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Abstract: In this paper we consider a mathematical continuous-time model for biodegradation of
phenol in the presence of sodium salicylate in a chemostat. The model is described by a system of
three nonlinear ordinary differential equations. Based on the dynamical systems theory we provide
mathematical investigations of the model including local and global analysis of the solutions. The
local analysis consist in computation of two equilibrium points—one interior and one boundary
(washout) equilibrium—in dependance of the dilution rate as a key model parameter. The local
asymptotic stability of the equilibria is also presented. The global analysis of the model solutions
comprises proving existence, uniqueness and uniform boundedness of positive solutions, as well as
global asymptotic stabilizability of the dynamics. The theoretical investigations are illustrated by some
numerical examples. The results in this study can be used in practice as a tool to control and optimize
the chemostat performance of simultaneous biodegradation of mixed substrates in wastewater.

Keywords: chemostat model; dynamical system; equilibrium points; global stability; model-based
control; numerical simulation

1. Introduction

Biotechnological processes have been found to be suitable and low-cost options for
the removal of organic and inorganic contaminants in wastewaters [1–3]. Phenol, phenolic
derivatives and their mixtures are among the extremely toxic pollutants arising from indus-
trial effluents. Although sodium salicylate (SA) is used as a drug derivative in medicine
and as preservative in foods production, it is recently qualified as a typical contaminant in
wastewater due to its high level toxicity (cf., for example, [4] and the references therein).
The phenol/sodium salicylate mixture is found in wastewater from various industries
(chemical, pharmaceutical, cosmetic and others). For that reason, modern technologies
for removal of toxic compounds from industrial and pharmaceutical wastewater are con-
stantly being developed [5–7]. The availability of clean water is important for ensuring
human health, societal development and environmental sustainability. Wastewater must
be treated before being released into the environment or reused according to international
and national regulatory requirements, emphasized in many European documents [8,9].

Recently, biodegradation of phenol and its derivatives, as well as of SA is successfully
carried out with various specific microorganisms such as Trichosporoncutaneum, Arthrobacter,
Pseudomonas putida, Gliomastix indicus, Aspergillus awamori, Trametes hirsute, Rhodococcus,
Burkholderia, Candida tropicalis and many others [10–16]. The experimental work is per-
formed mainly at laboratory scales using a chemostat as a part of apparatus. It seems that
the name “chemostat” appears for the first time in [17]. The chemostat is also known as
“continuous culture” and “continuously stirred tank reactor” (CSTR). Using the chemostat,
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numerous mathematical models have been developed in different areas of natural sciences
and bioengineering [18–20].

Usually, the Haldane kinetic model describes the specific cell growth rates on a single
substrate in wastewater treatment models. However, the specific cell growth rates in
a substrate mixture of two and more pollutant components are expressed by complex
nonlinear functions [12,21]. These functions are presented as sums or products of modified
kinetic models to take into account the mutual influence between the substrates on their
biodegradation rate by the so-called interaction coefficients. The latter account for the
inhibition of the degradation of one substrate in the presence of the other or of the binary
mixture as a whole [14,16]. The following models are widely used in the analysis and
control of the wastewater treatment processes involving mixtures of pollutant components:
sum kinetics with interaction parameters (SKIP), self-inhibition EC-SKIP (SIEC-SKIP),
elimination capacity-sum kinetics with interaction parameter (EC-SKIP), etc. [22–25]. The
SKIP models describe well the biodegradation by different microorganisms of various
mixtures of interacting phenolic pollutants in wastewater: phenol and p-cresol or phenol
and resorcinol by Gliomastix indicus MTCC 3869 [12]; phenol and SA by Pseudomonas
putida [14–16]; 4-bromophenol and 4-chlorophenol by Arthrobacter chlorophenolicus A6 [26].

Controlling a biotechnological process is a delicate and not easy task. This is due
to the complexity of the process, involving a variety of living microorganisms which
dynamics is often unstable and not well known. Model-based control is used to predict
the behavior of the bioreactor systems and is gaining an increased importance in recent
decades. The controller type depends on many factors such as the knowledge of the system,
availability and complexity of the considered model, etc. Among the classical controllers
are the proportional-integral (PI) controller, the proportional integral-differential (PID)
controller, the adaptive PID and the cascade PI controls; all they have been recognized as
a good alternative for the regulation of the plants (cf. [27,28] and the references therein).
Other recently developed approaches for controlling continuous bioreactors are nonlinear
adaptive control [29,30], feedback control [31], extremum seeking control [32–34]. More
detailed information about instrumentation and control of biotechnological processes can
be found in the review paper [35].

A significant characteristic of chemostat cultivation is the dilution rate D. In practice,
D is defined as the flow of medium per time over the volume of the culture in the reactor
and can be directly manipulated by the experimenter. For that reason a large number
of studies is devoted to investigating the effect of D on the long-term behavior of the
chemostat dynamics. Among the rich literature we can mention e.g., the papers [36,37]
and the references therein, as well as the books [18,19]. Using D as a control parameter is
considered in [38,39] and applied to a CSTR model for simultaneous degradation of phenol
and p-cresol in industrial wastewater.

