
Доклади на Българската академия на науките
Comptes rendus de l’Académie bulgare des Sciences

Tome 75, No 11, 2022

MATHEMATICS

Differential equations

DECAY IN ENERGY SPACE FOR THE SOLUTIONS
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Abstract

We prove, in any space dimension d ≥ 3, the decay in the energy space
for the defocusing Schrödinger–Hartree (SCH) equations with mass-energy in-
tercritical non-local nonlinearities and perturbed by a potential. We will show
also new Morawetz inequalities and estimates, generalizing the previous results
appearing in [1].
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1. Introduction. Consider the Cauchy problem associated with the nonlin-
ear defocusing Schrödinger equation with generalized Hartree-type nonlinearity,
for d ≥ 3:

(1.1)

{
i∂tu+ ∆xu− V u− c[| · |d−γ ∗ |u|p]|u|p−2u = 0, (t, x) ∈ R× Rd,

u(0, x) = u0(x).

Here, u = u(t, x) : R× Rd → C and c > 0. We will require p and γ to satisfy the
following conditions:

p > 1 +
γ + 2

d
, 2 ≤ p < p∗(d), p∗(d) =

+∞ if d = 1, 2,
d+ γ

d− 2
if d ≥ 3.

(1.2)
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Moreover we assume that V : Rd → R is a non-negative Schwartz function1 such
that

(1.3) sup
y∈Rd

∫
Rd

V (x)

|x− y|d−2
dx < +∞, x

|x|
· ∇V (x) ≤ −k|∇V (x)| ≤ 0,

with k > 0. Equation (1.1) is important in many models of mathematical
physics. For instance, it was variously introduced in quantum mechanics in order
to study the behaviour of the Bose–Einstein condensates, by considering the self-
interactions of the such charged particles, as one can see in [5–7] and the references
therein.

Pursued by that, at this point we can state our main result, that is
Theorem 1.1. Assume d ≥ 3 and let u ∈ C(R, H1(Rd)) be a global solution

to (1.1) such that (1.2), (1.3) are satisfied. Then

(1.4) lim
t→±∞

‖u(t, x)‖Lq(Rd) = 0,

provided that 2 < q ≤ 2d

d− 2
.

The Morawetz multiplier technique and the resulting estimates are a funda-
mental tool to study the properties of solutions to (1.1). These were obtained for
the first time in [8] for the nonlinear Klein–Gordon equation with a general non-
linearity and successively used for proving the asymptotic completeness in [9] for
the cubic nonlinear Schrödinger equation (NLS) in R3 and in [10] for the L2−H1

intercritical NLS. Recently, a new approach based on the bilinear Morawetz in-
equalities eased the proof of the scattering. We refer to [11] and again to [10].
Regarding SCH, [12] and [13] applied the pseudo-conformal transform to study the
scattering in spaces more regular than H1 when p = 2. The associated Morawetz
inequalities and the asymptotic completeness in the energy space were derived in
[10]. In [14] the results were improved by a new Morawetz estimate. In the criti-
cal case [15] established scattering for general data with d ≥ 5 via new localized
Morawetz estimates. Scattering in the focusing case was achieved in [16] and [17]
for small data and radial data. For large general data we mention mainly [1]. We
refer also to [18] and [19] for the NLS in a general setting. Inspired by the last
aforementioned papers, we present here the full decay property of the solutions
to (1.1) which leads as a consequence to the scattering. We will use a technique
that combines Morawetz inequalities, a localization argument, new interaction
Morawetz estimates and interpolation and treats in an unified manner all space
dimensions d ≥ 3. Our result is new in the literature, we underline also that no
radial assumption is made on the potential V (x).

1The assumptions on the potential V (x) can be relaxed. See for example [2–4] and the
corresponding references.
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2. Preliminaries. We denote

H1(Rd) = (1−∆x)−
1
2L2(Rd), H1(Rd) = H1

x.

We indicate also by f ∈ Lq(Rd), for 1 ≤ q <∞, if

‖f‖q
Lq(Rd)

=

∫
Rd
|f(x)|q dx <∞, Lq(Rd) = Lqx,

with obvious modification when q =∞. We recall some of the results concerning
the well-posedness of (1.1) already available in the literature, such as [2,16,17] and
the references therein. They can be summarized as

Proposition 2.1. Let d ≥ 1, assume (1.2) and the first condition in (1.3) are
satisfied. Then for all u0 ∈ H1

x there exists a unique global solution u ∈ C(R, H1
x)

to (1.1). In addition,

‖u(t)‖L2
x

= ‖u0‖L2
x
, E(u(t)) = E(u0),(2.1)

with

E(u(t)) =
1

2

∫
Rd
|∇xu(t, x)|2 dx+

∫
Rd
V (x)|u(t, x)|2 dx

+
1

2p

∫
Rd

∫
Rd

|u(t, x)|p|u(t, y)|p

|x− y|d−α
dx dy.

