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Abstract

The aim of this article is to study the noncontrollability of the heat equa-
tion with double singular potential at an interior point and on the boundary of
the domain.
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1. Introduction. We suppose that Ω is a star-shaped domain with respect
to a ball centred at the origin, i.e.,

(1) Ω = {x ∈ Rn, n ≥ 3, |x| < φ(x)}, ∂Ω = {x : |x| = φ(x)},

where φ(x) is a positive homogeneous function of 0-th order, φ(x) ∈ C0,1(Ω).
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Let us consider the singular parabolic problem

(2)


ut −∆u− µΨ(x)u = f(t, x), f(t, x) ∈ L2((0, T )× Ω),
u(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = u0(x), u0(x) ∈ L2(Ω),

where the potential

(3) Ψ(x) = |x|−2
[
1− |x|n−2φ2−n(x)

]
is singular at the origin of the domain Ω and on the whole boundary ∂Ω.

In the pioneering paper [1] it is proved that for Ω ⊂ Rn, 0 ∈ Ω, n ≥ 3,

problem (2) with Ψ(x) = |x|−2 is well-posed for µ ≤
(
n− 2

2

)2

and has a global

solution. However, for µ >

(
n− 2

2

)2

, u0 > 0 and f ≥ 0, problem (2) is ill-posed,

i.e., there is complete instantaneous blow-up, see [2].
The motivation for the investigations of the above problem is the applications

in quantum mechanics, for example in [3], where this model is derived to analyze
the confinement of neutral fermions, see also [4]. Other applications appear in
molecular physics [5], in quantum cosmology [6], electron capture problems [7],
porous medium of fluid [8].

The results in [1] are extended in different directions, for example for general
positive singular potentials, equations with variable coefficients, the asymptotic
behaviour of the solutions, semilinear equations, etc., see [9–13].

Most of the studies of controllability theory are in the case of interior singu-
larities, see [13–15]. The threshold for controllability or noncontrollability of (2)

is the optimal constant
(
n− 2

2

)2

for Ψ(x) = |x|−2 in the corresponding Hardy

inequality. The boundary controllability of (2) in [16] is proved for µ ≤ n2

4
, where

n2

4
is the optimal constant in the Hardy inequality when the potential is singular

at a boundary point, i.e., 0 ∈ ∂Ω.
Finally, let us mention the result in [17] for the potential

Ψ(x) = d−2(x), d(x) = dist(x, ∂Ω), Ω ⊂ Rn, n ≥ 3

which is singular on the whole boundary ∂Ω. The authors prove existence of a
unique global weak solution of (2) for µ ≤ 1/4, where 1/4 is the optimal Hardy
constant. When µ > 1/4, then there is no control which means that the blow-up,
phenomena cannot be prevented, see Theorem 5.1 in [17].

In the present paper we consider the case of potential (3) singular at an in-
terior point and on the whole boundary of the domain Ω ⊂ Rn, n ≥ 3. We prove
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existence of a global weak solution for µ <

(
n− 2

2

)2

and boundary noncontrolla-

bility of (2) for µ >

(
n− 2

2

)2

, where
(
n− 2

2

)2

is the optimal constant in Hardy

inequality, see (4) below.
2. Preliminaries. We recall Hardy inequality for the double singular poten-

tial (3).
Theorem 1. Suppose Ω ⊂ Rn, n ≥ 3, 0 ∈ Ω and Ω is a star-shaped domain

with respect to a ball centred at the origin satisfying (1). For every u(x) ∈ H1
0 (Ω)

the inequality

(4)
∫
Ω
|∇u|2 dx ≥

(
n− 2

2

)2 ∫
Ω

|u|2

|x|2|1− |x|n−2φ2−n(x)|2
dx

holds. The constant
(
n− 2

2

)2

is optimal.

Proof. The proof follows from Theorem 1.1 in [18] for special choice of the pa-

rameters α = 1, β = 1, p = 2 and hence γ =
1

2
, k = n−2, g(s) =

1

n− 2

(
1− sn−2

)
,

v(x) = 1, w(x) = (n− 2)|x|−1
(
1− |x|φ−1(x)

)−1. The optimality of the constant(
n− 2

2

)2

is proved in Theorem 1.2 in [18] which means that it cannot be replaced

with a greater one. However, equality in (4) is not achieved for any u(x) ∈ H1
0 (Ω),

except in the trivial case u(x) = 0.

