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AN EXAMPLE CONCERNING VALDIVIA COMPACT

SPACES
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Abstract. We prove that the dual unit ball of the space C0[0, ω1) endowed
with the weak* topology is not a Valdivia compact. This answers a question
posed to the author by V. Zizler and has several consequences. Namely, it
yields an example of an affine continuous image of a convex Valdivia com-
pact (in the weak* topology of a dual Banach space) which is not Valdivia,
and shows that the property of the dual unit ball being Valdivia is not an
isomorphic property. Another consequence is that the space C0[0, ω1) has no
countably 1-norming Markuševič basis.

The classes of Corson and Valdivia compact spaces play an important

role in study of both topological and linear properties of Banach spaces. In

particular, they are closely related with projectional resolutions of the identity

1991 Mathematics Subject Classification: 46B04, 54D30
Key words:
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and (countably) norming Markuševič bases (see [8, 9, 2, 3]). While it is well-

known (see [1, Corollary IV.3.15], original proofs are due to S. P. Gul’ko and to E.

Michael and M. E. Rudin) that every continuous image of a Corson compact space

is again Corson, just recently M. Valdivia [10] found an example of a continuous

image of a Valdivia compact space which is not Valdivia. We present here another

example, which is a dual unit ball of a Banach space. This strengthens the

example of [10] and has several interesting consequences.

Let us start with definitions.

Definitions and notation

• If Γ is a set, we put

Σ(Γ) = {x ∈ R
Γ | {γ ∈ Γ | x(γ) 6= 0} is countable}.

• A compact Hausdorff space K is called Corson if K is homeomorphic to a

subset of Σ(Γ) for some set Γ.

• A compact Hausdorff space K is called Valdivia if there is a homeomorphism

h of K into some [0, 1]Γ such that h(K) ∩ Σ(Γ) is dense in h(K).

• We say that a topological space X is a Fréchet-Urysohn space (or, shortly

an FU-space) if, whenever A ⊂ X and x ∈ A there is a sequence xn ∈ A

with xn → x.

• Let X be a topological space and A ⊂ X. We say that A is countably closed

in X if, whenever C ⊂ A is countable then C ⊂ A.

• Let (X, ‖ · ‖) be a Banach space and X∗ the dual space endowed with the

dual norm. The system (xα, fα)α∈Λ ⊂ X ×X∗ is called Markuševič basis if

the following three conditions are satisfied.

(i) fα(xβ) = δαβ for every α, β ∈ Λ, where δαβ is the Kronecker symbol;

(ii) span{xα | α ∈ Λ} = X;

(iii) (∀x ∈ X,x 6= 0)(∃α ∈ Λ)(fα(x) 6= 0).

This basis is called norming (1-norming) if span{fα | α ∈ Λ} is norming

(1-norming) subspace of X∗. It is called countably norming (countably 1-
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norming) if {f ∈ X∗ | {α ∈ Λ, f(xα) 6= 0} is countable} is norming (1-

norming) subspace of X∗.

Recall that a subspace Y ⊂ X∗ is called norming (1-norming) if the norm

on X defined by the formula |x| = sup{f(x) | f ∈ Y, ‖f‖ ≤ 1} is equivalent

(equal) to the original norm ‖ · ‖.

We will deal namely with C[0, ω1], the space of all continuous functions

on the compact ordinal segment [0, ω1], and C0[0, ω1), the space of all continuous

functions on the locally compact ordinal segment [0, ω1) that vanish at infinity.

These spaces are both considered with the supremum norm. We will use some

well-known properties of the space [0, ω1], namely the fact that each continuous

function on this space is constant on some neighborhood of ω1, and that every

finite Radon measure on [0, ω1] is supported by a countable set.

Now we state our main result and its consequences.

Theorem. The dual unit ball
(
BC0[0,ω1)∗ , w

∗
)

is not a Valdivia compact.

Corollary 1. There exist a Banach space X and a closed subspace

Y ⊂ X such that BX∗ is a Valdivia compact in the weak* topology but BY ∗ is

not.

This corollary shows that our theorem yields a strengthening of the ex-

ample of [10]. Indeed, if we denote by i the injection of Y into X, the adjoint

mapping i∗ maps BX∗ onto BY ∗ , and is weak* to weak* continuous. Hence we

get even a linear continuous image of a convex Valdivia compact (in the weak*

topology of a dual Banach space) which is not Valdivia.