Biodegradation of phenol and SA mixture by the strain Pseudomonas putida (P. putida)
CCRC 14365 is reported in [14,15], where series of batch tests are conducted and used to
determine the interaction parameters in the kinetic growth models. The obtained results
show that the cells preferably degrade phenol than SA.

The high biodegradation rate of phenol and SA by P. putida 49451 is established
in details by Lin and Ho in [16]. Based on eight batch tests, the kinetic parameters are
determined by comparing the model-fitted specific growth rates with that ones of the
experimental results. Experimental results show that the addition of SA to phenol does not
significantly affect the time required for complete biodegradation of phenol. However, the
presence even of a small amount of phenol accelerates the complete biodegradation of SA.
Moreover, the authors present in their paper for the first time a continuous-time (chemostat)
model for biodegradation of the mixture by P. putida 49451. They use two chemostats to
evaluate the biodegradation of phenol and SA with different initial conditions. It is shown
that the experimental results in the chemostat system fit very well with the predicted values
of the model for a particular value of the dilution rate D = 0.04. All results in [16] are also
discussed and compared with other experimental data on phenol and SA by P. putida given
in [12,14,15].
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Here we consider the chemostat model for biodegradation of phenol and SA mixture
by the strain P. putida 49451 proposed by Lin and Ho in [16]. As already mentioned before,
only a quantitative verification of the dynamics at a particular value of the dilution rate
D = 0.04 has been carried out in the latter paper. Till now this model has not yet been
investigated qualitatively. Our paper aims to perform a detailed mathematical analysis of
the model solutions.

The mathematical analysis is based on the theory of autonomous dynamical systems,
described by nonlinear ordinary differential equations [18,40]. The latter offers a rich arsenal
of techniques and methods, which are recently widely used in mathematical modelling of
real-life processes. Based on this theory, the objectives of our study are to (i) determine
bounds (interval) for the dilution rate D and to establish existence of model equilibrium
points within these bounds; (ii) investigate the local asymptotic stability of the equilibria;
(iii) establish existence, uniqueness and boundedness of positive model solutions; (iv) prove
global stabilizability of the dynamics towards a prescribed equilibrium point by using D as
a control function. The obtained theoretical results provide a good framework for practical
applications. They can be used in the design of effective and sustainable management of
the biodegradation process of phenol and SA mixture in wastewater.

The paper is structured in the following way. Section 2 shortly presents the mathe-
matical model for biodegradation of phenol and SA mixture by the P. putida cells, given
in [16]. The main results are reported in Sections 3 and 4. Section 3 is devoted to local
stability analysis of the model, including computation of the equilibrium points as well as
investigation of their local asymptotic stability with respect to the parameter D. Section 4
reports on general and important properties of the model solutions and provides results on
the global stabilizability of the system. Section 5 presents numerical examples as illustration
of the theoretical studies on the model dynamics. The last Section 6 discusses the presented
theoretical results and points out their importance and practical applicability.

2. The Chemostat Model

The chemostat model for biodegradation of the binary mixture of phenol and sodium
salicylate (SA) by the strain Pseudomonas putida 49451 is described by the following system
of nonlinear ordinary differential equations [16]

dSP(t)
dt

= D(S0
P − SP(t))−

1
YP

µP(SP(t), SA(t))X(t) (1)

dSA(t)
dt

= D(S0
A − SA(t))−

1
YA

µA(SP(t), SA(t))X(t) (2)

dX(t)
dt

= (µP(SP(t), SA(t)) + µA(SP(t), SA(t))− D)X(t), (3)

where µP(SP, SA) and µA(SP, SA) are the specific cell growth rates on phenol and SA
respectively, presented by the following analytical expressions [12,14,16]

µP = µP(SP, SA) =
µm,PSP

KS,P + SP +
S2

P
KI,P

+ IASA + IP,ASPSA

µA = µA(SP, SA) =
µm,ASA

KS,A + SA +
S2

A
KI,A

+ IPSP + IA,PSASP

(4)

The meaning of the state variables SP, SA, X and of the model parameters is summa-
rized in Table 1. The numerical values in the last column are taken from [16], where they
are obtained and verified by laboratory experiments.

In our study we assume that the influent concentrations of phenol (S0
P) and SA (S0

A)
are constant. The dilution rate D is considered as a control function in the model.
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Table 1. Model variables and parameters.