Proof. The proof of the proposition is standard and can be obtained by
energy method (Theorem 3.3.9 and Remark 3.3.12 in [20]) combined with the
Gagliardo–Nirenberg inequality∫

Rd
(|x|−(d−γ) ∗ |u|p)|u|pdx . ‖u‖2p

L

2pd
d+γ
x

. ‖u‖2p
H1
x
,

for p ∈
[
d+ γ

d
,
d+ γ

d− 2

]
(p ∈

[
d+ γ

d
,∞
)
, if d = 1, 2) and the defocusing character

of (1.1).
3. Morawetz identities and inequalities. We introduce also some further

notations. Given a function f ∈ H1(Rd,C), we denote by

mf (t, x) := |f(t, x)|2, jf (t, x) := Im
[
f(t, x)∇xf(t, x)

]
,

the mass density and the momentum density, respectively. Our first contribution
reads then as

Lemma 3.1. Let d ≥ 1 and u ∈ C(R, H1
x) be a global solution to (1.1) such

that (1.2), (1.3) are satisfied. Moreover, let φ = φ(x) : Rd → R a sufficiently
regular and decaying function, and denote by

V(t) :=

∫
Rd
φ(x)mu(t, x) dx.
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Then the following identities hold:

V̇(t) =

∫
Rd
φ(x)ṁu(t, x) dx = 2

∫
Rd
ju(t, x) · ∇xφ(x) dx(3.1)

and

V̈(t) =

∫
Rd
φ(x)m̈u(t, x) dx = −

∫
Rd

∆2
xφ(x)mu(t, x) dx

+ 4

∫
Rd
∇xu(t, x)D2

xφ(x) · ∇xu(t, x) dx

+ c
2(p− 2)

p

∫
Rd

∆xφ(x)
[
|x|−(d−γ) ∗ |u(t, x)|p

]
|u(t, x)|p dx(3.2)

− 2

∫
Rd
∇xφ(x) · ∇xV (x)mu(t, x) dx

− 4

p
c

∫
Rd
∇xφ(x) · ∇x

[
|x|−(d−γ) ∗ |u(t, x)|p

]
|u(t, x)|p dx,

where D2
xφ ∈ Md×d(Rd) is the Hessian matrix of φ and ∆2

xφ = ∆x(∆xφ) the
Bi-Laplacian operator.

Proof. We prove the identities for a smooth rapidly decreasing solution
u = u(t, x), letting the general case u ∈ C(R, H1

x) to a density argument. We give
some details for obtaining (3.2) and we shall drop the variable t for simplicity. An
integration by parts and (1.1) give

2∂t

∫
Rd
ju(x) · ∇xφ(x) dx

= 2 Re

∫
Rd
i∂tu(x)(∆xφ(x)ū(x) + 2∇xφ(x) · ∇xū(x)) dx

= 2 Re

∫
Rd

(−∆xu(x) +
(
c[|x|−γ̃ ∗ |u(x)|p]|u(x)|p−2 + V (x)

)
u(x))(∆xφ(x)ū(x)

+ 2∇xφ(x) · ∇xū(x)) dx

with γ̃ = d− γ. We have the following identity

2 Re

∫
Rd

(−∆xu(x) + V (x)u(x))(∆xφ(x)ū(x) + 2∇xφ(x) · ∇xū(x)) dx

= −
∫
Rd

∆2
xφ(x) |u(x)|2 dx+ 4

∫
Rd
∇xu(x)D2

xφ(x)∇xū(x) dx(3.3)

− 2

∫
Rd
∇xφ(x) · ∇xV (x)mu(x) dx.

Moreover, one gets
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Re

∫
Rd

[|x|−γ̃ ∗ |u(x)|p]|u(x)|p∆xφ(x) dx

+ 2 Re

∫
Rd

[|x|−γ̃ ∗ |u(x)|p]|u(x)|p−2u(x)∇xφ(x) · ∇xū(x) dx

= Re

∫
Rd

[|x|−γ̃ ∗ |u(x)|p]|u(x)|p∆xφ(x) dx

+
2

p
Re

∫
Rd

[|x|−γ̃ ∗ |u(x)|p]∇xφ(x) · ∇x |u(x)|p dx.