Corollary 2. There exists a Banach space X with two equivalent norms

‖·‖1 and ‖·‖2 such that
(
B(X,‖·‖1)∗ , w

∗
)

is a Valdivia compact but
(
B(X,‖·‖2)∗ , w

∗
)

is not.

This proves that the property of the dual unit ball being Valdivia compact

is not an isomorphic property. This is another difference from other classes of

compact spaces (Corson etc.). (This fact was independently observed (using

several deep theorems) in [2, Example 1]. But our proof is essentially simpler.)

Corollary 3. The space C0[0, ω1) has no countably 1-norming Marku-

ševič basis.
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It is easy to see that the space C0[0, ω1) has a countably norming Mar-

kuševič basis. But this basis cannot be countably 1-norming. This is related so

some questions studied by A. N. Pličko (see [7] and other papers).

Now we proceed to proofs. To prove Theorem we need two simple lemmas.

Lemma 1. The space Σ(Γ) is an FU-space and is countably closed in

R
Γ for any set Γ.

P r o o f. For every x ∈ Σ(Γ) the set suppx = {γ ∈ Γ | x(γ) 6= 0} is

countable, so we can fix an enumeration suppx = {γ1(x), γ2(x), . . .}. If suppx is

finite, we fill up the sequence γk(x) with some elements of Γ. Now let A ⊂ Σ(Γ),

x ∈ Σ(Γ), x ∈ A. We can construct by induction a sequence of xn ∈ A such

that |xn(γk(xl)) − x(γk(xl))| < 1
n

for 0 ≤ l < n and 1 ≤ k ≤ n, where x0 =

x. Then clearly xn → x (since the convergence in the product topology is the

coordinatewise convergence).

The second assertion is easy to see. �

Lemma 2. Let K and L be topological spaces and f : K → L be a

continuous mapping. Then the following hold.

(i) If K is compact, then f(A) = f(A) for every A ⊂ K.

(ii) f−1(A) is countably closed in K whenever A is countably closed in L.

P r o o f. (i) The inclusion f(A) ⊂ f(A) holds for every continuous map

between topological spaces. The inverse one follows from the fact that f(A) is a

closed set containing f(A).

(ii) Let C ⊂ f−1(A) be countable. Then f(C) is countable and contained

in A, hence f(C) ⊂ A, and therefore C ⊂ f−1(f(C)) ⊂ f−1(A). �

P r o o f o f T h e o r em. By Riesz theorem we identify C0[0, ω1)
∗ with the

space of signed Radon measures on [0, ω1) and similarly for C[0, ω1]
∗. We put

B = {µ ∈ C[0, ω1]
∗ | ‖µ‖ ≤ 1}, B′ = {µ ∈ C0[0, ω1)

∗ | ‖µ‖ ≤ 1},
M = {µ ∈ B | µ({ω1}) = 0}, M ′ = {µ ∈ B′ | µ([0, ω1)) = 0}.

Consider the natural injection i : C0[0, ω1) → C[0, ω1]. Since i is an

isometric isomorphism, the adjoint mapping i∗ maps B onto B′ and, of course,

i∗ is w∗ → w∗ continuous. It is easy to check that

i∗(µ) = µ ↾ [0, ω1) for every µ ∈ B, and
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i∗ maps M onto B′ in an one-to-one manner.

To prove the assertion we will need the following four claims.

Claim 1. There exists a homeomorphic embedding h of (B,w∗) in some

R
Γ such that h(M) = h(B) ∩ Σ(Γ).

Claim 2. The set M̃ = {µ ∈ M | ‖µ‖ = 1} is weak*-dense in B.

Claim 3. The set Mε = {µ ∈ B | |µ({ω1})| ≥ ε} is weak*-nowhere

dense in B for every ε > 0.

Claim 4. The set M ′ is weak*-countably closed but not weak*-closed in

B′.

Suppose that these claims hold and that B′ is a Valdivia compact. Hence

there is a homeomorphism h : B′ → R
Γ such that h(B′)∩Σ(Γ) is dense in h(B′).

Put A′ = h−1(h(B′) ∩ Σ(Γ)). Then A′ is dense and countably closed in B′. By

Lemma 2(ii) we get that A = (i∗)−1(A′) is countably closed in B. Moreover, A

is dense in B. Suppose not. Then, by Lemma 2(i), i∗(A) = B′ and, by Claim 2,

there is µ ∈ M of norm 1 such that µ /∈ A. But we have (i∗)−1(i∗(µ)) = {µ},

hence i∗(µ) /∈ i∗(A), a contradiction. So the density of A in B is proved.

