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Abstract: (1) Background: In silico approaches to rational drug design are among the fastest evolving
ones. Depending on the available structural information for the biomacromolecule and the small
molecule, the in silico methods are classified as ligand- and structure-based. The latter predict ligand–
receptor binding using 3D structures of both molecules, whose computational simulation is referred
to as molecular docking. It aims at estimating the binding affinity (approximated by scoring function)
and the ligand binding pose in the receptor’s active site, which postulates a key role of the scoring
functions in molecular docking algorithms. This study focuses on the performance of different
types of scoring functions implemented in molecular modelling software packages. (2) Methods:
An InterCriteria analysis (ICrA) was applied to assess the performance of the scoring functions
available in MOE, GOLD, SeeSAR, and AutoDock Vina software platforms. The InterCriteria analysis
was developed to distinguish possible relations between pairs of criteria when multiple objects are
considered. All 12 investigated scoring functions were tested by docking a set of protease inhibitors
in the binding sites of two protein targets. The dataset consisted of 88 benzamidine-type compounds
with experimentally measured inhibitory constants for thrombin and trypsin, which allows for the
objective assessment of the scoring functions performance. The results generated by the molecular
docking were subjected to ICrA in order to analyze both docking energies as approximations of
the binding affinities and RMSDs (root-mean-square deviation) as measures of the experimental
binding pose proximity between the compounds and the co-crystalized ligand, based on the atoms
in the common scaffold. (3) Results: The results obtained for the best poses, the average of the
best 5 or 30 poses retained after docking, were analyzed. A comparison with the experimentally
observed inhibitory effects was also performed. The InterCriteria analysis application confirms that
the performance of the scoring functions for the same dataset of ligands depends on the studied
protein. The analysis reveals that none of the studied scoring functions is a good predictor of the
compounds’ binding affinities for the considered protein targets. (4) Conclusion: In terms of this
analysis, the investigated scoring functions do not produce equivalent results, which suggests the
necessity for their combined use in consensus docking studies.
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1. Introduction

Computer-aided drug design (CADD, or in silico drug design) stands for a collection
of computational approaches aiming at optimization and speed-up of the time-consuming
and costly process of drug design. The in silico methods are classified as ligand- and
structure-based according to the available structural information. Among the structure-
based approaches, molecular docking is the most commonly used one. It is a computational
simulation that places the structure of the small molecule (ligand) in different orientations
and conformations within the biomacromolecule (usually protein) active site, aiming to
find the optimal binding mode through the calculation of the ligand–receptor binding
energy. Molecular docking results in the generation of different poses of the ligand within
the protein binding pocket. The simulation follows the complementarity principle in the
protein–ligand interaction and estimates the change in the free energy of their binding
using a scoring function [1]. The best poses subjected to further investigations are selected
based on the calculated scores.

A variety of docking algorithms exists and their performance strongly depends on the
implemented scoring functions. In the scientific literature, there are comparative studies
on scoring functions as well [2–6]; however, the selection of a suitable one for a particular
ligands’ dataset bound to a particular receptor or receptors is not a trivial task. The
authors of [2] performed a comparative assessment of 16 scoring functions implemented in
commercial software or software with free access and later [3,4] on more scoring functions
and revealed that the investigated scoring functions did not perform well on the ligands’
ranking. The authors of [5] proposed 12 scoring functions based on a wide range of machine
learning techniques and compared them to results obtained in [3]. Eight docking programs
and 16 scoring functions were compared in [6] and none of the used programs was effective
for all six protein–ligand datasets. A number of studies performed a systematic comparative
investigation of the available docking programs (with commercial license or with free
access) and concluded that the predictive docking aiming to rank the binding affinities for
the explored datasets does not perform well in most docking programs [7,8]. In addition,
the results depend on the protein families that are investigated [7]. Thus, the question
of which molecular docking software and protocol perform better is still open. Facing
this problem, the present study explores the capability of InterCriteria analysis (ICrA),
developed as a new multicriteria decision-making approach [9], to assess the performance
of various scoring functions on a given set of compounds and protein targets. In addition,
the chosen dataset includes a large number of compounds with a common scaffold and
various substituents and with binding affinities experimentally measured by the same
methodology. These facts provide a good basis for a more objective and detailed analysis
of the performance of the scoring functions.

