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Abstract

In this paper it is shown that many features from polynomial spline meth-
ods used in nonparametric regression and smoothing procedures carry over to
the class of L-splines where L is a linear differential operator of order 4 with
constant coefficients. Special attention is given to the question whether an
analogue of the Reinsch algorithm is valid and criteria are given such that the
associated matrix R is strictly diagonal dominant.
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1. Introduction. Spline interpolation and smoothing provide an important
technique in nonparametric methods for data analysis, [1–4]. As outlined in [5] the
extension of cubic spline smoothing to the setting of L-splines allows to include
additional prior knowledge for estimating the data and to retain several aspects
of the data. For example, for the estimation of the gross domestic product data
it is assumed that the model curve is a linear combination of the functions

(1) 1, exp (γt) , sinωt, cosωt,
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while for melanoma data the model curve is linear combination of

(2) 1, t, sinωt, cosωt.

In both examples the model curve is a solution of a linear differential operator L
with constant coefficients of order N + 1, given by

(3) L = L(λ0,...,λN ) =

N∏
j=0

(
d

dx
− λj

)
,

where λ0, . . . , λN are complex numbers. Let us recall that a function g : [a, b]→ C
is an L-spline of orderN+1 with knots t1 < · · · < tn if g isN−1 times continuously
differentiable such that the restriction of g to each interval [tj , tj+1] is a solution
of the equation LN (g) = 0.

Let us note that special classes of L-splines are an important component of
the theory of polysplines and its applications, cf. [6–11].

In many textbooks, like [12,13] an efficient algorithm for L-spline smoothing
is described in detail and usually it is based on reproduction kernel techniques
associated to the differential operator. In this paper we want to describe an
algorithm for linear differential operators L of order 4 which mimics the orginal
algorithm of Reinsch from 1967 as closely as possible, [14]. An important feature
of this algorithm is the fact that for given real numbers t1 < · · · < tn with
n > 2 there exists a symmetric positive definite (n− 2)× (n− 2) matrix R and a
n× (n− 2) matrix Q and such that

(4) QTg = Rγ

for any natural cubic spline g with knots t1 < · · · < tn, where

gT = (g (t1) , g (t2) , . . . , g (tn))(5)

γT =
(
g′′ (t2) , g′′ (t3) , . . . , g′′ (tn−1)

)
.(6)

The matrix R can be described explicitly: it has tridiagonal form and for the
diagonal and off-diagonal we have

Rjj =
1

3
(hj−1 + hj) and Rj,j+1 = Rj+1,j =

1

6
hj ,

where hj = tj+1 − tj . Moreover a simple algorithm allows to compute the inter-
polating natural spline in O (n) arithmetic operations.

Given a general linear differential operator L(λ0,...,λ3) with constant coeffi-
cients of order 4 we define a (n− 2)× (n− 2) matrix R and a n× (n− 2) matrix
Q such that the relation

QTg = Rγ
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holds for the vectors g and γ, defined by

gT = (g (t1) , g (t2) , . . . , g (tn))(7)

γT =
(
L(λ0,λ1)g (t2) , L(λ0,λ1)g (t3) , . . . , L(λ0,λ1)g (tn−1)

)
.(8)

The matrix R is tridiagonal and a simple algorithm allows to compute the inter-
polating natural spline in O(n) arithmetic operations. To facilitate the exposition
we follow the notations given in [13].

The matrices R and Q depend on the differential operator given by the val-
ues λ0, λ1, λ2, λ3. In order to describe the matrices we need the notion of the
fundamental function ΦΛN

with respect to the vector ΛN = (λ0, . . . , λN ): there
exists a unique solution ΦΛn of the equation LNu = 0 such that ΦΛN

(0) = · · · =
Φ

(N−1)
ΛN

(0) = 0 and Φ
(N)
ΛN

(0) = 1, see [6,15]. In Section 2 we shall recall several
properties of the fundamental function ΦΛN

and describe its relationship with the
Green function. In Section 3 we will show that the matrix R is tridiagonal and
that the diagonal and off-diagonal entries are given by

Rj,j = ρ (tj − tj−1)− ρ (− (tj+1 − tj))(9)
Rj,j+1 = σ (tj+1 − tj) and Rj+1,j = −σ (− (tj+1 − tj)) ,(10)

where ρ and σ are functions defined by

ρ (x) =
Φ′(λ0,...,λ3) (x) Φ(λ0,λ1) (x)− Φ(λ0,...,λ3) (x) Φ′(λ0,λ1) (x)

Φ(λ0,λ1) (x) Φ(λ2,λ3) (x)
,(11)

σ (x) =
Φ(λ0,...,λ3) (x)

Φ(λ0,λ1) (x) Φ(λ2,λ3) (x)
.(12)

In a similar way the matrix Q is defined. In Section 4 we will show that the
entries in (9) and (10) are positive provided that λ0, . . . , λ3 are real. We provide
in Section 5 a simple sufficient criterion such that the matrix R is strictly diagonal
dominant. In the case that (λ0, λ1) and (λ2, λ3) are conjugation invariant we show
that for any ε > 0 there exists δ > 0 such that the estimate

|Rj,j−1|+ |Rj,j+1| ≤
(

1

2
+ ε

)
|Rjj |

holds for all t1 < · · · < tn such that tj+1 − tj ≤ δ for j = 1, . . . , n − 1. For the
example in (2) we shall provide exact estimates. We show that for the special set
Λ3 = (a,−a,−b, b) ∈ R4 with 0 ≤ a ≤ b the estimate

Rj,j−1 +Rj,j+1 ≤
1

2
Rjj

holds. This estimate is important for the study and applications of polysplines
(see [7–11,16]) which requires a deep analysis of L-splines.

