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Abstract: In the present work, a fractional temporal SIR model is considered. The total population
is divided into three compartments—susceptible, infected and removed individuals. It generalizes
the classical SIR model and consists of three coupled time-fractional ordinary differential equations
(ODEs). The fractional derivative is introduced to account for the subdiffusion process of confirmed,
cured and deceased people dynamics. Although relatively basic, the model is robust and captures
the real dynamics, helped by the memory property of the fractional system. In the paper, the issue
of an adequate model reconstruction is addressed, and a coefficient identification inverse problem
is solved; in particular, the transition and recovering rates, varying in time, are recovered. A least-
squares cost functional is minimized for solving the problem. The time-dependent parameters are
reconstructed with an iterative predictor–corrector algorithm. Its application is demonstrated via tests
with synthetic and real data. What is more, an approach for economic impact assessment is proposed.

Keywords: COVID-19 outbreak; SIR modeling; basic reproduction number; Caputo derivative;
economic impact
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1. Introduction

COVID-19 is an infectious disease caused by a new virus called Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China in December
2019. The subsequent epidemic outbreak has affected the human routine until now, and
the situation is not going to change in the near future.

The COVID-19 pandemic has caused widespread damage globally, in terms of human
lives and international economic weakening. As a new highly contagious disease, govern-
ments have taken unprecedented measures to slow down the spread of the virus, including
quarantines, curfews, lockdowns and national and international travel suspensions.

The spread of the COVID-19 infectious disease involves not only diseased-related
factors, such as the infectious agent, mode of transmission, latent period, infectious period,
susceptibility and resistance, but also social, cultural and demographic factors and, what is
most important, economics and finance.

Mathematical modeling is an essential tool for understanding the spread of the disease.
Such models raise awareness about the transmission dynamics of a broad class of infectious
diseases. Disease transmission may be modeled as a compartment model, in which the
population in consideration is divided into compartments under assumptions about the
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nature and time rate of transfer from one compartment to another [1]. Usually, they are
composed by a system of ordinary differential equations (ODEs) in time, which model the
rate of change, or inbound and outbound flow in every compartment.

We adopted the most fundamental compartment model, constituted by three compart-
ments, namely the susceptible (S), infected (I) and removed (R) individuals. This SIR model
is proposed by [2], and subsequently has undergone enormous investigation and further
development [3]. The nonlocal fractional operators find broad application in the study of
biological phenomena [4]. Being far from exhaustive, we only mention a couple of studies.
A SIR model, taking account of vaccinations and waning immunity is considered in [5]. A
fractional SIR model with constant vaccination rate is explored in [6], and a similar model
is proposed and analyzed in [7]. A nonlinear fractional SIR model with special types of
functional response and treatment rate is studied in [8]. Inverse problems [9] concerning
constant parameter estimation is studied in [10], and time-dependent coefficient recoveries
as piecewise constant functions of time in a SIR model are examined in [11,12]. The recovery
of pandemic dynamics and their economic impact in view of constant parameters by means
of the adjoint equation optimization approach for integer- and fractional-order SEIR models
is performed in [13,14]. We talk about the SIR model in greater detail in the next section.

The question of how to minimize the economic damage of a lockdown while still
containing infectious is studied in [15]. The authors used the model (1) in the case of
β = β(t) and γ = const > 0. When and how much to impose lockdown so that the damage
to the economy is minimized? The crucial ingredient in our study is the use of a new
time variable.

How effective are the social distancing approaches? We use time-dependent coefficient
Susceptible-Infected-Removed (SIR) models that track two time series:

(i) The transition rate β at time t;
(ii) The recovering rate γ at time t.

Such an approach is not only more adaptive than traditional static SIR models but also
more robust than direct estimation methods.

The next section, as we mentioned, is devoted to the formulation of the integer- and
fractional-order models, as well as the definition of the direct and inverse problems of
epidemic modeling. Section 3 recalls some results from the fractional calculus needed
henceforward. In Section 4, the solution to the direct problem is briefly discussed, while in
Section 5, the algorithm for solving the inverse problems is presented in detail. Section 6
is dedicated to the framework for estimating the economic impact of the pandemic, and
in Section 7, the proposed algorithm is tested with synthetic and real data. The paper is
concluded in Section 8.

2. Problems Formulation

In this section, starting from the classical SIR models, we introduce the Caputo frac-
tional operator SIR model. For the last one, we formulate direct and inverse point observa-
tion problems.

2.1. The Classical SIR Model

The study of infectious disease proliferation is a well-established field and has given
rise to the area of science called mathematical epidemiology. Mathematical epidemiology
proposes models that help the understanding of epidemics and outlining policies to control
infectious diseases. These models have been extensively used in biological, ecological and
chemical applications [16]. They allow for understanding the processes involved and for
predicting the dynamics of the epidemic.
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The propagation of an infectious disease in a population that is assumed to be constant-
sized over the period of the epidemic can be formulated by the first-order ODE system

DtS(t) = −β(t)S(t)I(t),
Dt I(t) = β(t)S(t)I(t)− γ(t)I(t),
DtR(t) = γ(t)I(t)

(1)

with initial conditions
S(t0) = S0, I(t0) = I0, R(t0) = R0,

where at time t ≥ t0, S(t) is the level of the susceptible individuals, I(t) is the level of
infected people who are able to spread the disease by contact with susceptible ones and
R(t) is the level of isolated individuals who cannot get or transmit the disease for various
reasons. Additionally, 0 ≤ S0, I0, R0 ≤ 1. Moreover, β(t) > 0 is the rate of infection, and
γ(t) > 0 is the rate at which the current infectious population is isolated.

