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Abstract
Let X be a completely regular topological space and f a real-valued bounded from above
lower semicontinuous function in it. Let C(X) be the space of all bounded continuous real-
valued functions in X endowed with the usual sup-norm. We show that the following two
properties are equivalent:

(a) X is α-favourable (in the sense of the Banach-Mazur game);
(b) The set of functions h in C(X) for which f + h attains its supremum in X contains a

dense and Gδ-subset of the space C(X).

In particular, property (b) has place if X is a compact space or, more generally, if X is
homeomorphic to a dense Gδ subset of a compact space.
We show also the equivalence of the following stronger properties:

(a′) X contains some dense completely metrizable subset;
(b′) the set of functions h in C(X) for which f + h has strong maximum in X contains a

dense and Gδ-subset of the space C(X).

If X is a complete metric space and f is bounded, then the set of functions h from C(X)

for which f + h has both strong maximum and strong minimum in X contains a dense
Gδ-subset of C(X).
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1 Introduction

Let X be a completely regular topological space and let f : X → R be a real-valued lower
semicontinuous function which is bounded from below. A typical variational principle in
optimization theory gives conditions on X under which the function f can be perturbed
by some other function h from a prescribed set Y of functions so that f + h attains its
infimum on X. Very often these principles establish that the set of such “good perturbations”
is rather big in the prescribed set Y of all perturbations. For example, it can be dense in
Y or even contain a dense and Gδ-subset of Y (in the latter case it is said that a Generic
Variational Principle has place). The meaning of such variational principles is that a bad
optimization problem (say, without a solution) can be slightly perturbed in order to get a
better optimization problem (with solution). Examples of such principles are the Ekeland
Variational Principle [10], the Smooth Variational Principles of Borwein-Preiss [1], Deville-
Godefroy-Zizler Variational Principle [9], Stegall Variational Principle [17], the Generic
Continuous Variational Principles established by Lucchetti and Patrone [15], De Blasi and
Myiak [7] as well as the Variational Principles for general topological spaces proved in
[2–4].

In contrast to this trend, in [11] the author considered the problem of maximizing a
lower semicontinous function f which is bounded from above and proved, using a direct
approach, that, if X is a complete metric space and BUC(X) is the space of bounded uni-
formly continuous functions on X (equipped with the sup-norm), then there exists a dense
and Gδ-subset H ⊂ BUC(X) such that for each h ∈ H the perturbed function f +h attains
its strong maximum in X (the latter means that the function f +h has a unique maximizer in
X towards which converges every maximizing sequence for f + h). The goal of this paper
is to prove generic Maximization Variational Principles for general (not necessarily metriz-
able) topological spaces X and for functions f more general than the lower semicontinuous
ones. The perturbations are from the space C(X) of all bounded continuous functions in X

which is equipped with the sup-norm. We give necessary and sufficient conditions for the
validity of such variational principles in terms of existence of winning strategies for one
of the players in the famous Banach-Mazur game played in X (denoted by BM(X) in the
sequel). A partial case of our main result, Theorem 3.3, reads as follows:

For a given completely regular topological space X the following assertions are
equivalent:

(i) The α-player has a winning strategy in the game BM(X);
(ii) For every bounded from above lower semicontinuous function f : X → R the set

of perturbations S(f ) := {h ∈ C(X) : f + h attains it supremum in X} contains a
dense and Gδ-subset of C(X);

(iii) There exists a bounded from above lower semicontinuous function f : X → R for
which the set S(f ) contains a dense and Gδ-subset of C(X).

In particular, Theorem 3.3 is valid for compact spaces X (see Theorem 4.1) as well as for
complete metric spaces X (see Corollary 3.5). It generalizes Theorem 3.1 from [13], where
the case f ≡ 0 was considered.

A characterization of the spaces X for which a generic variational principle for strong
maximums is valid is given in Corollary 3.5. A partial case of it says:
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For the completely regular topological space X the following assertions are equivalent:

(i) For every bounded from above lower semicontinuous function f : X → R the set
{h ∈ C(X) : f + h attains its strong maximum in X} contains a dense and Gδ-subset
of C(X);

(ii) The space X contains a dense completely metrizable subset.

Putting together Corollary 3.5 from this paper and Theorem 3.5 from [4] we get
Corollary 4.4:

If f is a bounded lower semicontinuous function defined in the complete metric space
X, then the set {h ∈ C(X) : f + h attains both its strong maximum and its strong minimum
in X} contains a dense and Gδ-subset of C(X).