Definition Value

SP Phenol concentration [mg/L] –
SA Sodium salicylate (SA) concentration [mg/L] –
X Biomass concentration [mg/L] –
D Dilution rate [h−1] –
S0

P Influent phenol concentration [mg/L] 192
S0

A Influent SA concentration [mg/L] 286
IA Interaction constant of phenol degradation in the presence of SA [–] 0.32
µm,P Maximum specific growth rate of cells on phenol [h−1] 0.423
YP Growth yield of cells on phenol [mg cell/mg phenol-h] 0.447
KS,P Half-saturation constant of phenol [mg/L] 48.1
KI,P Inhibition constant of phenol [mg/L] 272.5
IP,A Interaction constant of phenol degradation

in the presence of phenol and SA [–] 1.51
YA Growth yield of cells on SA [mg cell/mg SA-h] 0.438
µm,A Maximum specific growth rate of cells on SA [h−1] 0.247
KS,A Half-saturation constant of SA [mg/L] 71.7
KI,A Inhibition constant of SA [mg/L] 3178.2
IP Interaction constant of SA degradation in the presence of phenol [–] 0.14
IA,P Interaction constant of SA degradation

in the presence of SA and phenol [–] 0.0066

The specific growth rates µP(SP, SA) and µA(SP, SA) represent the so called SKIP
(Sum Kinetics with Interaction Parameters) models of cell growth, which as shown in [16],
give the best fit to the experimental results of phenol and SA biodegradation. Each one of
µP respectively µA contains two interaction parameters, IA and IP,A, respectively IP and
IA,P. The considerably grater numerical value of IA compared to IP (see last column in
Table 1) indicates that SA shows higher uncompetitive inhibition on phenol biodegradation
in comparison to that of phenol on SA biodegradation. The value of IP,A in µP is also larger
that the value of IA,P in µA, which is indicative for the fact that the inhibition of phenol
biodegradation by SA is higher than the inhibition of SA biodegradation by phenol. These
phenomena have also been experimentally validated, see e.g., [14,16] and the references
therein. Obviously, if IA = IP,A = 0, respectively IP = IA,P = 0 then µP, respectively µA
represent the Haldane growth (Halling type IV) function.

Figure 1 visualizes the functions µP(SP, SA), µA(SP, SA) and µP(SP, SA) + µA(SP, SA).

Figure 1. Graphs of the specific growth rates: (a) µP(SP, SA), (b) µA(SP, SA) and (c) µP(SP, SA) +

µA(SP, SA) for SP ∈ [0, S0
P], SA ∈ [0, S0

A].

The explicit expressions of µP and µA (see (4)) suggest the following properties of
the latter:
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Property 1. For SP ≥ 0, SA ≥ 0, µP(SP, SA) ≥ 0 with µP(SP, SA) > 0 if SP > 0, SA > 0;
µP(SP, SA) is continuously differentiable and bounded;

∂

∂SA
µP(SP, SA) < 0, lim

SP→∞
µP(SP, SA) = 0, lim

SA→∞
µP(SP, SA) = 0.

Property 2. For SP ≥ 0, SA ≥ 0, µA(SP, SA) ≥ 0 with µA(SP, SA) > 0 if SP > 0, SA > 0;
µA(SP, SA) is continuously differentiable and bounded;

∂

∂SP
µA(SP, SA) < 0, lim

SP→∞
µA(SP, SA) = 0, lim

SA→∞
µA(SP, SA) = 0.

3. Local Stability Analysis

In this section we investigate existence and local asymptotic stability of equilibrium
points for model (1)–(3) in dependance of the key control parameter, the dilution rate D.

3.1. Existence of Equilibrium Points

The equilibrium points (called also steady states) are the simplest solutions of the
dynamical system, which do not depend on time. Their existence is an essential prerequisite
for global stabilization of the dynamics.

For model (1)–(3), the equilibrium points are solutions with respect to (SP, SA, X) of
the following system of nonlinear algebraic equations

D(S0
P − SP)−

1
YP

µP(SP, SA)X = 0 (5)

D(S0
A − SA)−

1
YA

µA(SP, SA)X = 0 (6)

(µP(SP, SA) + µA(SP, SA)− D)X = 0. (7)

Obviously, SP = S0
P, SA = S0

A and X = 0 are solutions of (5)–(7) for any D > 0. We denote
this equilibrium point by E0 = (S0

P, S0
A, 0), which is called boundary or washout equilibrium.

Further we are looking for solutions of (5)–(7) with positive components. After
multiplying Equation (5) by YP, Equation (6) by YA, summing the latter together and
adding them to (7) we obtain the following expression for X

X = YP (S0
P − SP) + YA (S0

A − SA). (8)

Obviously, X > 0 will be valid if and only if SP < S0
P and SA < S0

A are satisfied.
Substituting X from (8) into Equations (5) and (6) leads to the following nonlinear

algebraic system with respect to SP and SA

µP(SP, SA) + µA(SP, SA) = D (9)

YP µA(SP, SA) (S0
P − SP)−YA µP(SP, SA) (S0

A − SA) = 0. (10)

It follows from (9) that µA(S0
P, S0

A) + µP(S0
P, S0

A) = D, and then Equation (8) implies
X = 0. Denote

Dmax = µA(S0
P, S0

A) + µP(S0
P, S0

A). (11)

The value Dmax will serve in the following as a critical point of the parameter D for
existence of interior (with positive components) equilibrium points and for their local
asymptotic stability.