The present paper generalizes the results obtained in [17] for special classes
of L-splines, see also [18].

The detailed proofs will appear elsewhere.
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2. The fundamental function. We assume that we are given a vector
Λ ∈ CN+1, with the first coordinate having index 0, namely

ΛN = (λ0, . . . , λN ) .

For the differential operator LN defined in (3) we introduce the solution set:

E (λ0, . . . , λN ) :=
{
f ∈ CN (R,C) : LNf = 0

}
,

where CN (R,C) is the space of all N -times continuously differentiable complex-
valued functions f : R → C. The elements in E(λ0,...,λN ) are called exponential
polynomials or L-polynomials, and λ0, . . . , λN are called exponents or frequencies
(see e.g. Chapter 3 in [19]).

We say that the space E(λ0,...,λN ) is closed under complex conjugation, if for
f ∈ E(λ0,...,λN ) the complex conjugate function f is again in E(λ0,...,λN ). It is easy
to see that for complex numbers λ0, . . . , λN the space E(λ0,...,λN ) is closed under
complex conjugation if and only if there exists a permutation σ of the indices
{0, . . . , N} such that λj = λσ(j) for j = 0, . . . , N. In other words, E(λ0,...,λN ) is
closed under complex conjugation if and only if the vector ΛN = (λ0, . . . , λN ) is
equal up to reordering to the conjugate vector ΛN . In this case we say that ΛN
is conjugation invariant.

It is well known that for ΛN = (λ0, . . . , λN ) ∈ CN+1 there exists a unique
solution ΦΛN

∈ E(λ0,...,λN ) to the Cauchy problem

ΦΛN
(0) = . . . = Φ

(N−1)
ΛN

(0) = 0 and Φ
(N)
ΛN

(0) = 1.

We shall call ΦΛN
the fundamental function in E(λ0,...,λN ) (see e.g. [6,15]). An

explicit formula for ΦΛN
is

(13) ΦΛN
(x) =

1

2πi

∫
Γr

exz

(z − λ0) · · · (z − λN )
dz,

where Γr is the path in the complex plane defined by Γr (t) = reit, t ∈ [0, 2π],
surrounding all the complex numbers λ0, . . . , λN . In particular, for N = 0 we
have

Φ(λ0) (x) = eλ0x.

Note that (13) implies the useful formula

(14)
(
d

dx
− λN+1

)
Φ(λ0,...,λN+1) (x) = Φ(λ0,...,λN ) (x) .

If ΛN = ΛN , then we see that the conjugate of ΦΛN
is again in E(λ0,...,λN ),

and by uniquessness of the fundamental function we conclude:
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Proposition 1. If ΛN = ΛN , then ΦΛN
(t) is a real-valued function.

Proposition 2. If λ0, . . . , λN are real numbers, then Φ(λ0,...,λN ) (t) > 0 for
all t > 0.

Proposition 2 is based on the fact that Φ(λ0,...,λN ) (·) has at most N zeros
(including multiplicities) and all of them are concentrated at t = 0.

We may prove directly the following:
Proposition 3. Let λ0, λ1 be complex numbers. Then

(15) Φ(λ0,λ1) (−x) Φ(λ2,λ3) (−x) = e−(λ0+λ1+λ2+λ3)xΦ(λ0,λ1) (x) Φ(λ2,λ3) (x) .

The function Φ(λ0,λ1) (x) Φ(λ2,λ3) (x) is even if and only if λ0 + · · ·+ λ3 = 0.
3. Computation of the matrix R. We assume that t1 < · · · < tn are real

numbers such that

(16) Φ(λ0,λ1) (tj+1 − tj) 6= 0 and Φ(λ2,λ3) (tj+1 − tj) 6= 0

for j = 1, . . . , n−1. In the general case condition (16) holds if tj− tj is sufficiently
small for j = 1, . . . , n − 1. For complex numbers λ0, . . . , λ3 we define the linear
differential operators

L1 =

(
d

dt
− λ0

)(
d

dt
− λ1

)
and L2 =

(
d

dt
− λ2

)(
d

dt
− λ3

)
.

The following is the main result of this section:
Theorem 4. Let λ0, . . . , λ3 be complex numbers and t1 < · · · < tn such that

(16) holds, and let g be a natural spline for Λ3 = (λ0, λ1, λ2, λ3) with interpolation
data g1, . . . , gn . Then there exist a n×(n− 2) matrix Q and a symmetric (n− 2)×
(n− 2) matrix R such that

(17) QTg = Rγ.