InterCriteria analysis aims at discerning possible similarities in the behavior of pairs
of criteria when considering multiple objects [9]. Depending on the research topics, ICrA
could be applied to compare predefined criteria and the objects estimated by them or
to discover some dependencies between the criteria themselves. Bringing together two
fundamental concepts of the index matrices [10,11] and the intuitionistic fuzzy sets [12],
an extension of Zadeh’s fuzzy sets [13], ICrA pursues at obtaining new information based
on the criteria involved in evaluation processes. Once the existing relations between the
criteria themselves are outlined, the decision-making process can be strongly facilitated.
Due to its successful applications in different research areas, ICrA has gained more attention
and its theory has been further developed and upgraded in parallel with its continuously
rising number of applications. InterCriteria analysis has been applied in many challenging
fields, among them, medicine [14], ecology [15], artificial intelligence and metaheuristics
algorithms performance [16], and e-learning [17], all of them illustrating the ability of
the analysis to reveal new relations and dependencies between the studied criteria and a
new view on the analyzed data. The approach has been successfully tested in computer-
aided drug design and computational toxicology [18]. Using ICrA, the authors explored,
in particular, the docking results from a dataset of 160 tyrosine-based agonists in the
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active site of peroxisome proliferator-activated nuclear receptor gamma. For two of the
Molecular Operating Environment (MOE) scoring functions (London dG and Alpha HB),
a positive consonance was demonstrated, while none of the functions were outlined as a
good predictor of binding affinity.

In the current study, we present the ICrA application aiming to assess the performance
of the scoring functions implemented in commercial and free-access software. Twelve
scoring functions were used in the molecular docking of a dataset of benzamidine-type
inhibitors in the active sites of thrombin and trypsin.

2. Materials and Methods
2.1. InterCriteria Analysis Approach

The ICrA approach was proposed by Atanassov et al. in 2014 [9]. It combines fun-
damental concepts of two mathematical formalisms: index matrices (IM) [10,11] and intu-
itionistic fuzzy sets (IFS) [12]. To facilitate the exposition, a brief overview of the theoretical
background of ICrA is outlined below.

Intuitionistic fuzzy sets, introduced by Atanassov [12], are an extension of Zadeh’s
fuzzy sets [13]. Fuzzy sets generalize the notion of characteristic function for each element
to a set (equaling 0 when an element does not belong to the set and 1 when it does) by
introducing a membership function, taking values in the interval [0, 1] for each element.
The intuitionistic fuzzy sets further extend this idea by adding a degree of non-membership,
also in the closed unit interval, adding the requirement the sum of the two degrees to fall
in the closed unit interval. The IFS A* is formally defined as:

A∗ = {〈x, µA(x), νA(x)〉|x ∈ E},

where E is a universe set, A ⊆ E; and the mappings µA(x), νA(x) : E→ [0, 1] are the
degree of membership and the degree of non-membership for each element x ∈ E to the
fixed subset A of E, respectively, satisfying 0 ≤ µA(x) + νA(x) ≤ 1.

An intuitionistic fuzzy pair (IFP) is an ordered pair 〈µ, ν〉, such that µ, ν ∈ [0, 1] and
µ + ν ≤ 1 [19]. The intuitionistic fuzzy pairs are one of the basic elements of ICrA, where
they are obtained as an evaluation of the similarity of behavior of two criteria over a set
of objects.

The input of the ICrA is a two-dimensional IM. Each 2D IM is represented by a
set of row indexes (labels), column indexes (labels), and elements corresponding to the
combination of the said indexes. Due to this fact, swapping two rows or columns does not
result in a different IM.

Each 2D IM may be written as [K, L, ak,l], where K is the set of row indexes (labels);
L is the set of column indexes (labels), k ∈ K, l ∈ L; and ak,l is the element corresponding
to row index k and column index l. In general, not all elements need to be of the same
type. In ICrA, the input IM consists of objects evaluated by different criteria and, thus,
may be denoted as [O, C, eo,c], where the index set of rows O corresponds to the distinct
evaluated objects and the index set of columns C corresponds to different evaluating criteria,
while eo,c corresponds to the evaluation assigned to the object “O” under the criterion
“C”. If we have n criteria and m objects, this can be represented as the following IM:

C1 . . . Ck . . . Cn

O1 eO1,C1 . . . eO1,Ck . . . eO1,Cn

. . . . . . . . . . . . . . . . . .
Oi eOi ,C1 . . . eOi ,Ck . . . eOi ,Cn

. . . . . . . . . . . . . . . . . .
Om eOm ,C1 . . . eOm ,Ck . . . eOm ,Cn

In such a manner, ICrA starts with an m × n table and, after processing, the ICrA
outputs an n × n table of IFPs corresponding to InterCriteria relationships. ICrA performs
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a comparison between every two criteria over multiple evaluated objects considering the
relation between the respective elements, as shown in Figure 1.
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We have several possible cases depending on the nature of the input elements. When
the two relations (R1, R2 ∈ {<, =, >}) coincide, this adds to the score of IF agreement
(or similarity). If they differ, depending on the fact of whether one of the relations is the
dual of the other, e.g., R1 is the relation “<” and R2 is the relation “>” or vice versa, this
contributes to the score of IF disagreement (dissimilarity).