Then, by an integration by parts of the second term in the last line above, one
retrieves

2 Re

∫
Rd

[|x|−γ̃ ∗ |u(x)|p]|u(x)|p∆xφ(x) dx

+ 4 Re

∫
Rd

[|x|−γ̃ ∗ |u(x)|p]|u(x)|p−2u(x)∇xφ(x) · ∇xū(x) dx(3.4)

=
2(p− 2)

p

∫
Rd

∆xφ(x)
[
|x|−(d−γ) ∗ |u(x)|p

]
|u(x)|p dx

− 4

p

∫
Rd
∇xφ(x) · ∇x

[
|x|−(d−γ) ∗ |u(x)|p

]
|u(x)|p dx.

Combining now the identities (3.3) and (3.4), we arrive finally at (3.2).
At this point we can prove the following
Lemma 3.2. Assume d ≥ 3 and let u ∈ C(R, H1

x) be a global solution to (1.1)
such that (1.2), (1.3) are satisfied. Then it holds that, for J ⊆ R,

−2

∫
J

∫
Rd

x

|x|
· ∇xV (x)mu(t, x) dx dt ≤ ‖u0‖2H1

x
.(3.5)

Proof. We choose ψ = ψ(x, y) = |x− y| and set φ(x) = ψ(x, 0). This gives

(3.6)
∇xψ =

x− y
|x− y|

, ∆2
xψ =

−
(d− 1)(d− 3)

|x− y|3
if d ≥ 4,

−2δx=y (= D2
xψ) if d = 3,

∇xu(t, x)D2
xφ(x) · ∇xu(t, x) ≥ 0.

By integrating the Morawetz identity (3.2) w.r.t. the time variable on the interval
J = [t1, t2], with t1, t2 ∈ R, one obtains the following chain of inequalities
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2

[∫
Rd
ju(t, x) · ∇xφ(x) dx

]t=t2
t=t1

≥ −2

∫ t2

t1

∫
Rd

∆2
xφ(x)mu(t, x) dx dt

− 2

∫ t2

t1

∫
Rd
∇xφ(x) · ∇xV (x)mu(t, x) dx dt

− 4

p
c

∫ t2

t1

∫
Rd
∇xφ(x) · ∇x

[
|x|−(d−γ) ∗ |u(t, x)|p

]
|u(t, x)|p dx dt

& −2

∫ t2

t1

∫
Rd

∆2
xφ(x)mu(t, x) dx dt(3.7)

− 2

∫ t2

t1

∫
Rd
∇xφ(x) · ∇xV (x)mu(t, x) dx dt

+
2

p
(d− α)c

∫ t2

t1

∫
Rd

∫
Rd

1

|x− z|d−γ+2
|u(t, x)|p|u(t, z)|p(x− z)

·
(
x

|x|
− z

|z|

)
dx dz dt.

By the inequality

(3.8) (x− z) ·
(
x− y
|x− y|

− z − y
|z − y|

)
≥ 0,

here with y = 0, we can drop the last term and the l.h.s of (3.7), by means of the
Cauchy–Schwartz inequality, can be bounded as∫ t2

t1

∫
Rd

∣∣∣∣ x|x| · ∇xV (x)

∣∣∣∣mu(t, x) dx dt

.

[∫
Rd
ju(t, x) · ∇xψ(x, y) dx

]t=t2
t=t1

. ‖u0‖2H1
x
<∞,

since the H1
x-norm is a conserved quantity. This, by (3.6), gives the proof of

(3.5).
4. Interaction Morawetz identities and inequalities. This section is

devoted to displaying the identities and inequalities associated with the bilinear
Morawetz action.

Lemma 4.1. Let u ∈ C(R, H1
x) be a global solution to (1.1) such that (1.2),

(1.3) are satisfied, let φ = φ(|x|) : Rd → R be a convex radial function, regular
and decaying enough, let ψ(x, y) := φ(|x− y|) : R2d → R and

I(t) :=

∫
Rd

∫
Rd
ψ(x, y)mu(t, x)mu(t, y) dx dy.
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Then the following hold:

İ(t) = 2

∫
Rd

∫
Rd
ju(t, y) · ∇xψ(x, y)mu(t, y) dx dy,(4.1)

Ï(t) ≥− 2

∫
Rd

∫
Rd

∆2
xψ(x, y)mu(t, x)mu(t, y) dx dy(4.2)

