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ABSTRACT. It is proved in [1],[2] that in odd dimensional spaces any uni-
form decay of the local energy implies that it must decay exponentially. We
extend this to even dimensional spaces and to more general perturbations
(including the transmission problem) showing that any uniform decay of the
local energy implies that it must decay like O(t=2"), t > 1 being the time
and n being the space dimension.

1. Introduction and statement of results. It is proved in [1]
using the Lax-Phillips theory that in the case of obstacle scattering in odd di-
mensional spaces, if the local energy decays uniformly to zero, it must decay
exponentially. This was extended in [2] for more general perturbations but still
in odd dimensional space. The purpose of this note is to extend these results
to the case of even dimensional spaces and to more general perturbations. Let
Q C R*,n > 2 be a connected complement of a compact obstacle with smooth
boundary. Let also Qn, C Qn,—1 C -+ C 21 C Qp = Q be a finite number
of open connected domains with smooth boundaries and bounded complements
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192 Georgi Vodev

such that O, = Qp_1 \Qk, k=1,..., Ny, are bounded connected domains. Define
the Hilbert space H = @ko LQ((’)k;ck(a:)dx) ® L*(Qn,). Let Py, k=1,..., Np,
be differential operators defined in O, respectively, of the form

P = _Ck? Z 8$7, gzj I])

i,5=1

with smooth coefficients. Let P be a selfadjoint, positive operator on H with
absolutely continuous spectrum only, such that

n
Plo, = Pi, Plaoy, =—A=-Y_ 0.

We also suppose that P is elliptic, i.e. the operator
(P+1)™™:H— @NO H2m((’)k) &) H2m(QN0)

is bounded for every m > 0.

Set R(\) = (P—X*)"1: H — H for Im A < 0, and let x € C°(R"),x =1
on B={xeR":|z|] <po},po>1 Then R, (\) = xR(\)x : H — H extends
to a meromorphic function on C if n is odd, and on the Riemann surface, A, of
log A, if n is even (e.g. see [5]). Suppose that

(1.1) IAR (=i < 00, A —0,A>0,

where || - || denotes the norm in £L(H, H).
Denote by u(t) the solution of the Cauchy problem

{(£+sza
u(0) = f1,0pu(0) = fo.

Let a > pp and set B, = {x € R" : || < a}. Given any m > 0, set

IVaullL2(B.ne) + [10¢ul L2 (B, A0

IVafillamBane) + 12l am (Bane)”

pm(t) = sup{

(070) 7& (fl)fQ) € COO(Q) X COO(Q)¢ Suppfj - Ba}'

Our main result is the following
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Theorem 1.1. The following three statements are equivalent:

i)

(1.2) lim po(t) = 0.
it) There exist constants C,C1 > 0 so that
(1.3) AR,V < C, XeR, |A>Ch.
iii) There exist constants C,~y > 0 so that
Ce™ ™, n odd
. < ) )
(14) Po(t) < { Ct™, n even.

Note that a decay like (1.4) is known to hold for nontrapping pertur-
bations (e.g. see [4]). Here nontrapping means that every generalized geodesic
leaves any compact in a finite time. It is worth noticing however that the inverse
statement is not true in general, i.e. there could be situations where the state-
ments of the above theorem hold but the perturbation is not nontrapping in the
sense of the above definition. In fact, to my best knowledge there is no interesting
situation of scattering in which such an inverse statement to be shown to hold.

We will derive the above theorem from the following

Theorem 1.2.  Suppose that R, ()\) admits analytic continuations in
Ay :={AeC:0<ImA <C,£Re X > 0},C > 0, such that

(1.5) AR, (W]l < C1IAF, ITmA < C, [Re)| > Cy,

for some C1,Cy > 0 and k > 0. Then there exist constants Cs,~v > 0 so that

Csze ", n  odd,
<
(1'6) pk‘(t) = { Cst™™,

n even.

The paper is organized as follows. In Section 2 we derive Theorem 1.1
from Theorem 1.2. In Section 3 we prove Theorem 1.2.

2. Proof of Theorem 1.1. The purpose of this section is to show how
to derive Theorem 1.1 from Theorem 1.2. We begin with the following

Lemma 2.1. The condition (1.2) implies (1.5) with k = 0.