Otherwise, the contribution is assigned to the score of uncertainty (indeterminacy).
The detailed mathematical considerations may be found in [9]. Both counters Sµ

k,l and Sν
k,l

are formed and incremented, based on the following rules:

− Sµ
k,l counts the cases where the relations R(eOi ,Ck , eOj ,Ck ) and R(eOi ,Cl , eOj ,Cl ) are identical.

− Sν
k,l counts cases where the relation R(eOi ,Ck , eOj ,Ck ) is the one dual to the relation

R(eOi ,Cl , eOj ,Cl ).

The pairwise comparisons between the objects total to m(m − 1)/2; therefore, it holds
true that 0 ≤ Sµ

k,l + Sν
k,l ≤

m(m−1)
2 . For every k, l (1 ≤ k ≤ l ≤ m and m ≥ 2), the following

normalized values are obtained from Sµ
k,l and Sν

k,l as follows:

• µCk ,Cl = 2
Sµ

k,l
m(m−1) , called, in terms of ICrA, degree of agreement;

• νCk ,Cl = 2
Sν

k,l
m(m−1) , called degree of disagreement.

The degrees of agreement/disagreement between two criteria need to be calculated only
once, since µCk ,Cl = µCl ,Ck and νCk ,Cl = νCl ,Ck .

Obviously,
〈
µCk ,Cl , νCk ,Cl

〉
is an IFP. The value πCk ,Cl = 1− µCk ,Cl − νCk ,Cl corresponds

to the degree of uncertainty.
The output IM has all the collected IFPs

〈
µCk ,Cl , νCk ,Cl

〉
, which may be viewed as

an intuitionistic fuzzy evaluation of the relations between any two criteria Ck and Cl:

C1 . . . Ck . . . Cn

C1 〈1, 0〉 . . .
〈
µC1,Ck , νC1,Ck

〉
. . .

〈
µC1,Cn , νC1,Cn

〉
. . . . . . . . . . . . . . . . . .
Ck

〈
µCk ,C1 , νCk ,C1

〉
. . . 〈1, 0〉 . . .

〈
µCk ,Cn , νCk ,Cn

〉
. . . . . . . . . . . . . . . . . .
Cn

〈
µCn ,C1 , νCn ,C1

〉
. . .

〈
µCn ,Ck , νCn ,Ck

〉
. . . 〈1, 0〉

In practice, it is easier to consider two distinct index matrices IMµ and IMν, rather
than the IM of IFPs above.

The result of the ICrA algorithm provides a classification of the InterCriteria relations,
based on the thresholds for µCk ,Cl and νCk ,Cl , which are chosen by the user or algorithmically
determined. Let α, β ∈ [0, 1] (with α > β) be the thresholds to which the values of µCk ,Cl
and νCk ,Cl are compared. Then, the criteria Ck and Cl are said to be in:
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• Positive consonance, whenever µCk ,Cl > α and νCk ,Cl < β;
• Negative consonance, whenever µCk ,Cl < β and νCk ,Cl > α;
• Dissonance, otherwise.

Figure 2 presents the intuitionistic fuzzy triangle with the zones of positive consonance
and negative consonance with α = 0.75 and β = 0.25.
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A finer scale for determining types of consonance or dissonance between criteria pairs,
as well as the results’ interpretation with respect to the degrees of agreement, disagreement,
and uncertainty, are presented in [20]. In [21], the rules from [20] are formulated and
presented (with their pseudo-code) as different algorithms for the calculation of ICrA
relations, called µ-biased, balanced, ν-biased, unbiased, and weighted.

2.2. Software Implementation of ICrA

A software implementation of ICrA, named ICrAData [22], is freely available at
http://intercriteria.net/software/ (accessed on 3 June 2022). Figure 3 presents the user
interface, with the left panel showing the input data, the central panel showing the result
of the ICrA implementation in the form of a table with colored values, and the right panel
showing the graphical visualization of the results in the intuitionistic fuzzy interpretation
triangle with points (circles) colored as in the central panel.

Imposed by its use for the specific tasks of this study, the following additions were
implemented in ICrAData:

X The ability to load comma-separated value (CSV) files with headers by row and
column, which are taken as object and criteria names, respectively. This allows
loading data from any computer program able to output tables in CSV format.

X A functionality that allows a user definition of the thresholds α and β. The de-
fault values set in ICrAData are α = 0.75 and β = 0.25 and they were used in the
current investigation.