2.2. A Fractional SIR Model

The SIR model is undoubtedly the most famous mathematical model for the propaga-
tion of an infectious disease. In many cases, however, the classical derivative is not able
to precisely describe the complex phenomena of the disease. Aiming at the latter, many
researchers try to model, as well as to analyze, the dynamic behavior of the process by
means of fractional calculus. The fractional-order extension of the model was first studied
in [17], where the authors replace the first-order derivative in (1) by Caputo’s fractional
derivative of order 0 < α ≤ 1 [18].

The use of α < 1 just has the effect of transforming (1) into a model with memory. In
general, the epidemic integer model (1) does not carry any information about the memory
and learning mechanism of the population that affects the spread of disease; see e.g., [19].

Without loss of generality, we assume that the process starts at time t0 = 0. Then, we
consider the following fractional system of ODEs

Dα
0S(t) = −βα(t)S(t)I(t), (2a)

Dα
0 I(t) = βα(t)S(t)I(t)− γα(t)I(t), (2b)

Dα
0 R(t) = γα(t)I(t). (2c)

with initial conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0. (3)

Here, Dα
0 is the left Caputo fractional derivative operator of order 0 < α ≤ 1; see the

next section.
If the unit in the model (1) is days−1, the Caputo operator Dα

0 is in unit days−α. In
order to keep the units the same in both hand sides of (2), we raise the coefficients to the
power of α.

There exist other models considering additional events and features, such as birth and
death rates (non-constant population), vaccine effect, reinfection, latent period and so on;
see, e.g., [5,11]. In this work, we use the fractional SIR model, but the integer (α = 1) case is
also independently studied.

2.3. The Basic Reproduction Number

The basic reproduction numberR0 is a very significant quantity in the theory of infectious
disease modeling. Roughly speaking, it measures how contagious a particular disease
is [20]. A substantial finding in mathematical epidemiology is the abrupt change in the
behavior of the epidemic, based on whether the basic reproduction number is bigger than
one or less than one. This is an illustration of the threshold behavior phenomenon [21].
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If the vital dynamics are not incorporated in the model, as it is the case with (1), the
basic reproduction number is calculated easily. For a SIR model, it is

R0 =
β(t)
γ(t)

. (4)

For the fractional-order derivative model (2), it follows:

R0 =
βα(t)
γα(t)

. (5)

More formally, the value of the basic reproduction number R0 represents the aver-
age number of secondary infections caused by a single infective over his/her period of
infectiousness, introduced in a wholly susceptible population. Essentially, if the value of
the basic reproduction number is less than one (R0 < 1), then the epidemic is in its dusk.
On the contrary, ifR0 > 1, then the infection continues to spread around the susceptible
population [22].

2.4. The Direct and Inverse Problems

The functions S(t), I(t) and R(t) satisfy the direct problem, if the coefficients β and
γ are known. In practice, the parameters β and γ are not known (since they cannot be
measured directly), and they have to be recovered. After their «fair» values are found, the
model could be used for subsequent analysis.

The main issue is how to find the values ppp ≡ {β, γ} for a given infection, for instance,
COVID-19, if the levels of the susceptible and infected population are known at certain times

S(tk; ppp) = Xk, k = 1, . . . , KS,
I(tk; ppp) = Yk, k = 1, . . . , KI .

(6)

The estimation of the parameter ppp is referred to as an inverse modeling problem. It means
adjusting the parameter values of a mathematical model to reproduce measured data.

The measurements (6) are called point observations, and the values of the parameters
are found usually by minimization of a functional of type

J = J(ppp) =
KS

∑
k=1

[
S
(
tk; ppp(t)

)
− Xk

]2
+

KI

∑
k=1

[
I
(
tk; ppp(t)

)
−Yk

]2, t ∈ [t0, tK].

3. Auxiliary Results on Fractional Calculus

In this section, we provide some notations, fractional mean value formulae and
formulae for integration by parts. Moreover, we establish a theorem that provides a simple
criterion on the right-hand side of a fractional ODE system that tells us whether the system
is positive.

Hereinafter, Γ denotes the Gamma function Γ(s) :=
∫ ∞

0 ηs−1e−ηdη for s > 0. We recall
that Γ(s + 1) = sΓ(s) for all s > 0 and for any positive integer n, Γ(n) = (n− 1)! is true.