At the end of the introduction we would like to underline one essential difference
between the variational principles for minimization problems and the variational principles
for maximization problems considered in this paper. For every bounded from below lower
semicontinuous function f defined in an arbitrary completely regular topological space X

the set {h ∈ C(X) : f +h attains its infimum in X} is a dense subset of C(X) (Lemma 2.1 in
[14]). This fact was in the base of the considerations in [4] where general generic variational
principles for minimization problems were established. The situation with the variational
principles for maximization problems is entirely different. As Example 2.4 below shows
there exists a bounded from above lower semicontinuous function f for which the set
{h ∈ C(X) : f + h attains its supremum in X} is empty. Such examples show that the
approach used in [4] to provide generic variational principles for minimization problems is
inappropriate for the considerations that follow.

The structure of the paper is simple. In the next section we give some necessary prelim-
inaries and prove an auxiliary lemma about approximate maximizers which is essential for
the proofs of our results. We briefly recall the concept of Banach-Mazur game and the cor-
responding notions of winning strategies for the players. The main results are presented in
Section 3. In the final Section 4 we outline several applications.

2 Some Preliminaries

Let f : X → R be a bounded from above real-valued function defined in the completely
regular topological space X. Let C(X) be the space of all real-valued bounded continuous
functions in X, equipped, as usual, with the sup-norm ‖h‖∞ := sup{|h(x)| : x ∈ X},
h ∈ C(X). With this norm C(X) is a real Banach space.

Consider the set-valued mapping Sf : C(X) × R++ → X defined by

Sf (h, ε) := {x ∈ X : (f + h)(x) > sup
X

(f + h) − ε}, (h, ε) ∈ C(X) × R++,

where R++ is the set of positive numbers.
This mapping gives the ε-solutions to the maximization problem generated by the func-

tion f + h in X. The mapping Sf is always nonempty-valued and, when f is lower
semicontinuous, this mapping is also with open images. For a fixed h ∈ C(X) the intersec-
tion of Sf (h, ε) over all ε > 0 gives exactly the set of maximizers of the function f + h on
X, which we denote by Mf (h), that is

Mf (h) := {x ∈ X : (f + h)(x) = sup
X

(f + h)} = ∩ε>0Sf (h, ε), h ∈ C(X).
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In contrast to the mapping Sf (·, ·), the set-valued mapping Mf : C(X) ⇒ X may have
empty images for many h ∈ C(X) or even for all h ∈ C(X) as the two examples after
Remark 2.3 show.

The following lemma gives the properties of the mapping Sf (·, ·) that will be frequently
used in the sequel. Below, as usual, B(h, ε) (resp. B[h, ε]) denotes the open (resp. closed)
ball in C(X) centered at h and with radius ε > 0. For a set A ⊂ C(X) and ε > 0 we denote
by Sf (A, ε) the union of all Sf (h, ε), h ∈ A.

Lemma 2.1 Suppose that f : X → R is a bounded from above real-valued function defined
in the completely regular space X. Then:

(a) if (Bn)n is a nested sequence of sets in C(X), such that diam(Bn) → 0, {h0} := ∩nBn

for some h0 ∈ C(X), and (δn)n is a sequence of positive integers such that δn → 0,
then Mf (h0) = ∩nSf (Bn, δn);

(b) let V be a nonempty open subset of X such that V ∩ Sf (h0, ε) 
= ∅ for some h0 ∈
C(X) and ε > 0. Then there exists h1 ∈ C(X) and δ > 0, δ ≤ ε/4, such that
B(h1, δ/2) ⊂ B(h0, ε) and Sf (B(h1, δ/2), δ) ⊂ V .

Proof (a) Let (Bn)n, h0 and (δn)n be as in the lemma. Obviously Mf (h0) ⊂ ∩nSf (Bn, δn).
Suppose that x ∈ ∩nSf (Bn, δn). Then, there is a sequence (hn)n ⊂ C(X) such that for each
n ≥ 1 we have hn ∈ Bn (which implies ‖hn − h0‖∞ → 0) and, moreover,

f (x) + hn(x) > sup
X

(f + hn) − δn.

The latter yields (passing to the limit, and having in mind that hn uniformly converges to h0)
that x is a maximum point for f + h0 in X, that is x ∈ Mf (h0). The proof of the assertion
(a) is completed.

(b) Take some x0 ∈ V ∩ Sf (h0, ε) and consider h̄ ∈ C(X) such that 0 ≤ h̄(x) ≤ 1 for
every x ∈ X, h̄(x0) = 1 and h̄|X\V ≡ 0. Since x0 ∈ Sf (h0, ε) we have, on the one side,

(f + h0 + εh̄)(x0) = f (x0) + h0(x0) + ε > sup
X

(f + h0).