The system (9) and (10) is difficult to be solved analytically due to the strong nonlin-
earities in the functions µA(SP, SA) and µP(SP, SA) with respect to SP and SA. We shall
show numerically that only one interior equilibrium exists for D ∈ (0, Dmax). Using the
numerical values in Table 1 we get
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Dmax = 0.0923920518.

We construct a mesh of points {Dj} in the interval (0, Dmax] and for each value
D = Dj the system (9) and (10) is solved numerically, looking for solutions such that
0 < SP ≤ S0

P, 0 < SA ≤ S0
A. The third component X of the interior equilibrium is obtained

from Equation (8). The numerical computations deliver existence of only one interior
equilibrium point E∗ = E∗(D) = (S∗P, S∗A, X∗). Figure 2 visualizes the components with
respect to SP, SA and X of the two equilibria E∗ and E0. It is seen, that at D = Dmax the
two equilibria E∗ and E0 coincide, i.e., S∗P = S0

P, S∗A = S0
A and X∗ = 0.

Figure 2. Components of the interior equilibrium E∗ (solid lines) and of the washout equilibrium E0

(dash lines). The vertical dot line passes through Dmax.

3.2. Local Asymptotic Stability of the Equilibrium Points

The local asymptotic stability of an equilibrium point is determined by the signs of
the real parts of the eigenvalues of the Jacobian matrix evaluated at this equilibrium, or
equivalently by the roots of the corresponding characteristic polynomial (cf. e.g., [18,40]).

The Jacobian matrix J related to the model Equations (1)–(3) has the form

J(SP, SA, X) =


−D− 1

YP

∂µP
∂SP

X − 1
YA

∂µP
∂SA

X − 1
YP

µP

− 1
YA

∂µA
∂SP

X −D− 1
YA

∂µA
∂SA

X − 1
YA

µA(
∂µP
∂SP

+ ∂µA
∂SP

)
X

(
∂µP
∂SA

+ ∂µA
∂SA

)
X µP + µA − D

.

Denote by |J(E0)− λI3| the characteristic polynomial of J evaluated at the boundary
equilibrium E0 = (S0

P, S0
A, 0). Here I3 is the 3-dimensional identity matrix and λ is any

complex number. We obtain

|J(E0)− λI3)| =

∣∣∣∣∣∣∣∣∣
−D− λ 0 − 1

YP
µP(S0

P, S0
A)

0 −D− λ − 1
YA

µA(S0
P, S0

A)

0 0 µP(S0
P, S0

A) + µA(S0
P, S0

A)− D− λ

∣∣∣∣∣∣∣∣∣
= (−D− λ)2(µP(S0

P, S0
A) + µA(S0

P, S0
A)− D− λ).
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Obviously, λ1,2 = −D < 0 are two negative roots of the above characteristic polynomial.
The third root is λ3 = µP(S0

P, S0
A)+µA(S0

P, S0
A)−D. Since Dmax = µP(S0

P, S0
A) + µA(S0

P, S0
A),

the sign of λ3 satisfies

λ3 = µP(S0
P, S0

A) + µA(S0
P, S0

A)− D


> 0, if D < Dmax,

< 0, if D > Dmax,

= 0, if D = Dmax.

Therefore

E0 is


locally asymptotically unstable , if D < Dmax,

locally asymptotically stable , if D > Dmax.

At D = Dmax the third eigenvalue λ3 becomes equal to zero, so E0 can undergo
a bifurcation at this value of D.

The eigenvalues of the interior equilibrium E∗ are determined numerically, using the
already computed values of the equilibrium components on the mesh {Dj}. Figure 3 visu-
alizes the three eigenvalues of E∗ with respect to D. It is seen, that the three eigenvalues of
E∗ are negative for D < Dmax, thus the interior equilibrium is locally asymptotically stable.
At D = Dmax the first eigenvalue approaches zero, so E∗ undergoes a local bifurcation. In
fact, E0 and E∗ coalesce at D = Dmax and exchange stability, thus a transcritical bifurcation
occurs at this value of D.

Figure 3. The three eigenvalues of the interior equilibrium E∗. The vertical dot lines pass
through Dmax.

We summarize the above results in the following assertion.

Proposition 1.

(i) The model (1)–(3) possesses a boundary equilibrium E0 = (S0
P, S0

A, 0) (with X = 0) for all
values of the dilution rate D > 0. There exists a critical value Dmax > 0 of the dilution rate D,
such that E0 is locally asymptotically stable for D > Dmax, and E0 is locally asymptotically
unstable for 0 < D < Dmax.

(ii) An interior equilibrium E∗ = (S∗P, S∗A, X∗) > 0 exists and is locally asymptotically stable for
all D ∈ (0, Dmax).

(iii) At D = Dmax the two equilibrium points E0 and E∗ undergo a transcritical bifurcation,
leading to stability exchange between them.
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4. Global Analysis

In this section we provide the most important properties of the dynamics (1)–(3). We
establish existence and positivity of the solutions for all time t ≥ 0—properties, that ensure
the ability of the mathematical model to describe the bioprocess, regarding its practical
applicability. Further, we show the global asymptotic stability of the equilibrium points
with respect to the dilution rate D, which actually means model-based control design of the
process. These results provide a good framework for practical applications by indicating to
the experimenter how to choose the proper control strategy in order to ensure best process
performance and wastewater depollution up to known ecological norms.