+N(p,ψ)(t) +R(p,ψ)(t) +RVψ (t),

where

(4.3) N(p,ψ)(t)

= λ

∫
Rd

∫
Rd

∆xψ(x, y)
[
|x|−(d−γ) ∗ |u(t, x)|p

]
|u(t, x)|pmu(t, y) dx dy,

with λ =
4c(p− 2)

p
,

(4.4) R(p,ψ)(t)

= λ∗
∫
Rd

∫
Rd
∇xψ(x, y) · ∇x

[
|x|−(d−γ) ∗ |u(t, x)|p

]
|u(t, x)|pmu(t, y) dx dy,

with λ∗ =
−8c

p
and

RVψ (t) = −4

∫
Rd

∫
Rd
∇xψ(x, y) · ∇xV (x)mu(t, x)mu(t, y) dx dy.

Proof. As in the previous theorem, we prove the identities for a smooth
solution u, treating the general case u ∈ C(R, H1

x) by a standard density argument.
Moreover, we will drop again the variable t for easiness. First, one has

İ(t) =

∫
Rd

∫
Rd
ṁu(x)mu(y)ψ(x, y) dx dy +

∫
Rd

∫
Rd
mu(x)ṁu(y)ψ(x, y) dx dy.

Then, due to the symmetry of ψ(x, y) = φ(|x− y|), we obtain (4.1) by (3.1) and
Fubini’s theorem. Analogously, we can differentiate again and get the identity

Ï(t) =

∫
Rd

∫
Rd
m̈u(x)mu(y)ψ(x, y) dx dy

+

∫
Rd

∫
Rd
mu(x)m̈u(y)ψ(x, y) dx dy + 2

∫
Rd

∫
Rd
ṁu(x)ṁu(y)ψ(x, y) dx dy.
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Then we write Ï(t) := Ã + B̃. By (3.2), an application of Fubini’s theorem and
using again the symmetry of ψ(x, y), we are allowed to set

Ã =− 2

∫
Rd

∫
Rd
mu(x)mu(y)∆2

xψ(x, y) dx dy

+ λ

∫
Rd

∫
Rd

∆xψ(x, y)
[
|x|−(d−γ) ∗ |u(x)|p

]
|u(x)|pmu(y) dx dy

+

∫
Rd

∫
Rd

(
λ∗∇xψ(x, y) · ∇x

[
|x|−(d−γ) ∗ |u(x)|p

]
|u(x)|p

−4∇xψ(x, y) · ∇xV (x)mu(x)
)
mu(y) dx dy,

with λ, λ∗ defined as in (4.3) and (4.4). In conclusion, we get

(4.5) Ã = 2

∫
Rd

∫
Rd

∆xψ(x, y)∇xmu(x) · ∇ymu(y) dx dy

+N(p,ψ)(t) +R(p,ψ)(t) +RVψ (t).

Moreover by (3.1), (3.2) and Fubini’s theorem we introduce

B̃ =4

∫
Rd

∫
Rd
∇xu(x)D2

xψ(x, y)∇xu(x)mu(y) dx dy

+ 4

∫
Rd

∫
Rd
mu(x)∇xu(x)D2

yψ(x, y)∇yu(y) dx dy

+ 8

∫
Rd

∫
Rd
ju(x)D2

xyψ(x, y) · ju(y) dx dy

=4

∫
Rd

∫
Rd
u(y)∇xu(x)D2

xψ(x, y)∇xu(x)u(y) dx dy

+ 4

∫
Rd

∫
Rd
u(x)∇yu(y)D2

xψ(x, y)∇yu(y)u(x) dx dy

− 8

∫
Rd

∫
Rd

Im [u(x)∇xu(x)]D2
xyψ(x, y) Im [u(y)∇yu(y)] dx dy,

where we took advantage of the symmetry of D2ψ to eliminate the real part
condition in the first two summands of the identity above. At this point, by using
some rearrangements and the dispersion properties of the solution u, we find out
that

B̃ = 2

∫
Rd

∫
Rd
D2
xφ(|x− y|)

[
G1(x, y)G1(x, y) +G2(x, y)G2(x, y)

]
dx dy,
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with G1(x, y), G2(x, y) defined as follows:

G1(x, y) := u(x)∇yū(y)+ ū(y)∇xu(x) and G2(x, y) := u(x)∇yu(y)−u(y)∇xu(x).

Therefore B̃ ≥ 0, due to the fact that φ is a convex function. The above argument
implies, in combination with (4.5), the proof of (4.2).