For arbitrary function ν ∈ AC[0, T], i.e., ν is absolutely continuous on [0, T], the left
(forward) Riemann–Liouville integral for α ∈ [0, 1] is defined as [23]:

(
Jα
0+ν
)
(t) :=

 ν(t), α = 0,
1

Γ(α)

∫ t

0

ν(s)
(t− s)1−α

ds, 0 < α ≤ 1,
t ∈ [0, T).

The left (forward) Caputo derivative is written as:

CDα
0ν(t) =

(
J1−α
0+

dν

dt

)
(t) =

1
Γ(1− α)

∫ t

0

1
(t− s)α

dν

dt
ds.
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We define the left (forward) Riemann–Liouville derivative as follows:

RDα
0ν(t) =

d
dt

(
J1−α
0+ ν

)
(t) =

1
Γ(1− α)

d
dt

∫ t

0

ν(s)
(t− s)α

ds.

The right (backward) fractional integral could be defined as

(
Jα
T−ν

)
(t) :=


ν(t), α = 0,

1
Γ(α)

∫ T

t

ν(s)
(s− t)1−α

ds, 0 < α ≤ 1,
t ∈ (0, T],

hence, we define the right (backward) Caputo and Riemann–Liouville derivatives as

CDα
Tν(t) = −

(
J1−α
T−

dν

dt

)
(t) = − 1

Γ(1− α)

∫ T

t

1
(s− t)α

dν

dt
(s)ds,

RDα
Tν(t) = − d

dt

(
J1−α
T− ν

)
(t) = − 1

Γ(1− α)

d
dt

∫ T

t

ν(s)
(s− t)α

ds.

The relationship between the Caputo and Riemann–Liouville forward and backward
derivatives is written as

CDα
0 f (t) = RDα

0 f (t)− f (0)
Γ(1− α)

t−α, t ∈ (0, T],

CDα
T f (t) = RDα

T f (t)− f (T)
Γ(1− α)

(T − t)−α, t ∈ (0, T].

We state here the following version of integration by parts [23].

Lemma 1. Let ν1(t), ν2(t) ∈ C1[0, T]. Then,∫ T

0

(
CDα

0ν1

)
ν2dt + ν1(0)

(
J1−α
T− ν2

)
(0) =

∫ T

0
ν1

(
CDα

Tν2

)
dt +

(
J1−α
T− ν1

)
(T)ν2(T).

We also recall the generalized mean value formula (GMF) in the following form [23].
Suppose f (t) ∈ C[a, b] and Dα

0 f (t) ∈ C[a, b] for 0 < α ≤ 1, then we have

f (t) = f (0) +
1

Γ(α)
Dα

0 f (ξ)tα with 0 ≤ ξ ≤ t, ∀t ∈ [a, b].

It easily follows that if Dα
0 f (t) ≥ 0 ∀t ∈ (a, b), then the function f (t) is nondecreasing

for each t ∈ [a, b], and if Dα
0 f (t) ≤ 0 ∀t ∈ (a, b), then the function f (t) is nonincreasing

∀t ∈ [a, b].
In the following, we write v ≥ 0 for a vector v ∈ Rm if all components are non-negative.

Consider a fractional ODE system in Rm for t ≥ 0,

Dα
t w(t) = F

(
t, w(t)

)
. (7)

This system is called positive (short for “non-negativity preserving”) if

w(0) ≥ 0 ⇒ w(t) ≥ 0 ∀t > 0.

The next assertion generalizes Theorem 7.1 in [24].

Theorem 1. Suppose that F(t, v) is continuous and satisfies the Lipschitz condition

‖F(t, v̄)− F(t, v)‖ ≤ L‖v̄− v‖ ∀(t, v̄) ∈ C0,
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where C0 is the cylinder

C0 ≡ {(t, v) ∈ R×Rm : 0 ≤ t ≤ T, ‖v− w(0)‖ ≤ K0}.

Then, the system (2) is positive if for any vector v ∈ Rm and all i = 1, . . . , m and t ≥ 0,

v ≥ 0, vi = 0 ⇒ Fi(t, v) ≥ 0.

Proof. The necessity of the above criterion follows immediately by considering the solu-
tion (7) w(t) with w(0) = v and small t > 0. As for sufficiency, note that the criterion is
equivalent to

w(t) ≥ 0, wi(t) = 0 ⇒ Dα
t wi(t) ≥ 0

and GMF implies wi(t) ≥ 0. This is by itself not enough to prove positivity; we need the
Lipschitz condition.

It would be enough to have

w(t) ≥ 0, wi(t) = 0 ⇒ Dα
t wi(t) ≥ ε > 0,

because then it is obvious that w(t) cannot cross the hyperplanesHi = {w ∈ Rm : wi = 0}.
This holds for the perturbed ODE system with

F̃i(t, w) = Fi(t, w) + ε, i = 1, 2, . . . , m.

Using the Lipschitz condition, we can apply a stability argument for fractional ODEs to
show that the solution to the unperturbed system with given w(0) could be approximated
with any precision by solutions to the perturbed system if we let ε→ 0.

4. Solution to the Direct Problem

In this section, we discuss some basic properties of the problem (2), (3) and then we
describe algorithms to solve numerically the direct problems (1) or (2), (3).

