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ON THE UNIFORM DECAY OF THE LOCAL ENERGY

Georgi Vodev

Communicated by V. Petkov

Abstract. It is proved in [1],[2] that in odd dimensional spaces any uni-
form decay of the local energy implies that it must decay exponentially. We
extend this to even dimensional spaces and to more general perturbations
(including the transmission problem) showing that any uniform decay of the
local energy implies that it must decay like O(t−2n), t ≫ 1 being the time
and n being the space dimension.

1. Introduction and statement of results. It is proved in [1]

using the Lax-Phillips theory that in the case of obstacle scattering in odd di-

mensional spaces, if the local energy decays uniformly to zero, it must decay

exponentially. This was extended in [2] for more general perturbations but still

in odd dimensional space. The purpose of this note is to extend these results

to the case of even dimensional spaces and to more general perturbations. Let

Ω ⊂ R
n, n ≥ 2 be a connected complement of a compact obstacle with smooth

boundary. Let also ΩN0
⊂ ΩN0−1 ⊂ · · · ⊂ Ω1 ⊂ Ω0 := Ω be a finite number

of open connected domains with smooth boundaries and bounded complements
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such that Ok = Ωk−1\Ωk, k = 1, . . . , N0, are bounded connected domains. Define

the Hilbert space H = ⊕N0

k=1L
2(Ok; ck(x)dx) ⊕ L2(ΩN0

). Let Pk, k = 1, . . . , N0,

be differential operators defined in Ok, respectively, of the form

Pk = −ck(x)−1
n∑

i,j=1

∂xi
(g

(k)
ij (x)∂xj

)

with smooth coefficients. Let P be a selfadjoint, positive operator on H with

absolutely continuous spectrum only, such that

P |Ok
= Pk, P |ΩN0

= −∆ = −
n∑

j=1

∂2
xj

.

We also suppose that P is elliptic, i.e. the operator

(P + 1)−m : H → ⊕N0

k=1H
2m(Ok) ⊕ H2m(ΩN0

)

is bounded for every m ≥ 0.

Set R(λ) = (P −λ2)−1 : H → H for Im λ < 0, and let χ ∈ C∞
0 (Rn), χ = 1

on B = {x ∈ R
n : |x| ≤ ρ0}, ρ0 ≫ 1. Then Rχ(λ) = χR(λ)χ : H → H extends

to a meromorphic function on C if n is odd, and on the Riemann surface, Λ, of

log λ, if n is even (e.g. see [5]). Suppose that

‖λRχ(−iλ)‖ < ∞, λ → 0, λ > 0,(1.1)

where ‖ · ‖ denotes the norm in L(H,H).

Denote by u(t) the solution of the Cauchy problem

{
(∂2

t + P )u = 0,
u(0) = f1, ∂tu(0) = f2.

Let a > ρ0 and set Ba = {x ∈ R
n : |x| ≤ a}. Given any m ≥ 0, set

pm(t) = sup

{
‖∇xu‖L2(Ba∩Ω) + ‖∂tu‖L2(Ba∩Ω)

‖∇xf1‖Hm(Ba∩Ω) + ‖f2‖Hm(Ba∩Ω)
,

(0, 0) 6= (f1, f2) ∈ C∞(Ω) × C∞(Ω), supp fj ⊂ Ba

}
.

Our main result is the following
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Theorem 1.1. The following three statements are equivalent:

i)

lim
t→+∞

p0(t) = 0.(1.2)

ii) There exist constants C,C1 > 0 so that

‖λRχ(λ)‖ ≤ C, λ ∈ R, |λ| ≥ C1.(1.3)

iii) There exist constants C, γ > 0 so that

p0(t) ≤
{

Ce−γt, n odd,
Ct−n, n even.

(1.4)

Note that a decay like (1.4) is known to hold for nontrapping pertur-

bations (e.g. see [4]). Here nontrapping means that every generalized geodesic

leaves any compact in a finite time. It is worth noticing however that the inverse

statement is not true in general, i.e. there could be situations where the state-

ments of the above theorem hold but the perturbation is not nontrapping in the

sense of the above definition. In fact, to my best knowledge there is no interesting

situation of scattering in which such an inverse statement to be shown to hold.