For µ <

(
n− 2

2

)2

problem (2) with right-hand side f(t, x) ∈ L2((0, T )×Ω)

has a global solution for every t > 0 by means of Hardy inequality (4).
Theorem 2. Suppose Ω = {|x| < φ(x)} ⊂ Rn, n ≥ 3, is a star-shaped

domain with respect to a small ball centred at the origin. Then if µ <

(
n− 2

n

)2

,

problem (2) with Ψ(x) given by (3) has a global solution u(t, x), such that

(5) u(t, x) ∈ L∞ ([0, τ), L2(Ω)
)
∪ L2

(
(0, τ),W 1,2(Ω)

)
for all τ > 0.

Proof. For the reader’s convenience we sketch the proof. We consider the
truncated function ΨN (x) = min{N,Ψ(x)}, N = 1, 2, . . . . Let uN (t, x) be the
solution of the truncated problem

(6)


uN,t −∆uN = µΨN (x)uN + f(t, x), t > 0, x ∈ Ω,
uN (t, x) = 0 for t > 0, x ∈ ∂Ω,
uN (0, x) = u0(x) for x ∈ Ω.

Multiplying the equation in (6) with uN and integrating by parts we get from
Hardy’s inequality (4) the following estimates for every T > 0, see Theorem 4.1

C. R. Acad. Bulg. Sci., 75, No 2, 2022 189



in [9]

(7)
∫
Ω
|uN (T, x)|2 dx+

∫ T

0

∫
Ω
|∇uN (t, x)|2 dx dt

=

∫
Ω
u20(x) dx+

µ+ C

2

∫ T

0

∫
Ω
ΨN (x)u2N (t, x) dx dt

− C − µ

2

∫ T

0

∫
Ω
ΨN (x)u2N (t, x) dx dt+

∫ T

0

∫
Ω
f(t, x)uN (t, x) dx dt

≤
∫
Ω
u20(x) dx+

µ+ C

2C

∫ T

0

∫
Ω
|∇uN (x, t)|2 dx dt−m(C − µ)

2

∫ T

0

∫
Ω
u2N (t, x) dx dt

+
m(C − µ)

2

∫ T

0

∫
Ω
u2N (t, x) dx dt+

1

2m(C − µ)

∫ T

0

∫
Ω
f2(t, x) dx dt,

where m = inf
x∈Ω

Ψ(x) > 0 and C =

(
n− 2

2

)2

. Since µ < C we get from (7) the

energy estimate∫
Ω
|uN (x, T )|2 dx+

C − µ

2C

∫ T

0

∫
Ω
|∇uN (x, t)|2 dx dt

≤
∫
Ω
|u0(x)|2 dx+

1

2m(C − µ)

∫ T

0

∫
Ω
f2(t, x) dx dt.

From the comparison principle uN (t, x) is a nondecreasing sequence of functions
because ΨN (x) ≥ ΨM (x) for every x ∈ Ω, t > 0 and N ≥ M . We can pass to
the limit N → ∞ by using Theorem 4.1 in [19]. Thus the global solution u(t, x)
of (2) is defined as a limit of the solution uN (t, x) of the truncated problem (6)
and u(t, x) has the regularity properties given in (5).

Thus the natural question is whether
(
n− 2

2

)2

is the sharp constant for

global existence of the solutions to (2). In the present paper we give more precise

answer. When µ >

(
n− 2

2

)2

we prove null-noncontrollability of (2), i.e., it is

not possible for given u0(x) ∈ L2(Ω) one to find a control function f(t, x) ∈
L2((0, T )×Ω) localized in (0, T )×ω, ω ⋐ Ω\{0} such that there exists a solution
of (2). In this way we can not prevent the blow-up phenomena acting on a subset

for µ >

(
n− 2

2

)2

.

We recall also the classical Hardy inequality

(8)
∫
Ω
|∇u|2 dy ≥

(
n− 2

2

)2 ∫
Ω

u2

|y|2
dy
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for every u ∈ H1
0 (Ω) in a bounded domain Ω ⊂ Rn, n ≥ 3 and optimal constant(

n− 2

2

)2

, see [20].

3. Main result In Theorem 3 below we prove that problem (2) cannot be
stabilized due to the explosive modes concentrated around the singularities when

µ >

(
n− 2

2

)2

. For this purpose, following the idea of optimal control, see [14], we

consider for any u0 ∈ L2(Ω) the functional Ju0(u, f) =
1

2

∫
Ω×(0,T )

u2(t, x) dx dt+

1

2

∫ T

0
∥f∥H−1(Ω) dt defined in the set

D(u0) =
{
(u, f) ∈ L2

(
(0, T );H1

0 (Ω)
)
× L2

(
(0, T );H−1(Ω)

)}
,

where u(t, x) satisfies (2). Here f(t, x) is the control which is null in (0, T )×(Ω\ω),
ω ⋐ Ω \ {0}.

We say that (2) can be stabilized if there exists a constant C0 such that

inf
(u,f)∈D(u0)

Ju0(u, f) ≤ C0∥u0∥2L2(Ω) for every u0 ∈ L2(Ω).