Firstly, let us emphasize that by applying Theorem 3.1. and Remark 3.2. of [25], one
could easily obtain the global existence and uniqueness of the solution to problem (2), (3).

4.1. Properties of the Continuous Solution

It is a natural requirement for the models of real-life phenomena, in particular (2), (3),
that their solutions must possess some basic qualitative properties of the original (constant
coefficient) process. In the present case, such qualitative properties are as follows:

P1 The total size of the population at a given spatial position cannot change in time. It
simply follows by adding the three equations in (2) together

Dα
t
(
S(t) + I(t) + R(t)

)
= 0.

Hence, a basic property of the Caputo’s derivative gives

S(t) + I(t) + R(t) = 1 = S0 + I0 + R0.

P2 The number of the susceptible, infected and removed members (people) must be
non-negative.

In order to prove P2, we need the results from Section 3 concerning positive fractional
ODE systems. Eventually, the property P2 follows by direct application of Theorem 1 to
problem (2), (3).
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P3 The number of the susceptible cannot grow and the number of the removed
cannot decrease in time. That is, the function S(t) is decreasing while the function R(t) is
increasing. If

S(0) <
γ(t)
β(t)

,

the number of the infected cannot grow, that is, the function I(t) is decreasing.

4.2. Numerical Solution

In this subsection, we describe how to solve the direct problems (1) and (2). It is
important since the direct problems have to be solved a number of times in order to solve
the inverse problem. Without loss of generality, we use an equidistant temporal mesh

ωdir
4t = {t0, tj = j4t, tJ = T} for j = 1, . . . , J − 1 (8)

with constant step size4t.
From now on, due to the closedness of the system (1) or (2), we can exclude the

equation for DR(t) and work with the first two equation. If the three compartments
exhaust the society, then R(t) = 1− S(t)− I(t) for every t ≥ t0.

The first to consider would be the integer-order model. A standard approach is to
apply the Runge–Kutta method. If we write (1) in the form

dRRR
dt

= GGG
(
t, RRR(t)

)
,

where RRR = (S, I)> and RRR0 = RRR(t0), then the Algorithm 1 looks like

Algorithm 1 Runge–Kutta method [26]

for j = 0, . . . , J − 1 do
Let t := tj, t̂ := tj+1, RRR := RRR(t), R̂̂R̂R := RRR(t̂). Then, R̂̂R̂R is calculated as

R̂̂R̂R = RRR +
4t
6
(kkk1 + 2kkk2 + 2kkk3 + kkk4),

where

kkk1 = GGG(t, RRR), kkk2 = GGG
(

t +
4t
2

, RRR +
kkk1

2

)
,

kkk3 = GGG
(

t +
4t
2

, RRR +
kkk2

2

)
, kkk4 = GGG(t̂, RRR + kkk3).

end for

For the fractional-order model, we use the same mesh ωdir
4t (8). Here, we apply the

generalized Adams–Bashforth–Moulton, or the fractional Adams method. Equation (2) in
the form

CDα
0RRR = GGG

(
t, RRR(t)

)
is equivalent to the Volterra integral equation

RRR(t) = RRR0 +
1

Γ(α)

∫ t

0

GGG
(
s, RRR(s)

)
(t− s)1−α

ds,

which is solved by Algorithm 2. It is again a single-step method, requiring only knowledge
of the initial condition to commence.
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Algorithm 2 Fractional Adams method [27]

for j = 0, . . . , J − 1 do
Let t := tj, t̂ := tj+1, RRR := RRR(t), R̂̂R̂R := RRR(t̂). Then, R̂̂R̂R is calculated as

R̂̂R̂Rpred = RRR0 +
1

Γ(α)

j

∑
i=0

bi,j+1GGG(t, RRR),

R̂̂R̂R = R̂̂R̂R0 +
1

Γ(α)

(
j

∑
i=0

ai,j+1GGG(t, RRR) + ai+1,j+1GGG(t̂, R̂̂R̂Rpred)

)
,

where

ai,j+1 =
4tα

α(α + 1)



jα+1 − (j− α)(j + 1)α, i = 0,

(j− i + 2)α+1 − 2(j− i + 1)α+1 + (j− i)α+1, 1 ≤ i ≤ j,

1, i = j + 1,

bi,j+1 =
4tα

α

(
(j− i + 1)α − (j− i)α

)
, 0 ≤ i ≤ j.

end for

The presented methods are some of the most widely used but simple approaches.
Of course, other more complicated methods, possibly of higher order, could be success-
fully applied.

5. Numerical Solution to the Inverse Problem

In this section, we reveal the computational algorithm for numerically solving the
inverse problems (1) or (2), (3), (6) in detail.

We use different notations for the time instances. The temporal mesh ωinv
4t (9) is

displayed in Figure 1.

ωinv
4t = {t∗0 = T∗0 , t∗j = j4t, t∗J = T∗K} for j = 1, . . . , J − 1. (9)

T0 T1 T2 T3 T4=TK

t

Δt6 Δtj+3

t*1 t* t*2 3 9

*

t* t* t* t* t* t* t* t* t*4 5 6 7 8 j j+1 J0t*

* * * * *

Figure 1. The mesh ωinv
4t for K = 4.