We will derive the above theorem from the following

Theorem 1.2. Suppose that Rχ(λ) admits analytic continuations in

Λ± := {λ ∈ C : 0 ≤ Imλ ≤ C,±Re λ > 0}, C > 0, such that

‖λRχ(λ)‖ ≤ C1|λ|k, Im λ ≤ C, |Re λ| ≥ C2,(1.5)

for some C1, C2 > 0 and k ≥ 0. Then there exist constants C3, γ > 0 so that

pk(t) ≤
{

C3e
−γt, n odd,

C3t
−n, n even.

(1.6)

The paper is organized as follows. In Section 2 we derive Theorem 1.1

from Theorem 1.2. In Section 3 we prove Theorem 1.2.

2. Proof of Theorem 1.1. The purpose of this section is to show how

to derive Theorem 1.1 from Theorem 1.2. We begin with the following

Lemma 2.1. The condition (1.2) implies (1.5) with k = 0.



194 Georgi Vodev

P r o o f. Recall the formula

λR(λ) = i

∞∫

0

e−itλcos (t
√

P )dt, Im λ < 0.

Let χ ∈ C∞
0 (Rn), χ = 1 on B. Assume (1.2) fulfilled. Then for any ε > 0 there

exists Cε > 0 so that

‖λRχ(λ)‖ ≤
∞∫

0

e−t|Im λ|‖χcos (t
√

P )χ‖dt

(2.1) ≤ Cε + ε

∞∫

0

e−t|Im λ|dt = Cε + ε|Im λ|−1, Im λ < 0.

Choose functions χ1, χ2, χ3, η ∈ C∞
0 (Rn), χ1 = 1 on B, χ2 = 1 on supp χ1, χ3 = 1

on supp χ2, χ = 1 on supp χ3, and η = 1 on supp (1 − χ2)χ, η = 0 on supp χ1.

As in [5], we have

(2.2) Rχ(z)(1 − K(z)) = K1(z),

where

K(z) = ([χ1,∆]R0(z)η − [χ1,∆]R0(λ)η)K̃(λ) + (z2 − λ2)χ2Rχ(λ),

K1(z) = (1 − χ1)(χR0(z)η − χR0(λ)η)K̃(λ) + Rχ(λ),

K̃(λ) = (1 − χ2)χ + [χ2,∆]R0(λ)χ3 + [χ2,∆]R0(λ)[χ3,∆]Rχ(λ),

where λ ∈ C, Im λ < 0, and R0(z) denotes the free outgoing resolvent of the

Laplacian in R
n. Clearly, K(z) and K1(z) are analytic on C when n is odd and

on Λ when n is even. Moreover, K(z) takes values in the compact operators on

H. Let z ∈ C, Re z ≥ 1, 0 ≤ Im z ≤ δ, 0 < δ ≤ 1, and let λ ∈ C be such that

Reλ = Re z and Im λ = δ. In view of (2.1) we have

(2.3) ‖K̃(λ)‖ ≤ Cε + εδ−1.

On the other hand, we have

(2.4) ‖[χ1,∆]R0(z)η − [χ1,∆]R0(λ)η‖ ≤ |z − λ|‖Q(τ)‖ ≤ 2δ‖Q(τ)‖
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for some τ = βλ + (1 − β)z, β ∈ [0, 1], where

Q(σ) =
d

dσ
[χ1,∆]R0(σ)η.

We need the following

Lemma 2.2. For σ ∈ C, |Im σ| ≤ 1, we have

(2.5) ‖Q(σ)‖ ≤ C

with a constant C > 0 independent of σ.

P r o o f. It is easy to see that ‖Q(τ)‖ is polynomially bounded in |Im σ| ≤
1. Hence, by Phragmèn-Lindelöf principle it suffices to prove (2.5) on the lines

Im σ = ±1. Let Im σ = −1, |Re σ| ≥ 1. We have

‖Q(σ)‖ ≤ C1‖
d

dσ
R0(σ)‖L2(Rn)→H1(Rn)

= 2C1|σ|‖(∆ + σ2)−2‖L2(Rn)→H1(Rn)

(2.6) ≤ 2C1|σ|‖(∆ + σ2)−1‖L2(Rn)→L2(Rn)‖(∆ + σ2)−1‖L2(Rn)→H1(Rn) ≤ C2,

with a constant C2 > 0 independent of σ.