X To visualize the results better, cell colors were introduced in accordance with the rules
below and the user-defined thresholds α and β:

− In the case of positive consonance, the results are colored in green;
− In the case of negative consonance, the results are colored in red;
− Otherwise, when there is dissonance, the results are colored in magenta.

http://intercriteria.net/software/
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X ICrAData automatically records the results every 15 min and when exiting the pro-
gram in order to prevent overwriting or accidental loss of data.

Figure 3. An exemplary view of ICrAData.

All the aforementioned functionalities improve the automation in the ICrAData workflow.

2.3. Dataset

For the purposes of the current investigation, a dataset of protease inhibitors, as
described in [23], was used. The dataset consists of a benzamidine-type compounds, whose
parent structure (structural variations at positions R1 and R2) is presented in Figure 4.
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Figure 4. Parent structure of the compounds in the dataset.

The dataset consists of a large number of small drug-like compounds with a common
scaffold—88 protease inhibitors derived from 3-amidinophenylalanine, with experimentally
defined Ki values for their inhibition of the enzymes trypsin and thrombin [23]. This dataset
was chosen due to the fact that it has been employed as a benchmark set in the validation
of molecular modelling methodologies [23]. This is a good attestation of the quality of the
data, in particular the available experimental data. These features make the dataset very
useful for the purposes of the current research, enabling not only the assessment of the
interrelations between the scoring functions themselves, but also their interrelations with
the available experimental data. As such, it could allow for an objective evaluation of the
performance of the scoring functions.
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The 2D structures of the benzamidine-type inhibitors were built in MOE, according
to Boehm et al. [23]. All structures were energetically minimized with an MMFF94x
force field.

Thrombin and trypsin are representatives of serine proteases, known to play a signifi-
cant role in a number of physiological and pathophysiological processes.

Thrombin (coagulation factor II) is a serine protease, a key enzyme of blood coag-
ulation. At the same time, it plays an important role in a number of physiological and
pathophysiological processes related to blood coagulation and fibrinolysis, tissue repair
and wound healing, platelet and endothelial cell activation, progression of neoplasia,
inflammation, etc. [24]. For the purposes of this study, the X-ray crystal structure of
thrombin complex with the ligand 1-[N-(naphthalen-2-ylsulfonyl)glycyl-4-carbamimidoyl-
D-phenylalanyl]piperidine (NAPAP) was retrieved from the Protein Data Bank (PDB,
https://www.rcsb.org (accessed on 3 June 2022) PDB ID 1ETS).

Trypsin is a serine protease found in the digestive system of many vertebrates serving
both digestive and regulatory functions. As a digestive agent, it degrades large polypeptides
into smaller fragments. As a regulatory protease, it activates other proteins through proteoly-
sis at specific lysine and arginine bonds [25]. For the purposes of this study, the X-ray crystal
structure of the trypsin complex with the ligand 3-[(2S)-2-[(4-methylphenyl)sulfonyl]amino-
3-oxo-3-piperidin-1-ylpropyl]benzenecarboximidamide (4-TAPAP) was retrieved from PDB
(PDB ID 1PPH).

Prior to docking, both protein structures were appropriately prepared for the subse-
quent molecular docking. The protein structures were protonated using the Protonate3D
tool in MOE. The tool applies the Generalized Born electrostatics model and, following the
optimal free energy proton geometry and the ionization states of titratable protein groups,
assigns hydrogens to the structures. The water molecules were removed.

2.4. Investigated Scoring Functions

The scoring functions available in both commercial and free molecular docking soft-
ware packages were explored. Representatives of all three main types of scoring functions
were studied—empirical, force-field, and knowledge-based, shortly described below:

â Empirical: Use training sets of X-ray protein–ligand complexes and multiple linear
regression as a statistical method to derive the equation. The equation terms describe
important binding interactions, such as hydrogen bonds (H-bonds), ionic, hydropho-
bic, loss in the ligand flexibility (entropy), etc.

â Force-field based: Based on classical force fields for proteins and use Lennard-Jones
and Coulomb potentials to describe the enthalpy terms. The entropy terms are
often missing.

â Knowledge-based (known also as Potential of Mean Force): Involve distance-dependent
interaction potentials derived through the statistical analyses of a large number of
crystal structures of protein–ligand complexes. Such functions describe the interac-
tions between each pair of ligand–protein atoms based on the structural information
of the X-ray protein–ligand coordinates. In contrast to the above-mentioned two types,
knowledge-based functions do not have physical interpretation.

Among the commercial software packages for molecular docking, MOE, GOLD, and
SeeSAR were chosen due to the fact that they are widely used by the research community
in the field of in silico drug design. In addition, the scoring functions included in these
software packages represent different types (empirical, force-field, and knowledge-based,
or their combinations; see Table 1) that makes them a good representative sample of scoring
functions broadly used in the contemporary docking studies.

https://www.rcsb.org
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Table 1. Brief description of the investigated scoring functions.