Further, since A is countably closed in the compact space B, we get that

A is countably compact (and, of course, regular) and hence a Baire space (it is

easy to see that every regular countably compact space is even “α-favorable”).

It follows from the facts that M is residual (by Claim 3) and A a dense Baire

subspace of B that A∩M is dense in B (see [6, I. 10 IV]). But M is an FU-space

(by Claim 1 and Lemma 1), and A is countably closed, so M ⊂ A. But then

i∗(A) = B′, thus A′ = B′ and therefore B′ is a Corson compact, which contradicts

Claim 4 and Lemma 1.

P r o o f o f C l a i m 1. We define h : B → R
[−1,ω1) by the formula

h(µ)(α) = µ([α + 1, ω1]), µ ∈ B,α ∈ [−1, ω1).

Using the well-known fact that every Radon measure on [0, ω1] is supported

by a countable set, it is easy to check that h is a homeomorphism and that

h(µ) ∈ Σ([−1, ω1)) if and only if µ({ω1}) = 0, which was to be shown.
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P r o o f o f C l a im 2. Choose a nonempty open subset U of B. Pick

µ1 ∈ U . By the definition of the w∗-topology, there are f1, . . . , fn ∈ C[0, ω1] and

I1, . . . , In open intervals of reals such that

µ1 ∈ U1 = {ν ∈ B | (ν, fi) ∈ Ii, i = 1, . . . , n} ⊂ U.

Since each fi is constant on a neighborhood of ω1, there is some α1 < ω1 such

that fi is constant on [α1, ω1] for every i. Put

µ2 = µ1 − µ1({ω1})δω1
+ µ1({ω1})δα1+1.

Then µ2 ∈ U1 (since (µ2, fi) = (µ1, fi) for every i) and, moreover, µ2 ∈ M .

Hence there is some α2 ∈ (α1, ω1) such that µ2 ↾ [α2, ω1] = 0. Choose two

different ordinals β, γ ∈ (α2, ω1) and put

µ3 = µ2 +
1

2
(1 − ‖µ2‖)(δβ − δγ).

Then clearly µ3 ∈ U ∩ M̃ .

P r o o f o f C l a i m 3. Let ε > 0 be arbitrary. Choose a nonempty open

subset U of B. We will find a nonempty open subset V of U not intersecting Mε

which will yield that Mε is nowhere dense.

Pick µ0 ∈ U . By the definition of the w∗-topology, there are f1, . . . , fn ∈

C[0, ω1] and I1, . . . , In open intervals of reals such that

µ0 ∈ U1 = {ν ∈ B | (ν, fi) ∈ Ii, i = 1, . . . , n} ⊂ U.

By Claim 2 there is µ ∈ M̃ ∩ U1. Now, since µ is supported by a countable set,

‖µ‖ = 1 and µ({ω1}) = 0, there are some β1, . . . , βk < ω1 such that

k∑

i=1

|µ({βi})| > 1 −
ε

2
.

Choose a continuous function g : [0, ω1] → [−1, 1] such that

g(βi) = sgn µ({βi}), i = 1, . . . , k, and g(ω1) = 0,

and put

U2 = {ν ∈ U1 | (ν, g) > 1 − ε}.
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Then U2 is open and, moreover, µ ∈ U2. Indeed,

(µ, g) =
∑

η<ω1

g(η)µ({η}) ≥
k∑

i=1

g(β1)µ({β1}) −

∣∣∣∣∣∣∣∣

∑

η 6=βi,
i=1,...,k

g(η)µ({η})

∣∣∣∣∣∣∣∣

> 1 −
ε

2
−

ε

2
= 1 − ε.

Suppose that there is some ν ∈ U2 ∩ Mε. Then we can choose α < ω1

such that ν ↾ [α, ω1] = ν({ω1}) · δω1
, g ↾ [α, ω1] = 0 and each fi is constant on

[α, ω1]. Then we have

‖ν‖ ≥
(
ν, g + sgn(ν({ω1})) · χ[α+1,ω1]

)
> 1 − ε + ε = 1,

which is a contradiction.

P r o o f o f C l a i m 4. Let us define a mapping F : B′ → [0, 1][0,ω1) by

putting

F (µ)(α) = µ([0, α]), µ ∈ B′, α < ω1.