Let now Im σ = 1,Re σ ≥ 1. In view of (2.6) it is clear that it suffices to

prove (2.5) on Im σ = 1 with Q(σ) replaced by

L(σ) =
d

dσ
[χ1,∆](R0(σ) − R0(−σ))η.

It is well known that the kernel of R0(σ) − R0(−σ) is given by

(i/2)(2π)−n+1σn−2

∫

Sn−1

eiσ〈x−y,w〉dw,

where Sn−1 is the unit sphere in R
n. It is easy to see that the kernel of L(σ) is

a finite sum of integrals of the form

K(x, y) = σpa(x)b(y)

∫

Sn−1

ϕ(w)eiσ〈x−y,w〉dw,
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where p ≤ n − 1, a, b ∈ C∞
0 (Rn), ϕ ∈ C∞(Sn−1), independent of σ. Denote

by K(σ) the operator with kernel K(x, y). Clearly, (2.5) would follow from the

estimate

(2.7) ‖K(σ)‖ ≤ C for |Im σ| ≤ 1

with a constant C > 0 independent of σ. Set σ1 = Re σ and Sn−1
σ1

= {x ∈ R
n :

|x| = σ1}. We can write

K(x, y) = σpσ−n+1
1 a(x)b(y)

∫

Sn−1
σ1

ϕ(w/σ1)e
iσ〈x−y,w〉/σ1dw.

Hence K(σ) = K1(σ)K2(σ) with K1 ∈ L(L2(Sn−1
σ1

), L2(Rn)),K2 ∈ L(L2(Rn),

L2(Sn−1
σ1

)) with kernels

K1(x,w) = σpσ−n+1
1 a(x)ϕ(w/σ1)e

iσ〈x,w〉/σ1 , K2(w, y) = b(y)e−iσ〈y,w〉/σ1 .

Clearly,

|K1(x,w)| + |K2(w, y)| ≤ C1, ∀(x, y,w) ∈ R
n × R

n × Sn−1
σ1

,

with a constant C1 > 0 independent of σ. Hence,

‖K1‖L(L2(Sn−1
σ1

),L2(Rn)) + ‖K2‖L(L2(Rn),L2(Sn−1
σ1

)) ≤ C2

with a constant C2 > 0 independent of σ, which clearly implies (2.7). �

By (2.3)–(2.5) we have

‖K(z)‖ ≤ CεCδ + Cε

with a constant C > 0 independent of ε and δ. Choosing ε > 0 so that Cε ≤ 1/4

and δ ∈ (0, 1) so that CεCδ ≤ 1/4, we conclude that ‖K(z)‖ ≤ 1/2 for Re z ≥
1, 0 ≤ Im z ≤ δ, and in this region

‖Rχ(z)‖ ≤ 2‖K1(z)‖ ≤ C ′|Re z|−1.

Clearly, the same is true in the region Re z ≤ −1, 0 ≤ Im z ≤ δ, as well. �

Lemma 2.3. The condition (1.3) implies (1.5) with k = 0.



On the uniform decay of the local energy 197

P r o o f. We are going to take advantage of (2.2). Let z ∈ C,Re z ≥ 1, 0 ≤
Im z ≤ 1. Clearly, (2.2) extends for λ ∈ R. Choose λ = Re z. In the same way as

in the proof of Lemma 2.1, using (1.2) instead of (2.1), we get

‖K(z)‖ ≤ C1Im z

with a constant C1 > 0 independent of z. Hence ‖K(z)‖ ≤ 1/2 for Im z ≤
(2C1)

−1, Re z ≥ 1, and by (2.2), Rχ(z) extends analytically to this region and

satisfies there the desired estimate. �

3. Proof of Theorem 1.2. We begin this section with the following

Proposition 3.1. If n ≥ 3 is odd, we have

(3.1) Rχ(λ) = λ−1Pn + En(λ),

where En(λ) is analytic at λ = 0, and Pn = 0 if n ≥ 5, rankP3 ≤ 1.