The points t∗j denote every time instance where the values of the system functions S
and I are known. In practice, their levels (although not in this form) are reported every
day. On the other hand, for the ease of calculation, it is appropriate that the observation
points coincide with nodes after discretization, but we are free to choose an arbitrary fine
mesh since the algorithm does not require the presence of measurement in every node (the
observation points are a subset of the discrete time nodes).

We propose an algorithm that recovers the unknown dynamics parameters as piece-
wise linear functions of time. To achieve this, the functions are reconstructed in a step-by-
step manner. If we iterate over the measurements t∗j , we would arrive at nicely waved
functions but at very high cost. On the other extreme case, if we use as little as one or two
measurements, then very fast we would obtain just a straight line. So, we must perform a
trade-off between fit and speed.
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In order to achieve it, we introduce the so-called ‘main’ observations, denoted with
T∗k (9) (Figure 1). In practice, it is best for them to be distributed in such a way that the
space between adjacent main points to be 1÷ 2 weeks. For simplicity, in the exposition
henceforward, we assume constant time step4t and KS = KI = K.

The indices k = 1, . . . , K in the observation definition (6) match the indices j = 1, . . . , J
in the following way:

T∗k ≡ t∗mk
for k = 1, . . . , K.

As we discussed earlier, the unknown parameters β(t) and γ(t) are recovered step by
step. For iterator, we use k, since on iteration k, we use the information available up to T∗k .
The computational algorithm readily follows:

Step 1.1. Minimize the cost functional

J1(β, γ) =
m1

∑
k=m0+1

[
S
(
tk; β(t), γ(t)

)
− Xk

]2
+
[
I
(
tk; β(t), γ(t)

)
−Yk

]2, t ∈ [T∗0 , T∗1 ].

Now, (β1, γ1) is the minimum of J1. Here, the parameter functions are assumed to
be constant in [T∗0 , T∗1 ] due to the nonuniqueness of the local minimum if using a linear
function. The suggested algorithm is of predictor–corrector type, so the final coefficient
values in [T∗0 , T∗1 ] would be linear functions of time. This would be achieved during the
next step.

Step 1.2. The current values of the parameters are

β(1)(t) = β1 for t ∈ [T∗0 , T∗1 ],
γ(1)(t) = γ1 for t ∈ [T∗0 , T∗1 ].

Step 2.1. Minimize the cost functional

J2(β, γ) =
m2

∑
k=m0+1

[
S
(
tk; β(t), γ(t)

)
− Xk

]2
+
[
I
(
tk; β(t), γ(t)

)
−Yk

]2, t ∈ [T∗0 , T∗2 ].

If the minimum of J2 is (β2, γ2), then the parameters are assumed to be linear in
[T∗0 , T∗2 ], and these linear functions are constructed according to the rules: β(2)(T1/2) = β1

and β(2)(T∗2 ) = β2, where we denote Tj+1/2 = (T∗j + T∗j+1)/2 for j = 0, . . . , J − 1. The same

rules apply for γ(2). More rigorously, they are computed via

aβ
2 =

β2 − β1

T∗2 − T1/2

, aγ
2 =

γ2 − γ1

T∗2 − T1/2

,

bβ
2 = −T∗2 aβ

2 + β2, bγ
2 = −T∗2 aγ

2 + γ2.

We again recall that the correction part on this step affects the whole interval [T∗0 , T∗1 ]
of the first step.

Step 2.2. The recovered parameters are

β(2)(t) = aβ
2 t + bβ

2 for t ∈ [T∗0 , T∗2 ],
γ(2)(t) = aγ

2 t + bγ
2 for t ∈ [T∗0 , T∗2 ].

The following step is iteratively repeated from k = 3 to k = K.
Step k.1. Minimize the cost functional

Jk(β, γ) =
mk

∑
k=mk−3/2

[
S
(
tk; β(t), γ(t)

)
− Xk

]2
+
[
I
(
tk; β(t), γ(t)

)
−Yk

]2, t ∈ [Tk−3/2, T∗k ],

where mk−3/2 is such that t∗mk−3/2
is the closest observation point to Tk−3/2.
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Let again the minimum of Jk be (βk, γk), then the coefficient values in [Tk−3/2, T∗k ]
again are assumed to be linear functions. They satisfy β(k)(Tk−3/2) = β(k−1)(Tk−3/2) and
β(k)(T∗k ) = βk, which is also true for γ(k):

aβ
k =

βk − β(k−1)(Tk−3/2)

T∗k − Tk−3/2

, aγ
k =

γk − γ(k−1)(Tk−3/2)

T∗k − Tk−3/2

,

bβ
k = −T∗k aβ

k + βk, bγ
k = −T∗k aγ

k + γk.

In this case, the correction part of the step affects the latest half-step [Tk−3/2, T∗k−1].
Step k.2. The identified parameters are

β(k)(t) = aβ
k t + bβ

k for t ∈ [Tk−3/2, T∗k ],
γ(k)(t) = aγ

k t + bγ
k for t ∈ [Tk−3/2, T∗k ].