Theorem 1. The nonnegative cone and the interior of the nonnegative cone in R3 are positively
invariant under the flow (1)–(3).

Proof. If X(τ) = 0 at some time moment τ ≥ 0 then by Equation (3) it follows X(t) = 0 for
all t ≥ 0 due to uniqueness of solutions of Cauchy’s problem. Then the model reduces to

dSP(t)
dt

= D(S0
P − SP(t))

dSA(t)
dt

= D(S0
A − SA(t)),

which solutions are

SP(t) = S0
P + (S0

P − SP(0))e−Dt

SA(t) = S0
A + (S0

A − SA(0))e−Dt.

Obviously, SP(t)→ S0
P and SA(t)→ S0

A exponentially as t→ ∞. So, the face {SP ≥ 0,
SA ≥ 0, X = 0} is invariant under the flow (1)–(3).

If X(0) > 0 then it follows from Equation (3)

X(t) = X(0)e
∫ t

0 [µP(SP(θ),SA(θ))+µA(SP(θ),SA(θ))−D]dθ ,

which means that X(t) > 0 for all t > 0.

If SP(τ) = 0 for some τ ≥ 0 then by Equation (1),
dSP(t)

dt
= DS0

P > 0. If SA(τ) = 0

for some τ ≥ 0 then Equation (2) implies
dSA(t)

dt
= DS0

A > 0. Therefore the vector field
of (1)–(3) points inside the positive orthant, i.e., all model solutions are positive. This
completes the proof of Theorem 1.

In what follows we shall consider initial conditions for the dynamics (1)–(3) in the set

Ω = {(SP, SA, X) : SP(0) > 0, SA(0) > 0, X(0) > 0}.

According to Theorem 1 the set Ω is positively invariant for the model, i.e., starting
with initial conditions in Ω the corresponding solutions remain in Ω for all time t ≥ 0.

Theorem 2. Let (SP(0), SA(0), X(0)) ∈ Ω. Then all solutions are uniformly bounded and thus
exist for all time t > 0.
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Proof. After multiplying Equation (1) by YP, Equation (2) by YA and adding the latter to
Equation (3) we obtain

YP
dSP(t)

dt
+ YA

dSA(t)
dt

+
dX(t)

dt

= D
[
−(YPSP(t) + YASA(t) + X(t)) + YPS0

P + YAS0
A

]
. (12)

Denoting Z(t) = YPSP(t) + YASA(t) + X(t), Equation (12) implies

dZ(t)
dt

= D
(
−Z(t) + YPS0

P + YAS0
A

)
,

which yields limt→∞ Z(t) = YPS0
P + YAS0

A. According to Theorem 1 all solutions are
positive, and the latter presentation means that all solutions are uniformly bounded and
thus exist for all t > 0. The proof of Theorem 2 is completed.

In the following we shall use the next Lemma.

Barbălat’s Lemma (cf. [41]). If f : (0, ∞) → R is uniformly continuous and there exists

lim
t→∞

∫ t

0
f (ξ)dξ then lim

t→∞
f (t) = 0.

Theorem 3. Let (SP(0), SA(0), X(0)) ∈ Ω. The following assertions are valid.

(i) For any D > 0 and for any ε > 0 there exists time Tε > 0 such that for all t > Tε,
SP(t) ≤ S0

P + ε and SA(t) ≤ S0
A + ε hold true.

(ii) If D ∈ (0, Dmax), then there exists time T > 0 such that for all t > T, SP(t) < S0
P and

SA(t) < S0
A are fulfilled.

Proof. (i) Let D > 0 be any value of the control function. If SP(t) > S0
P holds for all t ≥ 0

then by Equation (1) we obtain
dSP(t)

dt
< 0 for all t > 0. If there is a time moment t̃ > 0 such

that SP(t̃) = S0
P then

dSP(t̃)
dt

= − 1
YP

µP(SP(t̃), SA(t̃))X(t̃) < 0. This means that if there is a

time moment t̃1 > 0 such that SP(t̃1) ≤ S0
P then SP(t) < S0

P for all t > t̃1 is valid. Therefore,

SP(t) converges to some S̃P ≥ S0
P as t→ ∞. If S̃P > S0

P then
dSP(t)

dt
< (S0

P − S̃P)D < 0 for

all t > 0, which means that SP(t)→ −∞ as t→ ∞, a contradiction. Thus, either SP(t) ≤ S0
P

for all sufficiently large t > 0 or SP(t) converges to S0
P as t→ ∞. Hence, for any ε > 0 there

exists time TP > 0 such that SP(t) < S0
P + ε for all t > TP holds true.