It is easy to check that F is a homeomorphism onto its image and that F (M ′) =

F (B′) ∩ Σ([0, ω1)), so M ′ is countably closed in B′. However, the measure 1
2δ0

which does not belong to M ′, is the limit of the net 1
2δ0 −

1
2δα, 1 ≤ α < ω1, hence

belongs to the closure of M ′.

This completes the proof. �

P r o o f o f C o r o l l a r y 1. Put X = C[0, ω1] and Y = {x ∈ X | x(ω1) =

0}. Then Y is isometric to C0[0, ω1). By Theorem, BY ∗ is not a Valdivia compact.

However, BX∗ is Valdivia due to Claims 1 and 2 in the proof of Theorem. �

P r o o f o f C o r o l l a r y 2. It is enough to observe that C[0, ω1] and

C0[0, ω1) are isomorphic. Indeed, the mapping F : C[0, ω1] → C0[0, ω1) defined by

the formula

F (x)(α) =





x(ω1) α = 0
x(α − 1) − x(ω1) 0 < α < ω
x(α) − x(ω1) ω ≤ α < ω1

is clearly a linear bijection and ‖F‖ = ‖F−1‖ = 2. �

To prove Corollary 3 we need also the following lemma.
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Lemma 3. Let X be a Banach space having a countably 1-norming

Markuševič basis. Then the dual unit ball BX∗ endowed with the weak* topology

is a Valdivia compact.

P r o o f. countably 1-norming Markuševič basis of X. Put

Y = {f ∈ X∗ | {α ∈ Λ, f(xα) 6= 0} is countable}.

Then Y is 1-norming, i.e. ‖x‖ = sup{f(x) | f ∈ Y ∩BX∗}. Now it follows

easily by Hahn-Banach theorem that Y ∩ BX∗ is weak* dense in BX∗ . Further

the mapping h : BX∗ → R
Λ defined by the formula

h(f)(α) = f(xα), α ∈ Λ, f ∈ BX∗

is a homeomorphism onto its image (by the condition (ii) of definition of Marku-

ševič basis) and h(BX∗)∩Σ(Λ) = h(Y ∩BX∗) by the definition of Y , which yields

the result. �

P r o o f o f C o r o l l a r y 3. This follows immediately from Theorem and

Lemma 3. �

Remark 1. It follows from Lemma 3 and [9, Corollary 2.2] that

(BC(K)∗ , w
∗) is a Valdivia compact whenever K is Valdivia. However it seems

not to be known whether the converse statement holds too. It is shown in [5]

that it holds in certain special cases.

Remark 2. Using the general result of [5] mentioned in Remark 1 we can

prove Corollary 1 and 2 directly from the example of [10]. In fact, in [10] there is

constructed a non-Valdivia compact space L which is a continuous image of [0, ω1].

Now it is a standard fact that BC(L)∗ is a continuous image of BC[0,ω1]∗ . By [5]

the space BC(L)∗ is not Valdivia as L is scattered and not Valdivia. Further, C(L)

is isometric to the subspace of C[0, ω1] of the form {x ∈ C[0, ω1] | x(ω1) = x(ω)},

which is also isomorphic to the whole space C[0, ω1]. But the example in our

Theorem seems to be more natural. (It can be easily shown that the space

C0[0, ω1) is not isometric to C(L). In fact, C0[0, ω1) is not isometric to C(K) for

any compact Hausdorff space K as the set of extreme points of BC0[0,ω1)∗ is not

weak* closed.)

Questions. It is proved in [4] that a compact space K is Corson provided

every continuous image of K is Valdivia. In view of this natural questions arise.

(1) Suppose that (X, ‖ · ‖) is a Banach space such that (BY ∗ , w∗) is a
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Valdivia compact for every closed subspace Y of X. Is then (BX∗ , w∗) necessarily

Corson?

(2) Suppose that X is a Banach space such that (B(X,‖·‖)∗ , w
∗) is a Val-

divia compact for every equivalent norm ‖ ·‖ on X. Is then (BX∗ , w∗) necessarily

Corson?

The author would like to thank V. Zizler for posing the question and M.

Fabian for careful reading of the manuscript.

Added in proof. The question (2) was positively answered by the au-

thor in a forthcoming paper Valdivia compacta and equivalent norms. A partial

positive answer to question (1), for the case X = C(K) where K is a continuous

image of a Valdivia compact, was obtained by the author, and will be included

in the paper Valdivia compacta and subspaces of C(K) spaces.
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