4.1. A nonlinear Morawetz inequality. We have the following proposi-
tion, that is a consequence of inequality (4.2),

Proposition 4.1. Let u ∈ C(R, H1
x) be a global solution to (1.1) such that

(1.2), (1.3) are satisfied. Moreover, let Qdx̃(r) = x̃ + [−r, r]d, with r > 0 and
x̃ ∈ Rd. Then one gets: for d ≥ 4,∫

R

∫
(Qdx̃(r))2

|u(t, x)|2|u(t, y)|2 dx dy dt <∞,(4.6)

where (Qdx̃(r))2 = Qdx̃(r)×Qdx̃(r), and for d = 3,∫
R

∫
Q3
x̃(r)
|u(t, x)|4 dx dt <∞.(4.7)

Proof. Let us choose ψ(x, y) = |x − y| and deal with the case d ≥ 4. We
have that R(p,|x−y|)(t) ≥ 0. In fact we rewrite (4.4) as

R(p,|x−y|)(t) =
8

p
(d− α)

∫
Rd

∫
Rd

1

|x− z|d−γ+2
|u(t, x)|p|u(t, z)|pK(t, x, z) dx dz,

where

K(t, x, z) = (x− z) ·
∫
Rd
mu(t, y)

(
x− y
|x− y|

− z − y
|z − y|

)
dy ≥ 0,

again by inequality (3.8). Thus (4.2) reduces to

(4.8) −
∫
Rd

∫
Rd

∆2
xψ(x, y)mu(t, x)mu(t, y) dx dy +N(p,|x−y|)(t)

≤ Ï(t)−RV|x−y|(t).

By (4.1), (3.6) and integrating (4.8) w.r.t. the time variable again on [t1, t2], one
obtains

2

[∫
Rd

∫
Rd
ju(t, x) · ∇xψ(x, y)mu(t, y) dx dy

]t=t2
t=t1

+

∫ t2

t1

|RVψ (t)| dt(4.9)

≥ −2

∫ t2

t1

∫
Rd

∫
Rd

∆2
xψ(x, y)mu(t, x)mu(t, y) dx dy dt
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+

∫ t2

t1

∫
Rd

∫
Rd

∆xψ(x, y)
[
|x|−(d−γ) ∗ |u(t, x)|p

]
|u(t, x)|pmu(t, y) dx dy dt

&
∫ t2

t1

∫
(Qdx̃(2r))2

|u(t, x)|2|u(t, y)|2 dx dy dt

+ λ

∫ t2

t1

∫
(Qdx̃(2r))3

|u(t, x)|p|u(t, y)|2|u(t, z)|p dx dy dz dt,

with (Qdx̃(r))3 = Qdx̃(r)×Qdx̃(r)×Qdx̃(r) and where in the last line of the previous
inequality we made use of

inf
x,y,z∈Qdx̃(r)

(
1

|x− y|
,

1

|z − y|

)
= inf

x,y,z∈Qd0(r)

(
1

|x− y|
,

1

|z − y|

)
& 1,

for any x̃ ∈ Rd. By (1.3) and an application of (3.5), the l.h.s of (4.9) can be now
bounded as

2

[∫
Rd

∫
Rd
ju(t, x) · ∇xψ(x, y)mu(t, y) dx dy

]t=t2
t=t1

+ 2

∫ t2

t1

∫
Rd

∫
Rd

∣∣∣∣ x|x| · x− y|x− y|
∇xV (x)

∣∣∣∣mu(t, x)mu(t, y) dx dy dt

. ‖u0‖4H1
x

+ ‖u0‖2L2
x
‖u0‖2H1

x
<∞,

for any t1, t2 ∈ R, since theH1
x-norm is a conserved quantity. We get (4.6) allowing

t1 → −∞, t2 → ∞. We finally attain (4.7) by just repeating the same steps as
above and noticing that

−
∫
Rd

∫
Rd

∆2
xψ(x, y)mu(t, x)mu(t, y) dx dy dt = 2

∫
Rd
|u(t, x)|4 dx dt,

because d = 3 and by (3.6).
5. The decay of solutions. In this section we prove the main Theorem 1.1

if 2 < q <
2d

d− 2
.