Similar conclusion can be made for SA(t) using the model Equation (2), i.e., either
SA(t) ≤ S0

A for all sufficiently large t > 0 or SA(t) converges to S0
A as t→ ∞. Equivalently,

for any ε > 0 there exists time TA > 0 so that for all t ≥ TA the inequality SA(t) ≤ S0
A + ε

holds true. Then choosing Tε = max{TP, TA} proves point (i) of the theorem.
(ii) Choose and fix some D̄ ∈ (0, Dmax). The proof of point (i) implies that SP(t) is

strictly decreasing with time. Moreover, since the set {SP(t) : t ∈ [0,+∞)} is bonded,
it follows that there exists limt→∞ SP(t). Similarly, SA(t) is strictly decreasing, too, and
there exists limt→∞ SA(t). Since SP(t), SA(t) and X(t) are bounded differentiable functions

for all t ∈ (0,+∞) it follows that
dSP(t)

dt
is uniformly continuous. Applying Barbălat’s

Lemma yields

0 = lim
t→∞

d
dt

SP(t) = lim
t→∞

(
D̄(S0

P − SP(t))−
1

YP
µP(SP(t), SA(t))X(t)

)
. (13)
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We have by Theorem 1 that SP(t) > 0, SA(t) > 0, X(t) > 0, and because µP(SP, SA) > 0,
the latter equality (13) implies SP(t) ↓ S0

P, X(t) ↓ 0 as t→ ∞. In a similar way one obtains
that SA(t) ↓ S0

A as t→ ∞.
Since D̄ < Dmax = µP(S0

P, S0
A) + µA(S0

P, S0
A), by Equation (3) we obtain

dX(t)
dt

= (µP(SP(t), SA(t)) + µA(SP(t), SA(t))− D̄)X(t)

> (µP(SP(t), SA(t)) + µA(SP(t), SA(t))− Dmax)X(t).

Further, the relations SP(t) ↓ S0
P, SA(t) ↓ S0

A as t→ ∞, as well as the properties (P1),
(P2) of µP(·) and µA(·) imply that there exists a time moment t̄ and a constant γ > 0
such that

µP(SP(t), SA(t)) + µA(SP(t), SA(t))− Dmax ≥ γ

for all t > t̄ is fulfilled. Then
dX(t)

dt
≥ γX(t) > 0 for all t > t̄. The invariance of Ω with

respect to the trajectories of the system implies that X(t̄) > 0. Then from
dX(t)

dt
> 0 for

all t > t̄ it follows that X(t) > X(t̄) for each t > t̄, a contradiction with X(t) ↓ 0 as t→ ∞.
Hence, there exists a sufficiently large time TP > 0 such that SP(t) ≤ S0

P holds true for all
t > TP. If for some time moment t̂ > TP the equality SP(t̂) = S0

P is fulfilled, then

dSP(t̂)
dt

= − 1
YP

µP(SP(t̂), SA(t̂))X(t̂) < 0.

This shows that SP(t) < S0
P for all sufficiently large t > TP is satisfied.

In a similar way it can be shown that there exists time TA > 0 such that SA(t) < S0
A

for all t > TA holds true. Choosing T = max{TP, TA} it follows that SP(t) < S0
P and

SA(t) < S0
A are simultaneously satisfied for all t > T.

The proof of Theorem 3 is completed.

Below we shall establish the global asymptotic stability of the boundary equilibrium
E0. This property of the washout steady state is also important because it characterizes
the inability of the microorganisms to survive in the chemostat system and to degrade the
organic chemical compounds.

Theorem 4. For any initial point from Ω and any D > Dmax the corresponding solution of (1)–(3)
converges asymptotically to the boundary equilibrium E0 = (S0

P, S0
A, 0).

Proof. Choose an arbitrary initial point (SP(0), SA(0), X(0)) ∈ Ω, and let D̄ > Dmax be
some value of the dilution rate. Suppose that limt→∞ X(t) = X̄ > 0. By Barbălat’s Lemma
we obtain from Equation (3)

0 = lim
t→∞

d
dt

X(t) = lim
t→∞

[µP(SP(t), SA(t)) + µA(SP(t), SA(t))− D̄]X̄,

which leads to

lim
t→∞

[µP(SP(t), SA(t)) + µA(SP(t), SA(t))] = D̄ > Dmax.

Based on Theorem 3 (i), on the properties (P1) and (P2) of µP(·) and µA(·), and since
Dmax = µP(S0

P, S0
A) + µA(S0

P, S0
A), the latter relation implies that there exists a time moment

t̂ > 0 and a constant δ > 0 such that

µP(SP(t), SA(t)) + µA(SP(t), SA(t))− D̄ ≥ δ
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for all t > t̂. This yields
d
dt

X(t) ≥ δX(t), or equivalently, X(t) ≥ X(t̂)eδ(t−t̂) for all t > t̂,

a contradiction with limt→∞ X(t) = X̄. Hence, limt→∞ X(t) = 0 holds true. Further,
applying the theory of the asymptotically autonomous systems, the model (1)–(3) reduces
to the limiting system

d
dt

SP(t) = D̄(S0
P − SP(t)),

d
dt

SA(t) = D̄(S0
A − SA(t)),

which means that limt→∞ SP(t) = S0
P, limt→∞ SA(t) = S0

A. This proves the global asymp-
totic stability of the washout equilibrium E0.

The next considerations concern the global asymptotic stability of the interior equilib-
rium E∗ = (S∗P, S∗A, X∗) whenever D ∈ (0, Dmax).