Eventually, the output of the algorithm is constructed as follows:
Step K + 1. Compute

β(t) =


β(2)(t) for t ∈ [T∗0 , T3/2],
β(k)(t) for t ∈ [Tk−3/2, Tk−1/2] for 2 < k < K,
β(K)(t) for t ∈ [TK−3/2, T∗K],

γ(t) =


γ(2)(t) for t ∈ [T∗0 , T3/2],
γ(k)(t) for t ∈ [Tk−3/2, Tk−1/2] for 2 < k < K,
γ(K)(t) for t ∈ [TK−3/2, T∗K].

The parameters are reconstructed as piecewise linear functions of time for t ∈ [T∗0 , T∗K].
In every step, the nonlinear estimators are short vectors, the length of which depends

on the number of recovered parameters (two in our case). This makes the algorithm fast to
converge. Its ability to work with real data is demonstrated further.

6. Economic Loss from Social Distancing

To estimate the economic impact of the pandemic, we adopt the approach proposed
in [28]. The losses are twofold. The first element delineates losses due to infections, while
the second one accounts for losses related to the restrictions in the contacts volume. The
original model follows (10):

L = a
∫ τ∗

τ
I(t)dt + b(β0 − β1)(τ

∗ − τ), (10)

where 0 < τ < τ∗ and a and b are non-negative constants. It is assumed that in the period
[0, τ) no measures are applied, while in [τ, τ∗] strict measures are imposed. The second
component of (10) assumes also that the transmission rate β is a simple piecewise constant
function of time: β(t) = β01{t<τ} + β11{τ≤t<τ∗}, where β0 > β1; see [28].

The first element in L is simply explained, as the infected individuals may need
hospitalization or intensive care and might not be able to work.

The second component in L accounts for the fact that, when contact number is reduced
by the imposed social distancing measures, the corresponding reduction in economic
product per unit of time is to some extent proportional to the reduction in the level of
contacts. As the infection is transmitted by mass action (contacts between infectious
and susceptible), β can be considered as proportional to the average number of contacts
per person. Thus, the reduction in the number of contacts during [τ, τ∗] is proportional
to β0 − β1.

To make the concept work with arbitrary function of time, we have to generalize
the concept of contact level decreasing. It is the negative derivative of the transmission
rate β(t), or Dβ(t) < 0. The greater the drop in β, the larger the economic losses are.
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So, basically, we have to integrate the transmission coefficient in the intervals where the
derivative is negative:

LT
0 = N

(
a
∫ T

0
I(t)dt + b

∫ T

0
−β′(t)1{β′(t)<0}dt

)
, (11)

where N is the total population size [29].

7. Computational Experiments

This section is devoted to ample numerical simulations, which demonstrate the prop-
erties of the proposed algorithm. In the following subsections, computational tests for both
integer- (Section 7.1) and fractional-order (Section 7.2) models with synthetic and real data
are performed. The section is concluded with a real-world data example (Section 7.3).

The quasi-real experiments are conducted as follows. Firstly, we make up values for
β(t) and γ(t) and solve the direct problem (1) or (2). Furthermore, we derive the synthetic
measurements (6) from the solution. On the next stage, we supply the procedure for solving
the inverse problem with these measurements. The algorithm result is composed by the
implied β(t) and γ(t), which we could compare with the true ones, those which were used
to solve the direct problem.

However, in a real setting, the main problem is that we do not know the true β(t) and
γ(t). We take the measurements from reality and solve the inverse problem. In order to
assess the algorithm performance, we need another indicator. The name «goodness-of-fit»
suggests that we could solve the direct problem with the implied parameters and then
compare the values of the real data S(t) and I(t) with the “implied” functions, i.e., those
obtained by Algorithm 1 or Algorithm 2 fed with the implied coefficients.

7.1. Integer-Order Derivative Model

We begin the tests with the integer-order model (1). The discretization is conducted
according to Algorithm 1. The nodes in mesh ωinv

4t are equidistantly distributed with
constant step size 0.1, and the space between observations is4t = 2, i.e., data are available
every two days. To cope with the nonlinear nature of the coefficients, we assume the main
observations are also placed on every second day, i.e., they overlap.

We set the initial condition S0 = 0.9, I0 = 0.09, [t0, T] ≡ [0, 20], and firstly we test with
the nonlinear functions

β(t) =
3
5

e−
t
T and γ(t) =

2
5
+

1
20

(
t
T

)2
. (12)

The results are plotted on Figures 2 and 3.
A good fit is observed, and therefore the real and implied system functions match as

well. To quantify the latter, we introduce the residual norm

R
(

β(t), γ(t)
)
=
∥∥S
(

β(t), γ(t)
)
− X

∥∥
2 +

∥∥I
(

β(t), γ(t)
)
−Y

∥∥
2. (13)

For the first case, R
(

β(t), γ(t)
)
= 0.0031.