If n ≥ 2 is even, we have

(3.2) Rχ(λ) = Mnλn−2 log λ + Fn(λ) + O(|λ|n−2), λ → 0, | arg λ + π/2| ≤ π,

where rankMn = 1 and Fn(λ) is a polynomial of degree ≤ n − 3 if n ≥ 4,

F2(λ) ≡ 0.

P r o o f. Recall first that for the free cutoff resolvent we have that χR0(z)χ

is analytic when n ≥ 3 is odd, while for n even it is of the form

(3.3) χR0(z)χ = En(z)zn−2 log z + Fn(z),

where En(z) and Fn(z) are entire operator-valued functions. We are going to

take advantage of (2.2). We can write

K(z) = A(z) + B(z) + C(λ)

with

A(z) = ([χ1,∆]R̃0(z)η − [χ1,∆]R̃0(0)η)K̃(λ) + z2χ2Rχ(λ),

B(z) = T (λ)(log z − log λ),

C(λ) = ([χ1,∆]R̃0(0)η − [χ1,∆]R̃0(λ)η)K̃(λ) − λ2χ2Rχ(λ),
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where

[χ1,∆]R̃0(z)η = [χ1,∆]R0(z)η, T (λ) = 0,

if n ≥ 3, while for n = 2,

[χ1,∆]R̃0(z)η = [χ1,∆]R0(z)η − (([χ1,∆]E2(z)η)|z=0) log z,

T (λ) = (([χ1,∆]E2(z)η)|z=0)K̃(λ).

Let us now compute En(z) when n is even. To this end, we will make use of the

following well known formula:

(3.4) [R0(e
iπmz) − R0(z)](x, y) = m(i/2)(2π)−n+1zn−2

∫

Sn−1

eiz〈x−y,w〉dw

for any integer m. Using (3.4) with m = 2 and combining with (3.3) gives

[En(z)](x, y) = (2π)−n+2χ(x)χ(y)

∫

Sn−1

eiz〈x−y,w〉dw

= (2π)−n+2χ(x)χ(y)

∞∑

k=0

z2k

(2k)!

∫

Sn−1

(i〈x − y,w〉)2kdw.

In particular, this gives rankEn(0) = 1 and

[([χ1,∆]E2(z)η)|z=0](x, y) = (∆χ1)(x)η(y),

and hence rankT (λ) ≤ 1. Let us now compute

Qn = (
d

dz
[χ1,∆]R̃0(z)η)|z=0.

Clearly,

2Qn = (
d

dz
([χ1,∆]R̃0(z)η − [χ1,∆]R̃0(−z)η))|z=0

= (
d

dz
([χ1,∆]R0(z)η − [χ1,∆]R0(−z)η))|z=0.

On the other hand, using (3.4) with m = 1, one gets

[
d

dz
([χ1,∆]R0(z)η − [χ1,∆]R0(−z)η)](x, y)
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= (i/2)(2π)−n+1(n − 2)zn−3(∆χ1)(x)η(y) + O(zn−1), z → 0.

Hence, Qn = 0 if n 6= 3, rankQ3 = 1. Using (1.1) we get

C(λ) = Qn[χ2,∆]R0(λ)[χ3,∆]λRχ(λ) + O(|λ|)

as λ → 0. If n = 3, in view of (1.1), λRχ(λ) is analytic at λ = 0, so limλ→0 λRχ(λ)

exists, and we can write, as λ → 0,

(3.5) C(λ) =

{
O(|λ|), n 6= 3,

Q̃3 + O(|λ|), n = 3,

where Q̃3 is of the form Q3Q̃, and hence rank Q̃3 ≤ 1. Fix λ so that ‖C(λ) −
C(0)‖ ≤ 1/2. Clearly,

A(z) = O(|z|), z → 0.

We can write, for |z| ≪ 1,

(3.6)

1−K(z) = (1−B1(z)−L1(z))(1 −A(z)(1−C(λ) + C(0))−1)(1−C(λ) + C(0)),

where

B1(z) = B(z)D(z), L1(z) = C(0)D(z),

D(z) = (1 − C(λ) + C(0))−1(1 − A(z)(1 − C(λ) + C(0))−1)−1.

If n ≥ 4, clearly B1(z) ≡ 0, L1(z) ≡ 0, and in view of (3.6), 1−K(z) is invertible

near z = 0. Therefore, by (2.2) we can conclude that the leading singularities of

Rχ(z) at z = 0 are of the same type as those of χR0(z)χ, so the proposition in

this case follows from (3.3).