Software Package/Scoring Function Source

MOE

ASE is based on the Gaussian approximation and depends on the radii of the atoms and the
distance between the ligand atom–receptor atom pairs. ASE is proportional to the sum of the
Gaussians over all ligand atom–receptor atom pairs.

[32]

Affinity dG is a linear function that calculates the enthalpy contribution to the binding free
energy, including terms based on: interactions between H-bond donor–acceptor pairs,
hydrophobic and ionic interactions, metal ligation, also unfavorable interactions (between
hydrophobic and polar atoms) and favorable interactions (between any two atoms) ones.

[26]

Alpha HB is a linear combination of two terms: (i) the geometric fit of the ligand to the
binding site taking into account the attraction and repulsion depending on the distance
between the atoms; and (ii) H-bonding effects.

[26]

London dG estimates the free binding energy of the ligand, counting for the average gain or
loss of rotational and translational entropy; the loss of flexibility of the ligand; the geometric
imperfections of H-bonds and metal ligations compared to the ideal ones; and the
desolvation energy of atoms.

[26]

GBVI/WSA dG estimates the free energy of binding of the ligand taking into account the
weighted terms for the Coulomb energy, solvation energy, and van der Waals contributions. [26]

GOLD

GoldScore comprises the following terms: van der Waals and H-bonds energies between the
protein and the ligand, and the internal van der Waals and torsional strain energies of
the ligand.

[2,33,34]

ChemScore incorporates terms for: the total free energy change upon ligand binding; a
protein–ligand atom clash; and an internal energy term. It takes account of
hydrophobic–hydrophobic contact area, H-bonds, ligand flexibility, and metal interactions.

[2,35,36]

ASP (Astex Statistical Potential) is a statistic atom–atom potential generated from the
statistical analysis of protein–ligand interactions found in the PDB. It considers the different
occurrences of different atom types on protein molecules and incorporates volume
corrections for protein atoms and ligand atoms.

[2,26,37,38]

ChemPLP combines parameters from the ChemScore (distance and angle dependences of
hydrogen and metal bonds) and PLP (piecewise linear potential) scoring function
(heavy-atom-collision and torsion potentials, covalent bond contributions, protein sidechain
flexibility, and optional constrains).

[26]

SeeSAR

FlexX applies an incremental construction method to split the ligands into fragments,
positioning the fragment (or combinations thereof) into multiple places in the pocket, and
scoring based on a simple fast pre-scoring scheme. The ligand is further built up from the
fragments and the interim solutions are comparatively scored considering the hydrogen
bonds, the ionic interactions, the lipophilic protein–ligand contact surface, and the number of
rotatable bonds in the ligand.

[29,39]

HYDE calculates the realistic free energies of binding by approximating affinities based on
two major physical driving forces: atoms’ desolvation and interactions. [27,28]

AutoDock Vina

AutoDock Vina combines empirical scoring functions and knowledge-based potentials by
extracting empirical information from the preferred conformational states of the
receptor–ligand complexes, as well as of the experimental affinity measurements. The
function consists of weighted terms for steric interactions (attraction and repulsion),
hydrophobic interactions, H-bonds, and rotation.

[26,30,31]

X MOE v. 2016.08 (Molecular Operating Environment, The Chemical Computing Group
http://www.chemcomp.com (accessed on 3 June 2022)) operates with five scoring
functions, four of which are empirical (London dG, ASE, Affinity dG, and Alpha HB)
and one is a force-field scoring function (GBVI/WSA dG) [26].

X GOLD v. 5.6.3 (Genetic Optimization for Ligand Docking, The Cambridge Crys-
tallographic Data Center https://www.ccdc.cam.ac.uk/solutions/csd-discovery/
components/gold/ (accessed on 3 June 2022)) operates with four scoring functions,
two of which are empirical (ChemPLP and ChemScore), one is knowledge-based
(ASP), and one is force-field scoring function (GoldScore) [26].

http://www.chemcomp.com
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
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X SeeSAR v. 4.3 (BioSolveIT, https://www.biosolveit.de/SeeSAR (accessed on 3 June
2022)) operates with two empirical scoring functions—HYDE [27,28] and FlexX [29].

Among the molecular modelling software packages with free access, AutoDock Vina
was used (as Smina, Vina [30]).

X AutoDock Vina v. 1.2.0. (The Scripps Research Institute, https://vina.scripps.edu
(accessed on 3 June 2022)) implements a scoring function of a mixed type (knowledge-
based and empirical) [30,31].

The above-mentioned scoring functions are briefly described in Table 1.
The rigid protein/flexible ligand approach was used in all molecular docking studies.

No water molecules were left in the binding sites of the studied proteins. The default
placement algorithm for every molecular docking package was used. Up to 30 poses were
kept after docking.