On the other side, note that

sup
X

(f + h0 + εh̄) ≤ sup
X

(f + h0) + sup
X

εh̄ = sup
X

(f + h0) + ε.

Set now δ := ((f + h0 + εh̄)(x0) − supX(f + h0))/4 and observe that, according to the
first inequality above, δ > 0 and, according to the second,

δ = 1

4

(
(f + h0 + εh̄)(x0) − sup

X

(f + h0)
)

≤ 1

4

(
sup
X

(f + h0 + εh̄) − sup
X

(f + h0)
)

≤ 1

4
ε.

Put h∗ := εh̄ and let h ∈ C(X) be such that ‖h − h∗‖∞ < δ. For every x ∈ Sf (h0 + h, δ)

we have, on the one hand,

(f + h0 + h)(x) > supX(f + h0 + h) − δ ≥ (f + h0 + h)(x0) − δ

= (f + h0 + h∗)(x0) + (h − h∗)(x0) − δ

= 4δ + supX(f + h0) + (h − h∗)(x0) − δ

≥ 4δ + supX(f + h0) − δ − δ = 2δ + supX(f + h0).
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On the other hand, for x /∈ V we have h∗(x) = 0 and therefore,

(f + h0 + h)(x) = (f + h0 + h∗)(x) + (h − h∗)(x)

= (f + h0)(x) + (h − h∗)(x)

≤ (f + h0)(x) + δ ≤ supX(f + h0) + δ.

Combining the last two chains of inequalities and equalities we conclude that
Sf (h0 + h, δ) ⊂ V for every h ∈ C(X) with ‖h − h∗‖∞ < δ.

Consider finally, the element h1 on the segment [h0, h0 + h∗] which is at distance δ/2
from h0 +h∗. Evidently, the ball B(h1, δ/2) is included both in B(h0, ε) and B(h0 +h∗, δ).
And this completes the proof of the assertion (b).

Two remarks are in order here.

Remark 2.2 A close look at the proof of the assertions (a) and (b) above shows that if Z is
a linear subspace of C(X) (or, more generally, if Z is a convex cone in C(X)) such that for
every open set V of X and x ∈ V there exists an element h ∈ Z, such that 0 ≤ h(y) ≤ 1
for every y ∈ X, h(x) = 1 and h|X\V ≡ 0, then the assertions (a) and (b) from Lemma 2.1
are true restricted to Z.

Remark 2.3 Though the above lemma is valid for arbitrary bounded from above functions
one cannot expect to have meaningful variational principles without additional requirements
imposed both on the function f and on the space X. The following two examples illustrate
this.

Example 2.4 Let X be the set of all rational numbers with the topology inherited from
the real line. Enumerate the elements of X as a sequence (rn)n and consider the function
f (rn) = −n−1 which is bounded from above and lower semicontinuous. For every h ∈
C(X) and rk ∈ X one can find rl ∈ X such that (f + h)(rk) < (f + h)(rl). Therefore
Mf (h) = ∅ for every h ∈ C(X) and, consequently, S(f ) = ∅.

Example 2.5 Let X be the unit interval [0, 1]. Enumerate as above the rational numbers
from this interval as a sequence (rn)n and define the function f to be zero at every irrational
number and f (rn) = 1 − n−1 for every rational number rn from the sequence. It is easy to
realize that no perturbed function f + h, where h ∈ C([0, 1]), attains its supremum in X.
I.e. S(f ) = ∅.

At the end of this section, we remind two versions of the famous Banach-Mazur game
which will be played correspondingly in X and in C(X). In the space X we will use the
most popular version of the Banach-Mazur game. It runs as follows. Two players, α and
β, chose one after another nonempty open subsets of X. Player β starts by choosing a
nonempty open set U1 of X and player α responds by choosing a nonempty open set V1
such that V1 ⊂ U1. Then, β continues by choosing a nonempty open set U2 of X included
in V1 and α chooses a nonempty open set V2 ⊂ U2. In the next moves each player chooses
an open nonempty subset of the other player’s choice. As a result an infinite sequence of
sets {Un, Vn}n is generated which is called a play in this game. Each play satisfies the
requirement Un+1 ⊂ Vn ⊂ Un for every n ≥ 1. By definition, the player α wins the play
{Un, Vn}n if ∩nUn = ∩nVn 
= ∅. Otherwise, the player β wins this play. We denote this
game by BM(X).
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Any finite sequence (U1, V1, . . . , Un) or (U1, V1, . . . , Un, Vn) in which the choices of
the two players are made according to the rules of the game BM(X) is called a partial
play in this game. A strategy s for the player α is a rule which assigns to each partial
play (U1, V1, . . . , Un) appearing in the course of the game a nonempty open set Vn :=
s(U1, V1, . . . , Un). The play {Un, Vn}n is called an s-play if every Vn is chosen by using
the strategy s. The strategy s is called winning for the player α if every s-play {Un, Vn}n is
won by player α.

