a4 are real constants. The
Levi-Civita connection ∇ of the metric g is left-invariant. Thus, the connection D on C

2

defined via (22) by means the metric g and the form ϕ is left-invariant, hence it yields a
Weyl connection on M denoted again by D. Applying Theorem 10, one can show that
J determines a (D,D′)-pseudo-harmonic map M → Z if and only if one of the following
holds. (1) ε2 = 1 and a1 = a2 = 0, a3, a4-arbitrary; (2) ε2 = −1 and a1, a2-arbitrary,
a3 = −2ε1, a4 = 0; (3) ε2 = −1 and a1 = a2 = 0, a3 6= −2ε1, a4 = 0. Thus, on a Kodaira
surface, there are many Weyl connections for which the complex structures Jε1,ε2 are
pseudo-harmonic maps.

Example 45 ([27]). Inoue surfaces of type S
0. Let M = (H × C)/Γ be an

Inoue surface of type S0 endowed with the metric g defined by (18). Let E1, . . . , E4 be
Γ-invariant g-orthonormal vector fields on H× C satisfying conditions (20). Denote the
dual frame of E1, . . . , E4 by η1, . . . , η4. Take a Γ-invariant 1-form ϕ = a1η1 + · · ·+ a4η4
where a1, . . . , a4 are real constants. The Levi-Civita connection ∇ of the metric g is Γ-
invariant, hence the connection D on H×C defined via (22) by means the metric g and
the form ϕ yields a Weyl connection on M . One can prove that the complex structure J
of M is a pseudo-harmonic map from M into its twistor space only when ϕ = θ, i.e. D
is the Weyl connection determined by g and the Lee form θ of (g, J).

The next statement is a weaker version of [58, Proposition 1.3]. It is an easy conse-
quence from Theorem 10 (as well from Theorem 8 in the four-dimensional case) and the
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uniqueness theorem for pseudo-harmonic maps [49] (respectively, for harmonic maps).
Corollary 7. Let J1 and J2 be two Hermitian structures on a (connected) Rieman-

nian manifold (M, g). Suppose that J1 and J2 have the same Lee form θ satisfying iden-
tity (25). If J1 and J2 coincide on an open subset or, more-generally, if they coincide to
infinite order at a point, they coincide on the whole manifold M .

Remark 14. In fact, M. Pontecorvo [58] has proved that the conclusion of the above
corollary holds without the assumption on the Lee forms. The idea of his proof is inspired
by the theory of pseudo-holomorphic curves. It makes use of the observation in [34] that
an almost-Hermitian structure J on a Riemannian manifold M is integrable if and only
if the corresponding map J : M → Z is pseudo-holomorphic with respect to the almost-
complex structure J on M and the Atiyah-Hitchin-Singer almost-complex structure J1

on Z.
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ПОЧТИ ЕРМИТОВИ СТРУКТУРИ, ТУИСТОРНИ ПРОСТРАНСТВА
И ХАРМОНИЧНИ ИЗОБРАЖЕНИЯ

Йохан Давидов

В първата част на статията се припомня понятието за почти комплексна струк-
тура и се разглеждат някои топологични препятствия за съществуването на та-
кава структура. Освен това са представени основни факти за туисторните прост-
ранства като параметризационни пространства на почти Ермитовите структури,
т.е. ортогоналните почти комплексни структури, върху Риманово (или конфор-
мно) многообразие. Във втората част се разглежда проблемът кога една поч-
ти Ермитова структура върху Риманово или конформно многообразие определя
хармонично или псевдо-хармонично изображение от многообразието в неговото
туисторно пространство. Обсъждат се неотдавнашни резултати на автора (и съ-
автори) по този проблем главно в случая на четиримерно базово многообразие.

Тъй като този обзор е предназначен за широка аудитория, включително сту-
денти, и в двете части по-голямо внимание е отделено на изясняващи примери,
отколкото на техническите подробности на доказателствата.
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