During data processing, we relied on the general understanding that docking results
are considered good if: (i) the docking scores of the studied bioactive compounds are in
agreement with the experimental data on their binding affinities; and (ii) the docking poses
are close to the experimentally observed of the co-crystalized ligand in the complex. The
first one is usually estimated by correlating the docking scores with the binding affinities,
such as, for example, the inhibitory constants expressed as pKi (−log Ki)—the higher the
correlation coefficient, the better the docking scores approximate the binding affinities. The
second one is estimated by the RMSD (root-mean-square deviation) values between the
positions of the corresponding atoms of the ligand in the co-crystalized and the docked
poses—the lower the RMSD, the better the correspondence is. These two metrics were used
to estimate the performance of the scoring functions.

The results from the performed molecular docking studies were processed depending
on the particular metric and were prepared as spreadsheets, in a format suitable for the
subsequent application of ICrA.

All spreadsheets were constructed in an identical way: the compounds (protease
inhibitors) were considered as objects in terms of ICrA, while the docking scores calculated
by the scoring functions, as well as the experimental binding affinity data (pKi), were
considered as criteria. An exemplary view of a spreadsheet serving as an input for ICrA
is shown in Figure 5, reporting the results from the docking of the first 10 compounds
(column compound, CPD_01 to CPD_10) in the active site of thrombin by the five MOE
scoring functions (columns Affinity dG, Alpha HB, ASE, GBVI/WSA dG, and London dG)
as the docking energies of the best poses, and the experimental inhibitory pKi values.
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3. Results and Discussion
3.1. Applied ICrA to Assess the Performance of the Scoring Functions in MOE

The docking results were assessed based on the following docking outputs:

(i) Binding energies calculated by different scoring functions as an indicator of protein–
ligand binding affinity (for all scoring functions, lower scores indicate more favorable
poses; the unit is kcal/mol):

https://www.biosolveit.de/SeeSAR
https://vina.scripps.edu
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− The value of the binding energy for the best out of 30 saved docking poses, for
each of the tested compounds;

− The average value of the binding energies of the best 5 and 10 poses (having in
mind that the pose with the lowest energy is not always the bioactive one), for
each of the tested compounds;

− The average values of the binding energies of the 30 saved docking poses, for
each of the tested compounds.

(ii) RMSD between the atoms in the benzamidine substructure (nine heavy atoms) of the
docked ligands and the matching atoms in the co-crystalized ligands (NAPAP in 1ETS
and 4-TAPAP in 1PPH) in the crystallographic structures of the PDB complexes, as an
indicator of the geometric proximity in the pose prediction.

In view of the best docking poses, the ICrA results did not outline any significant
relations neither for the scoring energies of the different scoring functions nor for the
experimental binding affinity data of both protein targets. Similar results were obtained
when ICrA was applied on the average values of the binding energies of the best 5 and
10 poses. Figure 6 illustrates the ICrAData view for the average values of the binding
energies of all 30 saved docking poses together with the experimental binding affinity data,
showing the matrices for the degrees of agreement µ in the cases of thrombin (Figure 6a)
and trypsin (Figure 6b). As it can be observed, in this case, ICrA does not outline any of the
scoring functions to reliably predict the binding affinities for any of the two proteins. A
positive consonance was only reported between the Affinity dG and GBVI/WSA dG scoring
functions in the case of thrombin. This observation might be considered valuable, since
the simulations employing GBVI/WSA dG scoring are significantly more time-consuming
than those employing Affinity dG or any other scoring function. Another noteworthy
observation is the negative consonance between the scoring function ASE, on the one hand,
and the scoring functions Affinity dG and GBVI/WSA dG, on the other hand, again in
the case of thrombin. This observation suggests that, with the increase in the number of
considered poses, the scoring functions show a tendency to greater distinction. Thus, in the
case of thrombin, the scoring functions do not produce equivalent results for the best 5 and
10 poses after docking, which are commonly taken into account in the virtual screening.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18 
 

 

and trypsin (Figure 6b). As it can be observed, in this case, ICrA does not outline any of 
the scoring functions to reliably predict the binding affinities for any of the two proteins. 
A positive consonance was only reported between the Affinity dG and GBVI/WSA dG scor-
ing functions in the case of thrombin. This observation might be considered valuable, 
since the simulations employing GBVI/WSA dG scoring are significantly more time-con-
suming than those employing Affinity dG or any other scoring function. Another note-
worthy observation is the negative consonance between the scoring function ASE, on the 
one hand, and the scoring functions Affinity dG and GBVI/WSA dG, on the other hand, 
again in the case of thrombin. This observation suggests that, with the increase in the 
number of considered poses, the scoring functions show a tendency to greater distinction. 
Thus, in the case of thrombin, the scoring functions do not produce equivalent results for 
the best 5 and 10 poses after docking, which are commonly taken into account in the vir-
tual screening. 