The second version of the Banach-Mazur game (which, in fact, is the original version
of this game - see Problem 43 in the book of Ulam [18]) will be played in C(X) and
denoted by BM(C(X), S), where S is some subset of C(X). Two players, Player I and
Player II, chose one after another nonempty open subsets of C(X). The choices of Player
I (who starts the game) are denoted by Wn. The choices of Player II are denoted by W ′

n.
Choices are subjected to the requirement that Wn+1 ⊂ W ′

n ⊂ Wn for every n ≥ 1.
Player II wins the play {Wn,W

′
n}n if ∩Wn = ∩W ′

n ⊂ S. Otherwise, Player I wins this
play. The notions of partial play and (winning) strategy for the Player II is defined as in
the game BM(X). According to a result from the book of Oxtoby [16], Player II has a
winning strategy in this game if and only if the set S contains a dense and Gδ-subset of
C(X).

3 Existence of Solutions to PerturbedMaximisation Problems
for Quasi Lower Semicontinuous Functions

As stated in the title and in the introduction we are primarily interested in maximization
variational principles for lower semicontinuous functions f . All of the results however are
valid for functions f which satisfy the following less restrictive condition obtained by a
mild modification of the usual definition of lower semicontinuity.

Definition 3.1 The real valued function f : X → R is called quasi lower semicontinuous
at x0 ∈ X if, for every ε > 0, there exists an open set U ⊂ X such that x0 ∈ U (the closure
of U ) and f (x) > f (x0) − ε for every x ∈ U . f is said to be quasi lower semicontinuous
(qlsc) if it is quasi lover semicontinuous at every x ∈ X.

If the requirement x0 ∈ U is replaced by the stronger one x0 ∈ U , we get the usual defi-
nition of lover semi continuity at x0. The justification for the use of the word “quasi” in this
context comes from a paper of Kempisty [12] where the term “quasicontinuous function” is
used for functions with the following property: for every x ∈ X and ε > 0, there is an open
subset U of X such that x ∈ U and |f (y) − f (x)| < ε for every y ∈ U . Here is a simple
example of a function which is qlsc but not lsc:

Example 3.2 Let f (x) = −1 if x < 0, f (x) = 1 for x > 0 and f (0) = 0.

It is easy to check that f : X → R is qlsc at x ∈ X if and only if for every ε > 0
and every open set U containing x there exists a nonempty open set U ′ ⊂ U such that
f (y) > f (x) − ε for each y ∈ U ′.

If f is qlsc and h ∈ C(X), then f + h is qlsc as well. The qlsc functions satisfy the
following condition which will be used in the proofs of our results:

(∗) For every h ∈ C(X) and ε > 0 the set int Sf (h, ε) (the interior of Sf (h, ε)) is not
empty.
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It is possible to prove that condition (∗), in its turn, implies that f is qlsc. We omit the
proof of this fact because we are not going to use it.

The lower semicontinuous functions f evidently satisfy condition (∗) because the set
Sf (h, ε) in this case is (nonempty and) open for every h ∈ C(X) and every ε > 0.

Before formulating our main result we would like to mention one more difference
between maximization and minimization problems with lower semicontinuous goal func-
tions f . The set of minimizers in X for f + h, h ∈ C(X), is always closed. As simple
examples show, the set Mf (h) of maximizers of f + h, h ∈ C(X), is not obliged to be
closed. For qlsc functions f neither the set of maximizers nor the set of minimizers of
f + h, h ∈ C(X), is obliged to be closed. Nevertheless, we obtain in the next theorem a
generic maximization variational principle in which the good perturbations not only assure
existence of maximizers of the perturbed function, but also the set of such maximizers is
closed.

Recall that by Mf (h) we denoted the set of maximizers of the function f + h and by
S(f ) the set of those h ∈ C(X) such that the function f + h attains its maximum in X. Let

M(f ) := {h ∈ C(X) : Mf (h) is a closed subset of X}.
Then we have:

Theorem 3.3 Let X be a completely regular topological space. Then, the following
statements are equivalent:

(a) There exists a winning strategy s for the player α in the game BM(X);
(b) For every qlsc bounded from above function f : X → R the set S(f )∩M(f ) contains

a dense and Gδ-subset of C(X).
(c) There exists a qlsc bounded from above function f : X → R for which the set S(f )

contains a dense and Gδ-subset of C(X).