To study the other cases, observe that if π is an operator of rank 1 such

that πw = aw for some w ∈ H,w 6= 0, and a scalar a, then

(3.7) (1 − π)−1 = 1 − (a‖w‖2 − 1)−1π if a‖w‖2 6= 1.

Let n = 3. Then B1(z) ≡ 0, rankL1(z) ≤ 1. Moreover, we have L1(z)w = a(z)w

with w = ∆χ1 and a(z) = Const〈Q̃D(z)w,w〉. Hence a(z) is analytic at z = 0,

and a(z)‖w‖2 − 1 = apz
p(1 + O(|z|)), z → 0, ap 6= 0, for some integer p ≥ 0.

Thus, by (2.2), (3.3), (3.6) and (3.7), we conclude that the leading singularity of

Rχ(z) at z = 0 is of the form z−pNL1(0). In view of (3.5), however, p ≤ 1, which

establishes (3.1) with P3 = NL1(0) which is of rank ≤ 1 as so is L1(0).
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Let n = 2. Then L1(z) ≡ 0, rankB1(z) ≤ 1. Moreover, we have B1(z)w =

b(z)w with w = ∆χ1 and b(z) = (log z−log λ)b1(z), b1(z) = Const〈K̃(λ)D(z)w,w〉.
If b1(0) = 0, then clearly b(z)‖w‖2 − 1 is invertible near z = 0, and by (2.2) and

(3.7) we conclude that Rχ(z) has the same type of leading singularity at z = 0

as does χR0(z)χ. Suppose b1(0) 6= 0. Then

(b(z)‖w‖2 − 1)−1 = Const(log z)−1(1 + O((log z)−1)),

and by (2.2), (3.3), (3.6) and (3.7) we obtain

Rχ(z) = N1E2(0) log z + O(1), z → 0,

for some bounded, invertible operator N1. This completes the proof of Proposi-

tion 3.1. �

Remark 3.2. Clearly, Proposition 3.1 gives that λRχ(λ) is analytic at

λ = 0 if n is odd, while for n even, modulo a function analytic at λ = 0, it is of

the form

λRχ(λ) = Mnλn−1 log λ + O(|λ|n−1), λ → 0.

Moreover, it is easy to see from the proof that the same conclusion holds for

χ∂xj
R(λ)χ, j = 1, . . . , n.

Denote by H̃k, k = 1, . . . , N0, the closure of C∞
(0)(Ok) with respect to the

norm 


∫

Ok

n∑

i,j=1

g
(k)
ij (x)∂xi

f∂xj
fdx




1/2

,

and by H̃N0+1 the closure of C∞
(0)(ΩN0

) with respect to the norm (
∫

ΩN0

|∇xf |2dx)1/2.

Set H̃ = ⊕N0+1
k=1 H̃k, and H = H̃ ⊕ H. Given a > ρ0, define the Hilbert space

Ha = H̃a ⊕ Ha, where H̃a = ⊕N0

k=1H̃k ⊕ H̃a
N0+1, Ha = ⊕N0

k=1L
2(Ok; ck(x)dx) ⊕

L2(ΩN0
∩ Ba). Here H̃a

N0+1 is the closure of C∞
(0)(ΩN0

∩ Ba) with respect to the

norm (
∫

ΩN0
∩Ba

|∇xf |2dx)1/2. In what follows ‖ · ‖ will denote the norm on H,

while ‖ · ‖a will denote the norm on Ha. Consider the operator

G = −i

(
0 Id
P 0

)
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on the Hilbert space H with domain of definition

D(G) = {(u1, u2) ∈ H : u1 ∈ D(P ), Pu1 ∈ H,u2 ∈ H̃}.

It is easy to see that the operator G is selfadjoint and, for Imλ < 0,

(G − λ)−1 = −i

(
iλR(λ) R(λ)

λ2R(λ) − Id iλR(λ)

)
.