Let us consider the regularized problem

(9)


ut −∆u− µΨεu = f(t, x) for (t, x) ∈ (0, T )× Ω,
u(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω,
u(0, x) = u0(x) for x ∈ Ω,

where

(10) Ψε(x) = (|x|+ ε)−2 (1 + ε− |x|n−2φ2−n(x)
)−2

.

For every ε > 0 problem (9) is well-posed. For the functional

Jε
u0
(f) =

1

2

∫
(0,T )×Ω

u2(t, x) dt dx+
1

2

∫ T

0
∥f∥H−1(Ω) dt,

where f is localized in (0, T )× ω, ω ⋐ Ω \ {0} and u is a solution of (9), we have
the following result.

Theorem 3. Suppose µ >

(
n− 2

2

)2

, ω ⋐ Ω \ {0}, n ≥ 3 and f is localized

in (0, T )×ω. Then there is no constant C0 such that for all ε > 0 and u0 ∈ L2(Ω)

inf
f∈D1(f)

Jε
u0
(f) ≤ C0∥u0∥2L2(Ω),

where D1(f) =
{
f ∈ L2

(
(0, T );H−1(Ω)

)}
.
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In order to prove Theorem 3 we need the following spectral estimates for the
operator

(11)
{

Lε(u) ≡ −∆u− µΨεu in Ω,
u = 0 on ∂Ω.

Let λε
1 be the first eigenvalue of (11), ϕε

1(x) be the corresponding first eigenfunc-
tion, ∥ϕε

1(x)∥L2(Ω) = 1, i.e.,

(12)
{

−∆ϕε
1 − µΨε(x)ϕ

ε
1 = λε

1ϕ
ε
1, x ∈ Ω,

ϕε
1 = 0, x ∈ ∂Ω

and Ψε(x) is defined in (10).

Proposition 1. Suppose µ >

(
n− 2

2

)2

, n ≥ 3. Then we have

(13) lim
ε→0

λε
1 = −∞

and for all ρ > 0, δ > 0, ρ < (1− δ)φ(x), Uρ,δ = {x : ρ < |x| < (1− δ)φ(x)},

(14) lim
ε→0

∥ϕε
1∥H1(Uρ,δ) = 0.

Proof. We assume by contradiction that λε
1 is bounded from below with a

constant C1. Then from the Rayleigh identity it follows that

(15) µ

∫
Ω
Ψε(x)u

2 dx ≤
∫
Ω
|∇u|2 dx− C1

∫
Ω
u2 dx

for every u ∈ H1
0 (Ω). For every a ≥ 1 we define ua = anu(ax) so that (15)

becomes

(16) µa2n
∫
Ω
u2(ax)Ψε(x) dx ≤ a2n+2

∫
Ω
|∇u(ax)|2 dx− C1a

2n

∫
Ω
u2(ax) dx.

After the limit ε → 0 and then the change of variables ax = y we get from (16)

(17) µa2
∫
|y|<aφ(y)

u2(y)|y|−2
(
1− |y|n−2(φ(y)a)2−n

)−2
dy

≤ a2
∫
|y|<aφ(y)

|∇u(y)|2 dy − C1

∫
|y|<aφ(y)

u2(y) dy.

For every u ∈ C∞
0 (Ω) and for every fixed y we have

lim
a→∞

u2(y)|y|−2
(
1− |y|n−2(φ(y)a)2−n

)−2
= u2(y)|y|−2.
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Hence suppu ⊂ {|y| < δφ(y)} for some δ ∈ (0, 1). Then for every a ≥ 1 and every
y it follows

u2(y)|y|−2
(
1− |y|n−2(φ(y)a)2−n

)−2 ≤ u2(y)|y|−2
(
1− δn−2

)−2
< ∞.

Thus after the limit a → ∞ in (17) we get

(18)
∫
Ω
∇u(y)|2 dy ≥ µ

∫
Ω

u2(y) dy

|y|2

for every u ∈ C∞
0 (Ω) and by the continuity (18) holds for every u ∈ H1

0 (Ω).

Since µ >

(
n− 2

2

)2

, inequality (18) contradicts the Hardy inequality (8)

with optimal constant
(
n− 2

2

)2

and (13) is proved.

In order to prove (14) let us consider a non-negative smooth function η(x)
such that ∥η∥L∞(Rn) ≤ 1 and

η(x) =

1, for x ∈ {ρ < |x| < (1− δ)φ(x)},

0, in
{
|x| < ρ

2

}
∪
{(

1− δ

2

)
φ(x) < |x| < φ(x)

}
.