Proof (a) ⇒ (b). Let f :X→R be a qlsc bounded from above function and s a winning stra-
tegy for the player α in the game BM(X). Without loss of generality we may assume that the
s-plays {Un, Vn}n satisfy one additional requirement: V n ⊂ Un for every n ≥ 1. We will cons-
truct by induction a winning strategy ω for the Player II in the game BM(C(X), S(f )∩M(f ))

in such a way that every ω-play {Wn,W
′
n}n≥1 will be accompanied by an s-play {Un, Vn}n≥1

and by two sequences {εn}n≥1 and {δn}n≥0 of positive numbers so that the following
requirements are satisfied for i ≥ 1:

(i) W ′
i ⊂ Wi and diam(W ′

i ) ≤ δi

(ii) Sf (W ′
i , δi) ⊂ Vi ⊂ Ui ⊂ Sf (Wi, εi)

(iii) δi ≤ εi/4
(iv) εi ≤ δi−1/2.

Let δ0 be some positive number. Let W1 be an arbitrary open subset of C(X). Take a closed
ball B[h1, ε1] with a 0 < ε1 ≤ δ0/2 which is contained in W1. Consider the set U1 :=
int Sf (h1, ε1) which, by condition (*), is a nonempty open set in X and can be considered
as a first legal move of the player β in the game BM(X). Set V1 := s(U1). Since ∅ 
= V1 ⊂
U1 ⊂ Sf (h1, ε1) we can apply Lemma 2.1 (b) to obtain h′

1 ∈ C(X) and δ1 ≤ ε1/4 such that
B(h′

1, δ1/2) ⊂ B[h1, ε1] ⊂ W1 and Sf (B(h′
1, δ1/2), δ1) ⊂ V1. Define ω(W1) := W ′

1 =
B(h′

1, δ1/2). We have Sf (W ′
1, δ1) ⊂ V1. With this the first step in the induction process for

the determination of the strategy ω is finished because the requirements (i), (ii), (iii) and
(iv) are fulfilled for i = 1.
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Suppose the strategy ω is defined up to the n-th stage of the game
BM(C(X), S(f ) ∩ M(f )) so that each partial ω-play {Wi,W

′
i }1≤i≤n is accompanied by

a partial s-play {Ui, Vi}1≤i≤n and two finite sequences (εi)1≤i≤n and (δi)0≤i≤n of positive
numbers such that the requirements (i), (ii), (iii) and (iv) are satisfied for every i, 1 ≤ i ≤ n.

We will now extend the determination of the strategy ω to the next stage of the game.
Let {Wi,W

′
i }1≤i≤n be an arbitrary partial ω-play and Wn+1 be any nonempty open sub-

set of W ′
n. Take a function hn+1 ∈ C(X) and some positive εn+1 ≤ δn/2 such that the

closed ball B[hn+1, εn+1] is contained in Wn+1. By condition (*) the open set Un+1 :=
int Sf (hn+1, εn+1) is not empty. Because of the choice of εn+1 we have

Un+1 ⊂ Sf (W ′
n, δn) ⊂ Vn.

Consider Un+1 as a next choice of the player β in the game BM(X) at stage n + 1. Set
Vn+1 := s(U1, V1, . . . , Vn, Un+1). Because ∅ 
= Vn+1 ⊂ Sf (hn+1, εn+1) we can apply
Lemma 2.1 (b) to obtain a function h′

n+1 ∈ C(X) and a positive number δn+1 ≤ εn+1/4
such that B(h′

n+1, δn+1/2) ⊂ B[hn+1, εn+1] and Sf (B(h′
n+1, δn+1/2), δn+1)) ⊂ Vn+1. We

define the strategy ω at the stage n + 1 of the game by

ω(W1,W
′
1, . . . , Wn+1) := W ′

n+1 := B(h′
n+1, δn+1/2).

It follows from this construction that the properties (i), (ii), (iii) and (iv) are valid with
i = n + 1 as well. This finishes the determination of the strategy ω.

Let {Wn,W
′
n}n≥1 be an ω-play with the accompanying s-play {Un, Vn}n≥1 and two

tending to zero sequences (εn)n≥1 and (δn)n≥0. Property (i) implies that the intersection
∩nW

′
n = ∩nWn is a singleton, say h0 ∈ C(X). It follows from Lemma 2.1 (a) and (ii) that

Mf (h0) = ∩nSf (W ′
n, δn) = ∩nSf (Wn, εn) = ∩nUn = ∩nVn.

This shows that Mf (h0) is a closed and nonempty set because s is a winning strategy and
∩nUn = ∩nVn 
= ∅. Thus {h0} = ∩W ′

n ⊂ S(f ) ∩ M(f ) which according to the above
mentioned result from the book of Oxtoby shows that S(f ) ∩ M(f ) contains a dense and
Gδ-subset of C(X). The proof of the implication (a) ⇒ (b) is completed.