Theorem 5. Let λ0, . . . , λ3 be complex numbers and t1 < · · · < tn such that
(16) holds, and let g be a natural spline for the operator L1L2 with interpolation
data g1, . . . , gn . Then the tridiagonal matrix R is given by

Rj,j = ρ (tj − tj−1)− ρ (− (tj+1 − tj))
Rj,j+1 = σ (tj+1 − tj) and Rj+1,j = −σ (− (tj+1 − tj))

and ρ and σ are defined in (11) and (12).
In the same manner one proves the following result:
Theorem 6. The n × (n− 2) matrix Q is given for i = 1, . . . , n and j =

2, 3, . . . , n− 1, by

(18) qj−1,j = −
Φ′(λ0,λ1) (t− tj)

Φ(λ0,λ1) (tj−1 − tj)
, qj+1,j =

Φ′(λ0,λ1) (t− tj)
Φ(λ0,λ1) (tj+1 − tj)

and

qjj =
Φ′(λ0,λ1) (t− tj+1)

Φ(λ0,λ1) (tj − tj+1)
−

Φ′(λ0,λ1) (t− tj−1)

Φ(λ0,λ1) (tj − tj−1)
.
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4. Positivity of the entries of the matrix R. In the following we want
to analyze under which conditions the entries of the matrix R are real or even
positive. If the vector ΛN = (λ0, . . . , λN ) is conjugation invariant, the fundamen-
tal function ΦΛN

is real-valued. If (λ0, λ1) and (λ2, λ3) are conjugation invariant,
then (λ0, λ1, λ2, λ3) is conjuation invariant and we infer that

Φ(λ0,λ1),Φ(λ2,λ3),Φ(λ0,λ1,λ2,λ3) and Φ′(λ0,λ1,λ2,λ3)

are real-valued functions. Hence under the additional assumption that

Φ(λ0,λ1) (t) 6= 0 and Φ(λ2,λ3) (t) 6= 0 for t ∈ (0, δ)

for some δ > 0, the functions ρ (x) and σ (x) are real-valued and well-defined and
all entries of the matrices R and Q are real-valued for all t1 < · · · < tn such that
|tj+1 − tj | < δ for j = 1, . . . , n− 1.

Corollary 7. Suppose that λ0, . . . , λ3 are real numbers. Then Rj,j and Rj,j+1

and Rj−1,j are positive numbers for all t1 < · · · < tn.
5. Diagonal dominance of the matrix R. The notion of diagonal domi-

nance of matrices is very important in numerical analysis, cf. [20]. We start with
the following general criterion:

Theorem 8. Assume that ρ (x) and −ρ (−x) are positive on the interval
(0, δ) , and let Mδ > 0 be such that

(19) |σ (x)| ≤Mδ |ρ (−x)| for all x ∈ [−δ, δ] .

Then the estimate
|Rj,j−1|+ |Rj,j+1| ≤Mδ |Rj,j |

holds for all partitions t1 < · · · < tn such that tj+1 − tj ≤ δ for j = 1, . . . , n.
We illustrate the result by two examples:
Proposition 9. If Λ3 = (0, 0,−b, b) for some real b 6= 0, then Rj,j−1 +

Rj,j+1 ≤
1

2
Rj,j for all t1 < · · · < tn.

If we allow complex frequencies, we obtain a weaker result:
Theorem 10. Let 0 < δ < π. Then for Λ3 = (0, 0,−iβ, iβ) with real β > 0

we have
Rj,j−1 +Rj,j+1 ≤

sin δ − δ
δ cos δ − sin δ

Rj,j < Rj,j

for all t1 < · · · < tn such that β (tj+1 − tj) ≤ δ for j = 1, . . . , n− 1.
Theorem 11. Suppose that (λ0, λ1) and (λ2, λ3) are conjugation invariant

and ε > 0. Then there exists δ > 0 such that the estimate

|Rj,j−1|+ |Rj,j+1| ≤
(

1

2
+ ε

)
|Rj,j |

holds for all partitions t1 < · · · < tn such that tj+1 − tj ≤ δ for j = 1, . . . , n.
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We call the set ΛN symmetric if there exists a permutation π of the set
{0, . . . , N} such that −λj = λπ(j) for j = 0, . . . , N, or, symbolically, −ΛN = ΛN .
If ΛN is symmetric, then

ΦΛN
(−x) = (−1)N ΦΛN

(x) .

This formula shows that for odd N the complex-valued function ΦΛN
is odd, and

for even N the function ΦΛN
is even.

One may prove the following main result concerning symmetric sets ΛN .
Theorem 12. The matrix R for Λ3 = (λ0, . . . , λ3) is symmetric for any

choice of interpolation points t1 < · · · < tn if and only if Λ3 is symmetric.
For a special class of examples which occur naturally in the study of polysplines

on parallel strips (cf. [6]), we obtain an explicit estimate.
Theorem 13. Let 0 < a < b and Λ3 = (a,−a,−b, b). Then the following

estimate holds
Rj,j−1 +Rj,j+1 ≤

1

2
Rj,j.
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