Multiplying (12) by ηϕε
1(x) and integrating in Ω we get

(19)
∫
Ω
η|∇ϕε

1|2 dx− λε
1

∫
Ω
η(ϕε

1)
2 dx = µ

∫
Ω
ηΨε(x)(ϕ

ε
1)

2 dx+
1

2

∫
Ω
(ϕε

1)
2∆η dx.

From (19), the choice of η and the unit L2 norm of ϕε
1 it follows that

−λε
1

∫
Ω
η(ϕε

1)
2 dx ≤ 4µρ−2

[
1−

(
1− δ

2

)n−2
]−2

+
1

2
∥∆η∥L∞(Ω).

By means of (13) we get lim
ε→0

∫
Ω
η(ϕε

1)
2 dx = 0 and hence

(20) lim
ε→0

∫
Uρ,δ

(ϕε
1)

2 dx = 0 for every Uρ,δ = {ρ < |x| < (1− δ)φ(x)}.

Now using (19), (20) for U ρ
2
, δ
2
=

{
ρ

2
< |x| <

(
1− δ

2

)
φ(x)

}
it follows that∫

Uρ,δ

|∇ϕε
1|2 dx ≤

∫
Ω
η|∇ϕε

1|2 dx

≤

4µρ−2

(
1−

(
1− δ

2

)n−2
)−2

+
1

2
∥∆η∥L∞(Ω)

∫
U ρ

2 , δ2

(ϕε
1)

2 dx −→
ε→0

0,

which proves (14).
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Proof of Theorem 3. Due to (13) we fix ε > 0 sufficiently small such that
λε
1 < 0 and choose u0 = ϕε

1, ∥ϕε
1∥L2(Ω) = 1, where ϕε

1 is the first eigenfunction

of (11). Let us consider the functions a(t) =

∫
Ω
u(t, x)ϕε

1 dx, b(t) = ⟨f, ϕε
1⟩L2(Ω).

Simple computations give us

a′(t) =

∫
Ω
ϕε
1 (∆u+ µΨε(x)u+ f) dx

=

∫
Ω
(∆ϕε

1 + µΨε(x)ϕ
ε
1(x))u dx+

∫
Ω
fϕε

1 dx

= −λε
1

∫
Ω
ϕε
1u dx+

∫
Ω
fϕε

1 dx = −λε
1a(t) + b(t).

So a(t) satisfies the problem

a′(t) + λε
1a(t) = b(t), a(0) = 1.

Hence a(t) = e−λε
1t +

∫ t

0
e−λε

1(t−s)b(s) ds and

∫
(0,T )×Ω

u2(t, x) dx dt ≥
∫ T

0
a2(t) dt

≥ 1

2

∫ T

0
e−2λε

1t dt−
∫ T

0

(∫ t

0
e−λε

1(t−s)b(s) ds

)2

dt

≥ − 1

4λε
1

(
e−2λε

1T − 1
)
+

1

2λε
1

∫ T

0

(
e−2λε

1t − 1
)∫ t

0
b2(s) ds dt

≥ − 1

4λε
1

(
e−2λε

1T − 1
)
+

1

2λε
1

∫ T

0
e−2λε

1t dt

∫ T

0
b2(s) ds

= − 1

4λε
1

(
e−2λε

1T − 1
)
− e−2λε

1T − 1

4(λε
1)

2

∫ T

0
b2(s) ds.

(21)

Since b2(t) ≤ ∥f∥H−1(ω)∥ϕε
1∥H1(ω), ω ⋐ Ω \ {0} we get from (21)

−e−2λε
1T − 1

4λε
1

≤
∫
(0,T )×Ω

u2(t, x) dx dt+
e−2λε

1T − 1

4(λε
1)

2
∥ϕε

1∥H1(ω)

∫ T

0
∥f(t, ·)∥H−1(Ω) dt.

Therefore either

−e−2λε
1T − 1

8λε
1

≤ e−2λε
1T − 1

4(λε
1)

2
∥ϕε

1∥H1(ω)

∫ T

0
∥f(t, ·)∥H−1(Ω) dt,

or

−e−2λε
1T − 1

8λε
1

≤
∫
(0,T )×Ω

u2(t, x) dx dt.
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In any case we have for every f localized in (0, T )× ω, ω ⋐ Ω \ {0} the estimate

Jε
u0
(f) ≥ inf

{
−e−2λε

1T − 1

16λε
1

,
−λε

1

4∥ϕε
1∥H1(ω)

}

holds.
From Proposition 1, if ω ⊂ Uρ,δ = {ρ < |x| < (1− δ)φ(x)} for some positive

constants ρ, δ, it follows that

lim
ε→0

∥ϕε
1∥Uρ,δ

= 0,

and hence lim
ε→0

Jε
u0
(f) = ∞ which proves Theorem 3.
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