194 Georgi Vodev

Proof. Recall the formula

AR(N) = i/e‘it’\cos (tV/P)dt, Im A\ < 0.
0

Let x € Cg°(R™),x = 1 on B. Assume (1.2) fulfilled. Then for any € > 0 there
exists C; > 0 so that

oo

AR (V)] < / ¢~ Al o (+/P) x|t
0

oo

(2.1) <C.+ s/etllmldt — 4 efmA"Y, TmA <0,
0

Choose functions x1, x2, x3,7 € C°(R"),x1 =1on B, x2 =1 on supp x1, x3 = 1

on supp x2, X = 1 on supp x3, and 7 = 1 on supp (1 — x2)x, 7 = 0 on supp xi.
As in [5], we have

(2.2) R (2)(1 = K(2)) = Ki(2),
where
K(2) = ([x1, A]Ro(2)n — [x1, A]Ro(NmE (X) + (2% = A)xaRy (V).

Ki(2) = (1 — x1)(xRo(2)1 — xRoNmE (A) + Ry (M),
K(A) = (1= x2)x + [x2, AJRo(N)x3 + [x2, A]Ro(A) [x3, A]Ry (N,

where A € C, Im\ < 0, and Ry(z) denotes the free outgoing resolvent of the
Laplacian in R™. Clearly, K(z) and K;(z) are analytic on C when n is odd and
on A when n is even. Moreover, K(z) takes values in the compact operators on
H. Let z€ C,Rez>1,0<Imz<90< <1, and let A € C be such that
ReA =Rez and Im A\ = 4. In view of (2.1) we have

(2.3) KW < C.4e07.
On the other hand, we have

(2.4) 11, AlRo(2)n — [x1, AlRo(M)nll < [z = A[|Q(T) ]| < 26[|Q(7)
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for some 7 = A + (1 — )z, 5 € [0, 1], where

@ AlRo(o)n.

Qo) = —
o
We need the following

Lemma 2.2. Foro € C,|Imo| <1, we have

(2.5) Q@) <C

with a constant C' > 0 independent of o.

Proof. It is easy to see that ||Q(7)|| is polynomially bounded in [Imo| <
1. Hence, by Phragmen-Lindelof principle it suffices to prove (2.5) on the lines
Imo = =+1. Let Imo = —1,|Reo| > 1. We have

d
1Q(@)]| = Cull == Ro(o)l 2 @n)— 1 (am)

= 2C1|o[[[(A 4 0%) 2| p2@n)— 111 (2

(2.6) < 2C1|o|[l(A + %) 2@n)—r2@m) (A + 0) "l L2@n)—mr1@n) < Co,

with a constant Cy > 0 independent of .
Let now Imo = 1,Rec > 1. In view of (2.6) it is clear that it suffices to
prove (2.5) on Imo = 1 with Q(o) replaced by

L(o) = %[XhA](RO(U) — Ro(—0))n.

It is well known that the kernel of Ry(c) — Ro(—0) is given by
(i/2)(27r)fn+lan72 / eia(xfy,w)dw’
Sn—1

where S"! is the unit sphere in R™. It is easy to see that the kernel of L(o) is
a finite sum of integrals of the form

K(2,y) = o”a(z)b(y) / () v dy,
Sn—l
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where p < n — 1, a,b € CP(R™),p € C®(S™ 1), independent of o. Denote
by K(o) the operator with kernel K (x,y). Clearly, (2.5) would follow from the
estimate

(2.7) IK(o)| <C  for [Imo] <1

with a constant C' > 0 independent of 0. Set 0y = Reo and S! = {z € R™:
|z| = o1}. We can write

K(a,y) = ooy alalbly) [ lw/on)e™= 00 du.
Sat

Hence K(o) = Ki(0)K2(o) with Ky € L(L*(S21), L2(R")), Ky € L(L*(R™),
L?(S7~1)) with kernels

Ko (@, 0) = "oy "Hae)p(w/o)eT M Ky(w,y) = bly)e w07
Clearly,
K1 (2, w)| + [Ka(w,y)] < C1, Y(z,y,w) € R" xR" x 771,
with a constant C; > 0 independent of o. Hence,

etll ey nzny) + K2l pagen), 2z < €2

with a constant Co > 0 independent of o, which clearly implies (2.7). O
By (2.3)-(2.5) we have