Experimental results in [16] indicate that SA is degraded more rapidly by P. putida
49451 cells than phenol. For that reason let us assume that the model dynamics is already
stabilized at S∗A < S0

A for some value D∗ ∈ (0, Dmax). Denote

C∗A = YA(S0
A − S∗A). (14)

Then model (1)–(3) can be reduced to the following 2-dimensional system with respect
to SP and X:

dSP(t)
dt

= D∗(S0
P − SP(t))−

1
YP

µP(SP(t), S∗A)X(t)

dX(t)
dt

= (µP(SP(t), S∗A)− D∗)X(t) + C∗AD∗.

Further, by (9) and (10) we have S0
P = S∗P +

1
YP

(X∗ − S∗P) + C∗A, and the above two

equations can be rewritten in the form

dSP(t)
dt

= −D∗
[

SP(t)− S∗P +
1

YP
(X(t)− X∗)

]
− 1

YP
C∗AD∗

− 1
YP

(µP(SP(t), S∗A)− D∗)X(t)

dX(t)
dt

=
(
µP(SP(t), S∗A)− D∗

)
X(t) + C∗AD∗.

(15)

We shall show that the dynamics (15) is asymptotically stabilizable towards (S∗P, X∗).

Theorem 5. For any initial point (SP(0), X(0)) > 0 the corresponding solution (SP(t), X(t))
of (15) converges asymptotically to (S∗P, X∗).

Proof. From Theorem 3 (ii) it follows that there is no loss of generality if we restrict our
considerations to initial conditions from the set

Ω1 = {(SP, X) : 0 < SP(0) < S0
P, X > 0}.

Define the following Lyapunov function

V = V(SP, X) =

(
SP − S∗P +

1
YP

(X− X∗)
)2

+ Γ
∫ SP

S∗P

v− S∗P
S0

P − v
dv,

where Γ is a positive constant, which will be determined later. Obviously, V is continuously
differentiable in Ω, V > 0 for all (SP, X) ∈ Ω1 with SP < S0

P, and V = 0 at (S∗P, X∗). It is
straightforward to see, that the derivative of V along the solutions of (15) is



Processes 2022, 10, 2571 12 of 19

dV
dt

= 2
(

SP − S∗P +
1

YP
(X− X∗)

)
·
(

dSP
dt

+
1

YP

dX
dt

)
+ Γ

SP − S∗P
S0

P − SP
· dSP

dt

= −2D∗
[

SP − S∗P +
1

YP
(X− X∗)

]2

− Γ
1

S0
P − SP

[
(SP − S∗P)

2 +
1

YP
(SP − S∗P)(X− X∗)

]
− Γ

1
S0

P − SP

[
1

YP
C∗A(SP − S∗P) +

1
YP

(µP(SP, S∗A)− D∗)X(SP − S∗P)
]

= −
(

2D∗ +
Γ

S0
P − SP

)
(SP − S∗P)

2 − 2D∗
1

Y2
P
(X− X∗)2

−
(

4D∗
1

YP
+

Γ
YP(S0

P − SP)

)
(SP − S∗P)(X− X∗)

− Γ
1

YP
·

SP − S∗P
S0

P − SP
(C∗A + (µP(SP, S∗A)− D∗)X).

Since all model solutions are positive and bounded, we can choose the constant Γ > 0

sufficiently large so that
dV
dt
≤ 0 for all (SP, X > 0) ∈ Ω1. Obviously,

dV
dt

= 0 if and only if
SP = S∗P and X = X∗ are fulfilled. By LaSalle’s invariance principle (cf. [42]) every solution
of (15) initiating in Ω1 approaches the largest invariant set V∗ = {(SP, X) : dV

dt = 0}. Since
E∗ is locally asymptotically stable, it follows that V∗ = {(S∗P, X∗)}. Therefore, (S∗P, X∗) is
globally asymptotically stable for system (15), and this means that all solutions of (1)–(3)
converge to E∗ = (S∗P, S∗A, X∗) as t→ ∞. The proof of Theorem 5 is completed.

Remark 1. Similar conclusions about the global stability of E∗ can be made by assuming that the
dynamics is first stabilized at SP = S∗P for some D∗ ∈ (0, Dmax) and then show that the solutions
(SA(t), X(t)) converge asymptotically to (S∗A, X∗) as t→ ∞. This will be in agreement with the
experimental work in [14] where it is concluded that P. putida CCRC 14365 cells preferably degrade
phenol rather than SA.

5. Numerical Simulation of the Model Dynamics

In this section we consider numerical examples demonstrating the dynamic behavior
of the model (1)–(3) in accordance with the theoretical results.