To test with more volatile coefficients, we add oscillation terms such that the parameter
functions now are

β(t) =
3
5

e−
t
T +

1
10

sin
4πt
T

and γ(t) =
2
5
+

1
20

(
t
T

)2
+

1
10

cos
4πt
T

. (14)

The results are displayed on Figures 4 and 5.
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Figure 2. Recovered parameters β(t) and γ(t) with (12).
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Figure 3. Recovered susceptible S and infected I population with (12).
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Figure 4. Recovered parameters β(t) and γ(t) with (14).
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Figure 5. Recovered susceptible S and infected I population with (14).

A piecewise linear function cannot follow such a curve exactly, but the trend dynamics are
recognized, and the residual norm of the solution is not much higher: R

(
β(t), γ(t)

)
= 0.0412.

7.2. Fractional-Order Derivative Model

Now, we continue the tests with the fractional model (2). It is solved by means
of Algorithm 2. We use the same values for the initial condition, temporal steps and
observations setting.
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It is a well known “rule of thumb” that usually the optimal fractional derivative order
is less than one but closer to one than to zero. So, now we conduct tests with α = 0.9, while
in Section 7.3, we show how to easily find the optimal order.

Firstly, we present the results with (12). Since they do not differ significantly with their
integer-order counterparts, we plot them together in one Figure 6.
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Figure 6. Recovered parameters βα(t) and γα(t) with (12) (left); recovered susceptible S and infected
I population with (12) (right).

Now, the residual norm is less than the integer-order case: R
(

βα(t), γα(t)
)
= 0.0027.

The implications are similar with the coefficients (14); see Figure 7.
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Figure 7. Recovered parameters βα(t) and γα(t) with (14) (left); recovered susceptible S and infected
I population with (14) (right).

Again, quite expectedly, the visual match of the coefficients (Figure 7, left) is better,
and the residual norm is smaller: R

(
βα(t), γα(t)

)
= 0.0405.

7.3. Real Data Fit

In this subsection, we consider the real-world data test with the official data for the
Republic of Bulgaria [30]. The generalized SIR model is suitable for modeling the disease
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dynamics in Bulgaria since the level of vaccination there is low. The data used are for
2022, since the tests (PCR and rapid antigen) are enough in number to conceptualize the
epidemic situation in the country.

To obtain the infected population time series, we use the ‘Active Cases’ data. However,
it is well known that actual cases are severely under-reported. To get closer to reality,
we need to multiply the reported series with an escalation coefficient. Its exact value is
unknown. The authors of [31] advise its default value is 3. In [32], it is stated it could
be higher than 6. We chose a moderate value of 5. The recovered coefficients are weakly
influenced by this choice, but the basic reproduction number, as a unitless quantity, is not
influenced at all.

The removed time series is constructed by the sum of ‘Recovered’ and ‘Deceased’ data.
Analogously, in order to fulfill property P3 (susceptibles cannot grow in time), we need to
multiply the removed series by the same escalation coefficient and eventually to compute
S(t) = 1− I(t)− R(t).

The real data are very «rough», so we smoothen it with a simple moving average
(SMA) filter with a period of 7 days (one week). Due to this transformation, we lose 6 time
nodes, so to derive smooth data from 1 January 2022, we take a couple of earlier raw data
elements (from 26 December 2021). We use the data available up to the moment of writing
this paper, i.e., 12 October 2022.

The data are available for every day, and the main observations are equidistantly
distributed on a weekly basis. The initial approximation of the parameters are as neutral as
β0 = 0.5 and γ0 = 0.5.

To begin with, we calibrate the integer-order model (1), (3), (6). The result is plotted
on Figures 8 and 9, while R0 is calculated through (4). The residual norm is R

(
β(t),

γ(t)
)
= 0.0416.
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Figure 8. Recovered parameters β(t) and γ(t) for α = 1.
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Figure 9. Recovered and observed susceptible S and infected I population (top) and the basic
reproduction numberR0 (bottom) for α = 1.

At the end of 2021, Bulgaria entered the fifth wave [29], which reached its peak in
the middle of February 2022 (Figure 9). For that period, the basic reproduction number
is also high. With the weather getting warmer, the number of infected gradually drops
until around the 200th day (second half of July), where the new wave commences. Then,
both β(t) and γ(t) increase, expectedly, the transition rate is to a greater extent. So does
R0. Only the absolute level of infected does not jump highly, but this is because most of
the people have already contacted the virus and have gained natural immunity, thus being
not susceptible.

The population of the Republic of Bulgaria is N = 6,519,789 [33]. The relative expen-
ditures for medical treatment are a =USD 50 day−1 and the relative economic losses for
reduced activity are b = USD 500 day−1 (11). For the integer-order calibration, L =USD
16,646,280,321.61 for the year 2022 (up to 12 October). The first component of the losses,
regarding the curing, is eight times more than the second component, concerning the
economic reduction. This is normal since there were few and not long periods in 2022 when
the nonessential businesses were closed.

Let us now continue with calibrating the fractional-order model (2). Usually, the
fractional models give a better fit than their integer counterparts. What is more, the optimal
fractional order is expected to be less than one but greater than a half. This observation is
confirmed by the experiments. We conducted tests with different values of α, following a
simple binary search over the residual norm (13). The results are presented in Table 1 and
Figure 10.