 
(a) 

 
(b) 

Figure 6. ICrA implementation based on the averaged docking scores of the 30 saved poses.  
(a) Thrombin. (b) Trypsin. 

Figure 7 presents the use of ICrA when the results from docking are examined based 
on RMSDs calculated between the benzamidine substructure of the corresponding ligand 
in the X-ray structure and in the docking poses: firstly, based on the average RMSD values 
of the 30 saved docking poses (Figure 7a,c), and later on, based on the scores of the dock-
ing poses with the lowest RMSD (Figure 7b,d). 

 
(a) 

Figure 6. ICrA implementation based on the averaged docking scores of the 30 saved poses. (a) Thrombin.
(b) Trypsin.

Figure 7 presents the use of ICrA when the results from docking are examined based
on RMSDs calculated between the benzamidine substructure of the corresponding ligand
in the X-ray structure and in the docking poses: firstly, based on the average RMSD values
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of the 30 saved docking poses (Figure 7a,c), and later on, based on the scores of the docking
poses with the lowest RMSD (Figure 7b,d).
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As it can be observed from Figure 7a, a positive consonance between Affinity dG and
GBVI/WSA dG is present. As mentioned above, the thresholds α and β are set according to
the user’s choice; so, if one considers a lower value of the threshold α (0.7 or 0.65), a positive
consonance will be identified between the following pairs of scoring functions: Affinity
dG–London dG, Alpha HB–London dG, ASE–London dG, and GBVI/WSA dG–London dG
(Figure 7a); Affinity dG–GBVI/WSA dG (Figure 7b); and Affinity dG–Alpha HB, Affinity
dG–GBVI/WSA dG, Affinity dG–London dG, and Alpha HB–London dG (Figure 7c).

3.2. Applied ICrA to Assess the Performance of the Scoring Functions in GOLD

Due to the stochastic nature of the algorithm implemented in GOLD, up to five runs
were performed for each scoring function and the average scores were calculated and used
for further analysis. Considering this stochasticity of the genetic algorithms, the observed
ICrA relations for the GOLD scoring functions could not be directly compared due to the
random starting points, but they may outline some trends.

The results obtained with the GOLD scoring functions were assessed by ICrA based
on the following docking outputs:
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(i). Binding energies calculated by different scoring functions as an indicator of protein–
ligand binding affinity:

− For the best docking poses for each of the tested compounds;
− The average values of the binding energies of the best 5 and 10 poses;
− The average values of the binding energies of the 30 saved docking poses.

(ii). Three running modes concerning the GOLD algorithm’s speed:

− Slow—the slowest, but the most accurate one;
− Fast—the fastest, but the least accurate one;
− The medium one.

Figure 8 presents the results from ICrA utilization for thrombin and trypsin, based
on the binding energies calculated by the scoring function GoldScore in GOLD at the
three running modes—slow, medium, and fast. The impact of the algorithm’s speed was
explored for the best pose (with the lowest binding energy, top1), for the average values
of the binding energy of the first 5 poses (top5), and for the average values of the binding
energy of the first 10 poses (top10), for each compound in the dataset.
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In the case of thrombin, the analysis outlines that, the three running modes are in
a positive consonance, revealing that there is a high degree of reliability between the fast,
medium, and slow modes. In the case of trypsin, however, there is no consonance between
the fast and the two other modes of algorithms’ performance. Based on the results obtained
for trypsin, the medium mode might be considered as the most appropriate, since showing
results closer to the most precise slow mode than to the fastest one for the particular dataset.
Moreover, the medium mode represents a good compromise between execution time
and accuracy.

The investigation of the three modes concerning the GOLD algorithm’s speed was
extended to all available scoring functions in GOLD, namely ChemScore (CS), ASP, and
ChemPLP (CPLP), only for the best docking score out of the 30 saved docking poses
for each of the tested compounds. As a demonstration, Figure 9a represents the ICrA
implementation for thrombin for all scoring functions in GOLD, in all three modes of
GOLD algorithm’s speed. As it can be seen, almost no significant relations (except two
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pairs in GoldScore (GS) and one pair in ChemScore in positive consonance) might be outlined
among the scoring functions themselves or among the different running modes concerning
the algorithm’s speed in GOLD. Figure 9b represents the ICrA use for trypsin for all scoring
functions in GOLD for the medium mode only. The results confirm that each scoring
function brings unique and independent information. Again no significant relations in
terms of ICrA might be outlined—neither among the scoring functions themselves nor
between them and the experimental binding affinities.
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3.3. Applied ICrA to Assess the Performance of the Scoring Functions in SeeSAR

The binding energies of the best poses for each compound in the dataset were subjected
to ICrA along with the experimental pKi values. The obtained results are shown in
Figure 10a for thrombin, and in Figure 10b for trypsin.
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As seen from Figure 10, identical results were obtained for both targets, showing no
significant relations among the scoring functions themselves or for the experimental pKi
values, as already observed for most of the studied scoring functions.