The implication (b) ⇒ (c) is trivial.
(c) ⇒ (a). Suppose that for some qlsc bounded from above function f : X → R we

have S(f ) ⊃ ∩nGn where each Gn, n ≥ 1, is open and dense in C(X). We will construct
by induction a winning strategy s for the player α in the game BM(X) in such a way that
every s-play {Un, Vn}n≥1 is accompanied by a sequence {hn}n≥0 of functions from C(X)

and two sequences of positive integers {εn}n≥0 and {δn}n≥1 such that, for every i ≥ 1, the
following requirements are fulfilled:

(v) Vi = int Sf (hi, εi) ⊂ Sf (B(hi, εi), δi) ⊂ Ui

(vi) B[hi, εi] ⊂ B(hi−1, εi−1) ∩ Gi

(vii) δi ≤ εi−1/4
(viii) εi ≤ δi/2.

Take un arbitrary nonempty open set U1 of X which we consider as a first legitimate
choice of player β in the game BM(X). Set h0 ≡ 0 and take some x0 ∈ U1. Let ε0 > 0 be
such that ε0 > supX f − f (x0) ≥ 0. Then x0 ∈ Sf (h0, ε0) ∩ U1 and we can apply Lemma
2.1 (b) to obtain h′

1 ∈ C(X) and δ1 > 0, δ1 ≤ ε0/4, such that Sf (B(h′
1, δ1/2), δ1) ⊂ U1

and B(h′
1, δ1/2) ⊂ B(h0, ε0). Since G1 is open and dense in C(X) we can find h1 ∈ C(X)

and ε1 < δ1/2 such that

B[h1, ε1] ⊂ B(h′
1, δ1/2) ∩ G1.
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By condition (∗) the set V1 := int Sf (h1, ε1) is a nonempty open set. For it we have

V1 = int Sf (h1, ε1) ⊂ Sf (B(h1, ε1), δ1) ⊂ Sf (B(h′
1, δ1/2), δ1) ⊂ U1.

Define the answer of player α under strategy s to the first choice U1 of player β to be the
set s(U1) = V1 = int Sf (h1, ε1). This completes the first step in the induction process. The
requirements (v), (vi), (vii) and (viii) are satisfied for i = 1.

Suppose the strategy s is defined up to the n-th stage of the game BM(X) so that each
partial s-play {Ui, Vi}1≤i≤n is accompanied by a sequence {hi}0≤i≤n of functions from
C(X) and by two finite sequences {εi}0≤i≤n and {δi}1≤i≤n of positive numbers such that
the requirements (v), (vi), (vii) and (vii) are satisfied for every i, 1 ≤ i ≤ n. To extend the
definition of s to the next stage of the game, take an arbitrary nonempty open subset Un+1 of
Vn = int Sf (hn, εn) and consider it to be the next move of player β. By Lemma 2.1 (b) there
is h′

n+1 ∈ C(X) and δn+1 > 0 such that δn+1 ≤ εn/4, Sf (B(h′
n+1, δn+1/2), δn+1) ⊂ Un+1

and B(h′
n+1, δn+1/2) ⊂ B(hn, εn). Since Gn+1 is open and dense in C(X), we can find

hn+1 ∈ C(X) and εn+1 > 0 such that εn+1 < δn+1/2 and

B[hn+1, εn+1] ⊂ B(h′
n+1, δn+1/2) ∩ Gn+1 ⊂ B(hn, εn) ∩ Gn+1.

By condition (∗) the set Vn+1 := int Sf (hn+1, εn+1) is a nonempty open set. For it we
have

Vn+1 ⊂ Sf (B(hn+1, εn+1), δn+1) ⊂ Sf (B(h′
n+1, δn+1/2), δn+1) ⊂ Un+1.

Define the answer of player α under strategy s to the choice Un+1 of the player β to be
the set s(U1, V1, . . . , Un+1) := Vn+1. The induction is completed because the requirements
(v), (vi), (vii) and (viii) are satisfied for i = n + 1.

Every s-play {Un, Vn}n in the game BM(X) is accompanied by a sequence of functions
{hn}n ⊂ C(X) and by two sequences of positive numbers {εn}n≥0 and {δn}n≥1 such that the
requirements (v), (vi), (vii) and (viii) are satisfied.

We have the following two chains of equations and inclusions which have place for every
n ≥ 1:

Un+1 ⊂ Vn = int Sf (hn, εn) ⊂ Sf (B(hn, εn), δn) ⊂ Un.

and

B[hn, εn] ⊂ B(hn−1, εn−1) ∩ Gn.