Proof. We deal with p > 2 and d ≥ 4. The case p = 2 can be handled
in a similar manner. It is sufficient to prove the property (1.4) for a suitable

2 < q <
2d

d− 2
, since the thesis for the general case can be obtained by the

conservation laws (2.1) and interpolation. More precisely it is sufficient to show
that

(5.1) lim
t→±∞

‖u(t, x)‖
L
2+4/d
x

= 0.
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Then the decay of the Lqx-norm for all 2 < q <
2d

d− 2
follows by combining (5.1)

with the bound

(5.2) sup
t∈R
‖u(t, x)‖H1

x
<∞.

We write the following localized Gagliardo–Nirenberg inequality (see [1])

(5.3) ‖ϕ‖
2d+4
d

L
2d+4
d

x

≤ C

(
sup
x∈Rd

‖ϕ‖L2(Qx(1))

) 4
d

‖ϕ‖2H1
x
,

where Qx(1) is the unit cube in Rd centred in x. Next, assume by contradiction
that (5.1) is false, then by (5.2) and by (5.3) we deduce the existence of a sequence
(tn, xn) ∈ R× Rd with |tn| → ∞ and ε0 > 0 such that

(5.4) inf
n
‖u(tn, x)‖2L2(Qxn (1)) = ε20.

For simplicity we can assume that tn →∞ (the case tn → −∞ can be treated by
a similar argument). Notice that by (3.1) in conjunction with (5.2) we get

sup
n,t

∣∣ d
dt

∫
χ(x− xn)|u(t, x)|2 dx

∣∣ <∞,
where χ(x) is a smooth and non-negative cut-off function such that χ(x) = 1
for x ∈ Q0(1) and χ(x) = 0 for x /∈ Q0(2). Consequently, by the fundamental
theorem of calculus we deduce∣∣∣∣∫

Rd
χ(x− xn)|u(σ, x)|2dx−

∫
Rd
χ(x− xn)|u(t, x)|2dx

∣∣∣∣ ≤ C̃|t− σ|,
for a C̃ > 0 which is independent of n. By combining this fact with (5.4) and the
structure of χ, we get the existence of T > 0 such that

inf
n

(
inf

t∈(tn,tn+T )
‖u(t, x)‖2L2(Qxn (2))

)
& ε21,

for some ε1 > 0. Observe also that since tn → ∞ we can assume (modulo
subsequence) that the intervals (tn, tn+T ) are disjoint. In particular we have, for
d ≥ 4, ∑

n

Tε41 .
∑
n

∫ tn+T

tn

∫
(Qdxn (2))2

|u(t, x)|2|u(t, y)|2 dx dy dt

.
∫
R

sup
x̃∈Rd

∫
(Qdx̃(2))2

|u(t, x)|2|u(t, y)|2 dx dy dt,
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and hence we get a contradiction since the left hand side is divergent and the
right hand side is bounded as in (4.6). It remains to shed light on the case d = 3.
Arguing as above we get∑

n

Tε41 .
∫
R

sup
x̃∈Rd

∫
Q3
x̃(2)
|u(t, x)|4 dx dt,

which brings again to a contradiction by (4.7). The proof is completed.
6. Scattering. As a straightforward application we complete the proof of

Theorem 1.1. More precisely we achieve
Proposition 6.1. Assume d ≥ 3 and let u ∈ C(R, H1

x) be a global solution to
(1.1) such that (1.2), (1.3) are satisfied. Then

• (asymptotic completeness) There exists u±0 ∈ H
1
x such that

(6.1) lim
t→±∞

∥∥∥u(t, ·)− eit(∆x−V )u±0 (·)
∥∥∥
H1
x

= 0.

• (existence of wave operators) For every u±0 ∈ H1
x there exists unique ini-

tial data u0 ∈ H1(Rd), such that the global solution to (1.1) u ∈ C(R, H1
x)

satisfies (6.1).

Moreover

(6.2) lim
t→±∞

‖u(t, x)‖
L

2d
d−2
x

= 0.

Proof. The proof of the asymptotic completeness and existence of wave oper-
ators follows the same lines of the one appearing in [1] and comes out from classical
arguments (see also Theorems 7.8.1 and 7.8.4 in [20]), thus we skip it. Once (6.1)
is achieved, the Sobolev embedding combined with the dispersive estimate for the
free propagator

‖u(t)‖
L

2d
d−2
x

.
∥∥u(t)− eit∆xu±0

∥∥
H1
x

+
∥∥eit∆xu±0

∥∥
L

2d
d−2
x

.
∥∥u(t)− eit∆xu±0

∥∥
H1
x

+
1

t

∥∥u±0 ∥∥
L

2d
d+2
x

,

valid for any t ∈ R and (6.1), allow also to conclude that (6.2) holds true.
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