All these findings suggest that the four significant digits in the optimal fractional order
are α ≈ 0.9437.
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Table 1. Residual norm for different α.

α R

1 0.0415767359803674
0.95 0.0343187221232409
0.946875 0.0342537598193364
0.9453125 0.0342369859008066
0.94453125 0.0342327085301880
0.944140625 0.0342315962777517
0.9439453125 0.0342313804192775
0.943798828125 0.0342312496769189
0.94375 0.0342312372883962
0.94373779296875 0.0342312519248410
0.9437255859375 0.0342312347414336
0.943701171875 0.0342312483883185
0.94365234375 0.0342312415060524
0.9435546875 0.0342313292646742
0.943359375 0.0342315362284156
0.9375 0.0343261290485330
0.925 0.0351492607828226
0.9 0.0394191574626068

0.9434 0.9435 0.9436 0.9437 0.9438 0.9439 0.944 0.9441

0.03423125

0.0342313

0.03423135

0.0342314

0.03423145

0.0342315

0.03423155

R    

Residual norm for different 

Optimal 0.9437256

Figure 10. The residual norm (13) for different values of α.

The output from the calibration with α = 0.9437255859375 is presented in Figures 11
and 12. Please note that the basic reproduction number is calculated via (5). The residual
norm is less compared with the integer-order case: R

(
βα(t), γα(t)

)
= 0.0342.

One might be tempted to find the optimal value of the fractional order via minimizing
the functional

min
α

Φ(α), where Φ(α) := R
(

βα(t), γα(t)
)
,

which is again the residual (13) of the fractional-order model calibration. This approach
may be valid, but the functional has multiple local minima (Figure 10), thus a special
minimization procedure must be applied with care.
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Figure 11. Recovered parameters βα(t) and γα(t) for α = 0.9437255859375.
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Figure 12. Recovered and observed susceptible S and infected I population (top) and the basic
reproduction numberR0 (bottom) for α = 0.9437255859375.

Under the same assumptions, the epidermic impact is estimated to
L = USD13,203,180,389.91 for the year 2022. It is useful to mention that β(t) := βα(t) in
(11) for the fractional-order case. This is a bit less than the result from the integer-order
estimation, but this will be considered as more reliable. Here, the first component of the
losses is 13 times greater than the second component. Both estimates are higher than
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the losses evaluated for the year 2021 in [29]. This is not surprising since in the latter no
escalation coefficient was used.

Since the optimal α is close to one, the implied β(t) and γ(t) are very similar in
the integer- and fractional-order cases (Figures 8 and 11). So are the basic reproduction
numbers R0 (Figures 9 and 12). It could be easily observed that the moments when R0
becomes greater than one precede the ‘waves’ or the increases in the number of infected
individuals. Since the beginning of September 2022, the Republic of Bulgaria has entered a
plateau, which is not expected to break out in a wave since the number of susceptibles is
already low.

8. Conclusions

This paper deals with a generalized SIR epidemic model. It is a compartment model
with standard compartments into which a population is divided: the group S of individuals
who are susceptible to the disease and can become infected, the group I of individuals
who are infectious and are capable of infecting other individuals during encounter and the
group R of removed individuals who either are deceased or gained life-long immunity at
recovery and cannot get infected anymore. The latter assumption can be relaxed [5].

The considered model extends the basic one in two ways. Firstly, the dynamics
parameters are modeled as functions of time instead of constants, which makes the model
flexible to fit the data in a better way. It is a well-known fact that the transmission and
recovery rate change due tho the change in policy and people’s behavior. It is also known
that the number of infected individuals today depends not only on its previous level
but on the history of the infection, too. This phenomenon is captured by the usage of
fractional-order derivatives, and this is the second enhancement of the classical model.

The study has also two aims. The first one is to propose a detailed algorithm for
reconstruction of the time-dependent parameters. It is performed via a predictor–corrector
approach, which is fast, robust and capable of processing real data. The second aim is to
suggest a framework to evaluate the economic impact of the pandemic and the associated
nonpharmaceutical interventions.

All these findings could be applied to other models. The basic homogeneous model can
be extended to other compartments (SEIR, SEIS, MSIR, MSEIR, MSEIRS, etc.), vaccination,
region, age and other heterogeneity of population, disease parameter heterogeneity and so on.

The results could be used for analysis of such possible interventions. The recovered
values of the transition and recovering rates best evaluate the already undertaken measures
and help local authorities to make the most adequate decisions when facing an upcoming
wave. The economic losses assessment is beneficial when conducting simulations to choose
the most suitable approach for fighting epidemics, while preserving both the people’s
health and the national budget.

However, the described approach is not limited to epidemiological modeling. The
calibration of inverse problems arises everywhere, and they are more difficult to solve
and often more important than their forward counterparts. The computational methods
could be used in the fitting and analysis of any kind of dynamics system modeling natural
phenomena and anthropogenic activities. The numerical algorithms, tested with real-world
data, could be applied successfully to all areas of science.
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