Hence, (G−λ)−1 : Hcomp → Hloc extends to a meromorphic function on C if n is

odd and on Λ if n is even. Moreover, in view of Remark 3.2, (G−λ)−1 is analytic

at λ = 0 if n is odd and it has the form, modulo a function analytic at λ = 0,

(3.8) (G − λ)−1 = M′
nλn−1 log λ + O(|λ|n−1), λ → 0,

if n is even. Furthermore, it is easy to see that under the assumptions of Theorem

1.2, (G− λ)−1 : Hcomp → Hloc extends analytically to Λ± = {λ ∈ C : 0 ≤ Imλ ≤
C,±Re λ > 0} and satisfies the estimate

(3.9) ‖(G − λ)−1f‖a ≤ C1|λ|k‖f‖ for |Im λ| ≤ C, |Re λ| ≥ C2,

for every compactly supported f ∈ H. Clearly, Theorem 1.2 follows from the

following

Proposition 3.3. Under the same assumptions as in Theorem 1.2, we

have, for t ≫ 1,

(3.10) ‖(1 + G2)−k/2eitGf‖a ≤
{

Ce−γt‖f‖, n odd,
Ct−n‖f‖, n even,

for every compactly supported f ∈ H.

P r o o f. We will proceed in a way similar to that one in [3]. Let ϕ(t) ∈
C∞(Rn), ϕ = 0 for t ≤ 1, ϕ = 1 for t ≥ 2. Set U(t) = eitG and V (t) = ϕ(t)U(t).

The Fourier transform

V̂ (λ) =

+∞∫

−∞

e−itλV (t)dt

is well defined for Im λ < 0 as a bounded operator on H. We have

(3.11) V (t) = (2π)−1

∫

Im λ=−ε

eitλV̂ (λ)dλ,
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∀ε > 0, and

V̂ (λ) = i(G − λ)−1ϕ̂′U(λ), Im λ < 0.

By the finite speed of the wave propagation, we have that for every compactly

supported f ∈ H,∀t ∈ R, ϕ′(t)U(t)f is supported in some compact independent

of t. Therefore, ϕ̂′U(λ) : Hcomp → Hcomp extends to an entire function on C. Set

S(λ) = (1 + G2)−k/2(G − λ)−1.

Lemma 3.4. S(λ) : Hcomp → Hloc admits analytic continuations in

Λ± = {λ ∈ C : 0 ≤ Im λ ≤ C,±Re λ > 0}, C > 0, such that

(3.12) ‖S(λ)f‖a ≤ C1‖f‖ for |Im λ| ≤ C,

for every compactly supported f ∈ H. Moreover, S(λ) is analytic at λ = 0 when

n is odd and it has the form, modulo a function analytic at λ = 0,

(3.13) S(λ) = S0λ
n−1 log λ + O(|λ|n−1), λ → 0,

if n is even.

P r o o f. The lemma is clearly true for k = 0. If k > 0, by the spectral

theorem we have

S(λ) =

+∞∫

−∞

(1 + x2)−k/2(x − λ)−1E(x)dx, Im λ < 0,

where

E(x) = lim
ε→0+

(2πi)−1((G − x − iε)−1 − (G − x + iε)−1).

For any α > β > 0 we can write

S(λ) =

α+β∫

α−β

(1 + x2)−k/2(x − λ)−1E(x)dx

+




α−β∫

−∞

+

+∞∫

α+β


 (1 + x2)−k/2(x − λ)−1E(x)dx = J1(λ) + J2(λ).
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Clearly, J2(λ) : H → H extends analytically to Cα = {λ ∈ C : α − β/2 ≤ Re λ ≤
α + β/2, Im λ ≤ 1} and

(3.14) ‖J2(λ)‖L(H,H) ≤ 2β−1, λ ∈ Cα.

On the other hand, (G−z)−1 : Hcomp → Hloc extends analytically from ±Im z < 0

to {z ∈ C : ±Im z ≤ γ,Re z > 0}. Denote this continuation by F±(z). Without

loss of generality we can suppose γ < 1. Now by the Cauchy theorem we have

J1(λ) = −(2πi)−1

∫

Im z=γ
α−β≤Re z≤α+β

(1 + z2)−k/2(z − λ)−1(F+(z) − F−(z))dz

−(2πi)−1

∫

0≤Im z≤γ
Re z=α−β

(1 + z2)−k/2(z − λ)−1(F+(z) − F−(z))dz

+(2πi)−1

∫

0≤Im z≤γ
Re z=α+β

(1 + z2)−k/2(z − λ)−1(F+(z) − F−(z))dz

considered as an operator from Hcomp to Hloc. It follows from the above rep-

resentation that J1(λ) : Hcomp → Hloc extends analytically to C
′
α = {λ ∈ C :