By the latter and the fact that εn → 0 the intersection ∩nB(hn, εn) is a singleton, say
{h∗} ⊂ ∩nGn. Hence, Mf (h∗) 
= ∅. The former chain of inclusions, the fact that εn → 0
and Lemma 2.1 (a) imply that

∅ 
= Mf (h∗) = ∩nSf (B(hn, εn), δn) = ∩nVn.

Therefore s is a winning strategy for the player α in the game BM(X). The proof of the
implication (c) ⇒ (a), and thus of the theorem, is completed.

Remark 3.4 The proof of the implication (a) ⇒ (b) of this theorem is, in essence, a trans-
fer of a strategy from the game BM(X) to a strategy for the game
BM(C(X), S(f ) ∩ M(f )). As every sequence {Gn}n of open and dense subsets of some
topological space determines a strategy for Banach-Mazur game, the proof of the implica-
tion (c) ⇒ (a) is also based on transfer of strategy (from the game BM(C(X), S(f )) to the
game BM(X)). Without explicitly mentioning it, this idea of “strategy transfer” was used
in [13], where the equivalence of (a) and (c) was proved for the partial case when f ≡ 0. In
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explicit and very refined form this idea is present in the paper of Debs and Saint Raymond
[8] (again in connection with optimization problems with goal function f ≡ 0).

In optimization theory it is preferred to deal with well-posed problems. They are eas-
ier to solve, also numerically. This is why it is desirable to characterize the situations in
which arbitrarily close to a given maximization problem there is a well-posed one. Given
a bounded from above function g : X → R, the sequence (xn)n ⊂ X is called maximiz-
ing for g, if g(xn) → supX g. The function g is said to have a strong maximum in X if it
has a unique maximizer x0 in X towards which converges every maximizing for g sequence
(xn)n. If g has strong maximum in X, then the maximization problem maxX g is said to be
well-posed.

Corollary 3.5 Let X be a completely regular topological space. Then, the following
statements are equivalent:

(a) There exists a winning strategy s for the player α in the game BM(X) such that for
every s-play {Un, Vn}n the intersection ∩nUn = ∩nVn is a singleton, say {x}, and the
sequence (Vn)n is a local base for the point x in X;

(b) For every qlsc bounded from above function f : X → R the set {h ∈ C(X) : f + h

attains its strong maximum in X} contains a dense and Gδ-subset of C(X);
(c) There exists a qlsc bounded from above function f : X → R for which the set

{h ∈ C(X) : f + h attains its strong maximum in X} contains a dense and Gδ-subset
of C(X).

(d) The space X contains a dense completely metrizable subset.

Proof (a) ⇒ (b). Proceed as in the proof of the same implication in Theorem 3.3. Equation
(3.2) implies that the maximizer x of f + h0 is unique while (3.1) shows that Vn contains
all but finitely many elements of every maximizing for f + h0 sequence (xn)n. Hence the
problem maxX(f + h0) is well posed.

(b) ⇒ (c) is evident.
(c) ⇒ (a). Follow again the argument from the proof of the same implication in Theorem

3.3 to construct a strategy s for player α in the game BM(X). (3.4) and (3.5) show that
Mf (h0) = ∩nVn is a singleton, say x0, and this x0 is the only maximizer of f + h0 in X.
It remains to prove that the sequence (Vn)n (or, equivalently, the sequence (Un)n) forms a
neighborhood base at x0. Suppose the contrary and take some open set V � x0 such that, for
every n ≥ 1, there exists a point xn ∈ Un ∩ (X \ V ). Then by (3.3) and {h0} = ∩nB(hn, εn)

it follows that (f + h0)(xn) > supX(f + h0) − δn − 3εn. Since εn and δn tend to zero,
we conclude that the sequence (xn)n is maximizing for f + h0 but does not converge to the
maximizer x0, a contradiction.

It follows from the equivalence of (b) and (c) that each of them is equivalent to the next
statement (which is actually (c) for the function f ≡ 0):

(c ′) The set {h ∈ C(X) : h attains its strong maximum in X} contains a dense and
Gδ-subset of C(X).

Using other methods (properties of special set-valued mappings) the equivalence of (c ′)
and (d) was established in Theorem 3.5 of [3]. An alternative direct proof that statements
(a) and (d) are equivalent can be found in [5] (see Theorems 2.6 c) and 3.2 b)).

Remark 3.6 Topological spaces (X, τ) containing a dense completely metrizable subset
appear in different mathematical contexts. In the just mentioned paper [5] it was proved that
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these and only these spaces admit a complete metric d which is related to the topology τ in
the following way:

i) The identity map (X, d) → (X, τ) is continuous and
ii) For every nonempty τ -open set U and every ε > 0 there exists a nonempty τ -open set

V ⊂ U with d − diam(V ) < ε.
Related information about such spaces is contained also in [6].