Example 1. D = 0.04 < Dmax = 0.0923920518

As mentioned before, the model (1)–(3) has been tested at this value of D in [16]. It
is shown there that the solutions fall in finite time into the point F = (6.6, 8.5, 232), called
a steady state, but it is not. Our computer simulations deliver the following components
for the interior equilibrium E∗ = (S∗P, S∗A, X∗) = (3.803, 7.677, 206.029), which are quite
different from that ones of F. According to Theorem 5 namely the equilibrium E∗ is globally
asymptotically stable and attracts all solutions for any initial point from the set Ω as
time tends to infinity. Practically this means that after finite time the solutions fall into
a neighborhood of E∗, say a ball with center E∗ and radius r > 0, where the value r (called
also tolerance) can be chosen by the user.

Example 2. D = 0.02

At D = 0.02 < Dmax the equilibrium components of the interior equilibrium are
E∗ = (S∗P, S∗A, X∗) = (1.086, 3.617, 209.022). Obviously, lower values of the dilution rate D
lead to lower values of S∗P and S∗A, but high values of X∗ in the global attractor E∗.
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Example 3. D = 0.1

In this case we have D > Dmax = 0.0923920518, so that the boundary equilibrium
E0 = (S0

P, S0
A, 0) = (192, 286, 0) is the unique global attractor of the model.

Figure 4 visualizes the time evolution of SP(t), SA(t) and X(t) for the 3 different
values of D corresponding to Examples 1–3.
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Figure 4. Solutions of system (1)–(3) for Examples 1–3, from top to bottom respectively.
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Figures 5–7 show projections of several trajectories in different phase planes for values
of D according to Examples 1, 2 and 3, respectively.

The computer simulations with model (1)–(3) confirm the global stabilizability of the
dynamics to either the interior (persistence) equilibrium E∗ if 0 < D < Dmax or to the
boundary (washout) equilibrium E0 when D > Dmax.
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Figure 5. Example 1. Projection of trajectories of system (1)–(3) in different phase planes with several
initial conditions.
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Figure 6. Example 2. Projection of trajectories of system (1)–(3) in different phase planes with
several initial conditions. The right plot below presents an enlarged fragment of the left one in
a neighborhood of the equilibrium components (S∗A, X∗).
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Figure 7. Example 3. Projection of trajectories of system (1)–(3) in different phase planes with several
initial conditions.

6. Discussion and Conclusions

In this paper we provide a mathematical analysis of the model for biodegradation of
phenol and sodium salicylate in a chemostat by P. putida 49451 cells, proposed for the first
time and experimentally validated in [16]. The model is described by a system of three
nonlinear ordinary differential equations involving SKIP kinetics as specific growth rate of
the microorganisms. The mathematical investigation of the dynamical system includes local
and global analysis of the solutions. Two equilibrium points—one interior (persistence)
and one boundary (washout) equilibrium—are computed in dependance of the dilution
rate D as an important model parameter. A critical value Dmax > 0 is found, such that
the interior equilibrium point E∗ = (S∗P, S∗A, X∗) exists if 0 < D < Dmax. The boundary
steady state E0 = (S0

P, S0
A, 0) is available for all values of D > 0. It is shown by numerical

computations that E∗ is locally asymptotically stable whenever it exists, and E0 is locally
asymptotically stable for D > Dmax, and unstable if D < Dmax. These conclusions are
summarized in Proposition 1.
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The most important properties of the model solutions—existence, positivity, uniqueness
and uniform boundedness—are established theoretically in Section 4, by Theorems 1–3. In
Theorem 4 we prove the global stability of the boundary equilibrium E0 = (S0

P, S0
A, 0)

(within X = 0) if the values of the dilution rate D are large, i.e., if D > Dmax. As usual, the
global stability of E0 is interpreted as total washout of the microorganisms from the chemo-
stat leading to process breakdown. Theorem 5 is devoted to global stability of the interior
equilibrium E∗ = (S∗P, S∗A, X∗) for any D ∈ (0, Dmax). The theorem is proved by assuming
that the model dynamics is already stabilized to S∗A for some value D∗ ∈ (0, Dmax), and
then it is shown, by providing an explicit Lyapunov function, that the solutions SP(t) and
X(t) converge asymptotically to S∗P and X∗ respectively as t→ ∞ for any initial point in the
set Ω. A similar result can be obtained supposing that the dynamics is first stabilized to S∗P,
and then showing that SA(t)→ S∗A and X(t)→ X∗ respectively as t→ ∞ (see Remark 1).
The global stability characteristics give useful advises to the experimenter how to tune the
dilution rate D in order to control the biodegradation of the chemical compounds up to
prescribed ecological norms.

It remains an open problem to prove the global asymptotic stability of the interior
equilibrium E∗ with D ∈ (0, Dmax) for the whole system (1)–(3), for example by construct-
ing an appropriate Lyapunov function or using other approaches. This will be a subject of
future studies.

Some numerical examples for different values of the dilution rate D support the theo-
retical studies and illustrate the dynamic behavior of the solutions. The model predictions
are in agreement with the experimental work in [16] for phenol and SA biodegradation by
P. putida cells.
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