α − β/2 ≤ Reλ ≤ α + β/2, 0 ≤ Im λ ≤ γ/2}, and in view of (3.9) it satisfies the

estimate, for α ≫ 1,

(3.15) ‖J1(λ)f‖a ≤ Cβ‖f‖, λ ∈ C
′
α,

for every compactly supported f ∈ H, with a constant Cβ independent of α.

Hence, S(λ) : Hcomp → Hloc extends analytically to {Im λ ≤ γ/2,Re λ > 0} and

(3.12) follows from (3.14) and (3.15). In a similar way one can extend S(λ) to

{Im λ ≤ γ/2,Re λ < 0}.
To study the singularity of S(λ) at λ = 0, observe that the difference

S(λ) − (1 + λ2)−k/2(G − λ)−1

=

∫

|x|≥1

((1 + x2)−k/2 − (1 + λ2)−k/2)(x − λ)−1E(x)dx +
∞∑

µ,ν=0

Cµνλ
µ

1∫

−1

xνE(x)dx
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is analytic at λ = 0. Thus (3.13) follows from (3.8). �

By (3.11) and Lemma 3.4, for every compactly supported f ∈ H, we have

W (t)f := (1 + G2)−k/2V (t)f = (2π)−1

∫

Im λ=−ε

eitλS(λ)ϕ̂′U(λ)fdλ

= e−Ct(2π)−1

+∞∫

−∞

eitzS(z + iC)ϕ̂′U(z + iC)fdz

+(2π)−1 lim
ε→0+




∫

Re λ=−ε
0≤Im λ≤C

eitλS(λ)ϕ̂′U(λ)fdλ −
∫

Re λ=ε
0≤Im λ≤C

eitλS(λ)ϕ̂′U(λ)fdλ




(3.16) = e−CtW1(t)f + W2(t)f.

Clearly, W2(t)f ≡ 0 if n is odd, while for n even, we have in view of (3.13),

W2(t) = S′
0

C∫

0

e−tyyn−1dy + O(t−n) = O(t−n).

In other words,

(3.17) ‖W2(t)f‖a ≤ C̃t−n‖f‖

for every compactly supported f ∈ H.

To estimate ‖W1(t)f‖a we will use Plancherel identity together with

(3.12). We have

+∞∫

−∞

‖W1(t)f‖2
adt =

+∞∫

−∞

‖S(z + iC)ϕ̂′U(z + iC)f‖2
adz

(3.18) ≤ C1

+∞∫

−∞

‖ϕ̂′U(z + iC)f‖2dz = C1

+∞∫

−∞

e2Ct‖ϕ′(t)U(t)f‖2dt ≤ C2‖f‖2.
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Let χ ∈ C∞
0 (Rn), χ = 1 for |x| ≤ a. An easy computation gives

(∂t − iG)χW1(t)f = −i[G,χ]W1(t)f + CχW1(t)f

−iχ(1 + G2)−k/2(2π)−1

+∞∫

−∞

eitzϕ̂′U(z + iC)fdz = W̃1(t)f,

and hence

χW1(t)f = U(t)χW1(0)f +

t∫

0

U(t − s)W̃1(s)fds.

This implies

‖W1(t)f‖a ≤ ‖χW1(t)f‖ ≤ C3‖f‖ +

t∫

0

‖W̃1(s)f‖ds

≤ C3‖f‖ + t1/2(

+∞∫

−∞

‖W̃1(s)f‖2ds)1/2.

It is easy to see that (3.18) holds with ‖W1(t)f‖a replaced by ‖W̃1(t)f‖. Hence,

for t ≥ 1,

(3.19) ‖W1(t)f‖a ≤ C4t
1/2‖f‖.

Thus, (3.10) follows from (3.16), (3.17) and (3.19). �
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2, rue de la Houssinière, B.P. 92208,

44322 Nantes-Cedex 03

France

e-mail: vodev@math.univ-nantes.fr Received January 20, 1999