The next remark concerns the validity of the above results in closed linear subspaces of
C(X).

Remark 3.7 Suppose that Z is a closed linear subspace of C(X) such that for every open
set U of X and x ∈ U there is a function h ∈ Z, 0 ≤ h(y) ≤ 1 for every y ∈ X, h(x) = 1
and h|X\U ≡ 0. Then, having in mind Remark 2.2 and also the proofs of Lemma 2.1 and
Theorem 3.3 we conclude that the results in this section are true also restricted to the space
Z.

4 Some Applications

It is well-known (and easy to check) that every lower semicontinuous function f defined in a
compact space X attains its minimum. Such a function is not obliged to attain its maximum,
even when it is bounded from above. Nevertheless, there are plenty of perturbations h ∈
C(X) for which the set of maximizers of f + h is nonempty and compact.

Theorem 4.1 Let f : X → R be a bounded from above qlsc function defined in the
compact space X. Then the set {h ∈ C(X) : Mf (h) is nonempty and compact } contains a
dense and Gδ-subset of C(X).

Proof In a compact space X the player α has a simple winning strategy s for the
game BM(X): whenever player β selects some Un, player α responds by selecting some
nonempty open set Vn such that V n ⊂ Un. For every s-play {Un, Vn}n we have ∩nUn =
∩nVn = ∩nV n 
= ∅. It remains to apply Theorem 3.3.

Corollary 4.2 Let f : X → R be a bounded from above qlsc function defined in the
compact space X. Then the following properties are equivalent:

(a) The set {h ∈ C(X) : f + h has unique maximizer in X} contains a dense and Gδ-
subset of C(X);

(b) There exists a winning strategy s for the player α in the game BM(X) such that the
intersection ∩nUn = ∩nVn is a singleton for every s-play {Un, Vn}n;

(c) There exists a winning strategy s for the player α in the game BM(X) such that, for
every s-play {Un, Vn}n, the intersection ∩nUn = ∩nVn is a singleton, say {x}, and
the sequence (Vn)n is a local base for the point x in X;

(d) The space X contains a dense completely metrizable subset.

Proof We could use the reasoning from the proof of Theorem 3.3 to prove that (a) and (b)
are equivalent. Suppose in X there is a strategy s with the property (b). Without loss of
generality we may assume that the s-plays {Un, Vn}n satisfy one additional requirement:
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V n ⊂ Un for every n ≥ 1. Compactness of X implies that, in this case, the sequence (Vn)n
is a local base in X for the point {x} = ∩nUn = ∩nVn. Hence (b) and (c) are equivalent.

The equivalence of (c) and (d) was discussed in the proof of Corollary 3.5.

We show next that the result from [11] mentioned in the Introduction is valid for qlsc
functions as well.

Theorem 4.3 Let (X, ρ) be a complete metric space and BUC(X) be the space of all
bounded uniformly continuous functions equipped with the sup-norm. Let f : X → R be a
bounded from above qlsc function. Then, the set {h ∈ BUC(X) : f + h attains its strong
maximum in X} contains a dense and Gδ-subset of BUC(X).

Proof For a complete metric space (X, ρ) there is an obvious strategy s with the property
described in statement (a) of Corollary 3.5: whenever player β selects some Un, player α

responds by selecting some nonempty open set Vn such that V n ⊂ Un and ρ - diam(V n) ≤
n−1. On the other hand, if U is un open subset of X, and x ∈ U , let r > 0 be such that
BX(x, r) ⊂ U . The function h : X → [0, 1] defined by h(y) := 1 − min{ρ(x, y)/r, 1},
y ∈ X, is easily seen to be in BUC(X) and satisfies h(x) = 1 and h|X\U ≡ 0. Since
BUC(X) is a closed linear subspace of C(X), the result follows by Corollary 3.5 (b) and
Remark 3.7

Corollary 4.4 If f is a bounded lower semicontinuous function defined in the complete
metric space X, then the set {h ∈ C(X) : f + h attains both its strong maximum and its
strong minimum in X} contains a dense and Gδ-subset of C(X).

Proof Theorem 3.5 from [4] implies that the set {h ∈ C(X) : f + h attains its strong
minimum in X} contains a dense and Gδ-subset of C(X). It follows from Corollary 3.5 of
this paper that the set{h ∈ C(X) : f + h attains its strong maximum in X} also contains a
dense and Gδ-subset of C(X). The intersection of the two dense and Gδ-subsets of C(X) is
again such a set.
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