3.4. Applied ICrA to Assess the Performance of the Scoring Function in AutoDock Vina

ICrA was applied to the following results: (1) binding energies of the best poses for
each compound in the dataset (top_score); (2) RMSDs of the best poses (rmsd_of_top_score);
(3) binding energies of the poses with the best RMSDs (score_of_top_rmsd); (4) the best
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RMSDs (top_rmsd); and (5) experimental pKi values. The results obtained after ICrA
application are shown in Figure 11a for thrombin and in Figure 11b for trypsin.
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As it can be observed from Figure 11, similar results were obtained for both targets,
showing positive consonance between the binding energies of the best poses and the binding
energies of the poses with the best RMSD. Although no significant relations were noticed
between the applied scoring functions and the experimental pKi values for any of the
proteins, it is worth noting that the values calculated for thrombin are, in most cases,
slightly higher than those for trypsin. A further analysis of the results showed that the best
docking score pose coincides with the best RMSD pose for 20 of 88 compounds in the case
of thrombin and only for 6 of 88 compounds in the case of trypsin.

Considering the fact that the comparison between the scoring functions of different
software packages is not straightforward due to the differences in the implemented docking
protocols, we summarized the ICrA results for all scoring functions used in this study
in relation to the experimental pKi data only, which is the constantly present validation
criterion in all comparisons. Table 2 shows them for the top score poses of the ligands
within the binding sites of the two studied proteins.

Table 2. ICrA relations between investigated scoring functions and experimental pKi data.

Protein
Target Affinity_dG Alpha_HB ASE GBVI_WSA_dG London_dG GoldScore ChemScore ASP ChemPLP FlexX HYDE Vina

Thrombin 0.488 0.479 0.450 0.560 0.479 0.516 0.565 0.562 0.556 0.512 0.418 0.433

Trypsin 0.369 0.404 0.358 0.538 0.489 0.690 0.613 0.612 0.660 0.364 0.397 0.347

Obviously, as reported above, no significant relations are observed between the dock-
ing scores and the experimental inhibitory effects and none of the scoring functions can
be given any preference. In addition, the results illustrate the dependence of the ICrA
relations on the studied protein. In the case of thrombin, the relations are closer to each
other, covering an interval from 0.418 (HYDE) to 0.565 (ChemScore). In the case of trypsin,
there is an almost two-fold difference between the highest (0.690 by GoldScore) and the
lowest (0.347 by Vina) values. It is worth noting that GoldScore and ChemPLP produce
results that approach the positive consonance threshold.

4. Conclusions

In this investigation, the capability of ICrA to assess the performance of 12 scoring
functions available in MOE, GOLD, SeeSAR, and AutoDock Vina was explored by docking
simulations on a set of 88 protease inhibitors in the binding sites of thrombin and trypsin.
The performance of the scoring functions was evaluated based on the docking energies as
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approximations of the binding affinities and on the RMSDs as measures of the experimental
binding pose proximity.

As expected, the ICrA application confirmed that the performance of the scoring
functions for the same dataset of ligands depends on the studied protein used for docking.

The InterCriteria analysis also revealed that none of the studied scoring functions is
a good predictor of the binding affinities of the compounds to the investigated proteins.
The lack of a good correlation between the docking scores and the experimental binding
affinity data is a question of debate. In terms of ICrA, no significant relations were recorded
between the docking scores of any of the studied scoring functions and the experimental
binding affinities.

In general, ICrA does not outline any significant relations between the investigated
scoring functions applied either. Thus, in terms of ICrA, the scoring functions do not
produce equivalent results. This fact, together with the observation about the lack of good
correlations with the experimental data, suggest the necessity for a combined use of the
scoring functions in consensus docking studies.

To the best of our knowledge, this is the first systemic investigation of ICrA as a tool
to support decision making in the molecular docking studies of small drug-like molecules
in the binding sites of different biomacromolecules. As with any analysis of such a kind,
the results are limited by the data with which the analysis operates. In this investigation,
the limitations are related to the extrapolation of the conclusions from the ICrA application
to other structural information (different structural classes of ligands) and different protein
families. Thus, the capability of ICrA will be further explored to assess the performance
of scoring functions for a larger dataset of protein–ligand complexes broadly used as
benchmark dataset in contemporary docking studies.
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