IK ()] < C-C5 + Ce

with a constant C' > 0 independent of € and d. Choosing ¢ > 0 so that Ce < 1/4
and 0 € (0,1) so that C.Cd < 1/4, we conclude that ||[K(z)|| < 1/2 for Rez >
1,0 <Imz <4, and in this region

IRy (2)]] < 2]|K1(2)]| < C'[Re 2|~

Clearly, the same is true in the region Rez < —1,0 <Imz < §, as well. 0O

Lemma 2.3. The condition (1.3) implies (1.5) with k = 0.
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Proof. We are going to take advantage of (2.2). Let z € C,Rez > 1,0 <
Imz < 1. Clearly, (2.2) extends for A € R. Choose A = Re z. In the same way as
in the proof of Lemma 2.1, using (1.2) instead of (2.1), we get

IK(2)| < Cilmz

with a constant C; > 0 independent of z. Hence ||K(z)|| < 1/2 for Imz <
(2C1)7Y, Rez > 1, and by (2.2), R,(z) extends analytically to this region and
satisfies there the desired estimate. O

3. Proof of Theorem 1.2. We begin this section with the following

Proposition 3.1. Ifn > 3 is odd, we have
(3.1) Ry(A) = APy 4+ E,(N),

where E,(N) is analytic at X =0, and P, =0 if n > 5, rank P3 < 1.

If n > 2 is even, we have
(3.2) Ry(\) = M A" 2log A + F(A) + O(IA"2), X —0,|arg\+7/2| <,
where rank M,, = 1 and F,(\) is a polynomial of degree < n — 3 if n > 4,
Fa(N) =0.

Proof. Recall first that for the free cutoff resolvent we have that x Ro(z)x
is analytic when n > 3 is odd, while for n even it is of the form

(3.3) XRo(2)x = En(2)2" % log z + Fy(2),

where E,(z) and F),(z) are entire operator-valued functions. We are going to
take advantage of (2.2). We can write

K(z) = A(z) + B(z) + C()\)

with

A(2) = ([x1, AlRo(2)1 — [x1, Al Ro(0)m) K (A) + 22x2Ry (V)
B(z) =T(\)(log z — log \),

C(N) = ([x1: AlRo(0)n — [x1, AJRo(N)) K (\) — A2x2 Ry (),
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where
[x1, A]Ro(2)n = [x1, AlRo(2)n, T(\) =0,

if n > 3, while for n = 2,
D1 Al Ro(2)n = [x1, AlRo(2)n — (([x1, A Ea(2)n)].=0) log 2,

T(N) = (b1, AlBa(2)n) =0 K (V).

Let us now compute E,(z) when n is even. To this end, we will make use of the
following well known formula:

(34) [Ro(eiﬂ-mz) _ Ro(Z)](x, y) — m(i/Q)(Qﬂ.)fnJrlzan / 6iz<x7y,w>dw
gn—1

for any integer m. Using (3.4) with m = 2 and combining with (3.3) gives

B (w9) = (20) " x(@)xly) [
Sn—l

2k
k) /(i(x—y,w))%dw.

Sn—1

= (2m) " x(@)x () Y |

k=0

In particular, this gives rank £,(0) =1 and

[(Ix1, A]E2(2)n)] =0l (2, y) = (Ax1)(z)n(y),
and hence rank T'(A\) < 1. Let us now compute

d

Qn = (E[XlaA]EO('Z)nﬂz:O-

Clearly,
d _ _
20Qn = (- (Ix1, AlRo(2)n — [x1, A]Ro(=2)n))|=0
d
= (5 (a1, AlRo(2)n = [x1, AJRo(=2)m)) ==
On the other hand, using (3.4) with m = 1, one gets

d

[ (v, AlRo(2)n = [x1, Al Ro(=2)n)](2, y)
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= (i/2)(2m) 7" (n = 2)2" 7 (Axa) (@)n(y) + O(="71), 2 —0.
Hence, @, =0 if n # 3, rank Q3 = 1. Using (1.1) we get

C(A) = Qnlx2, AJRo(A)[xa; AJAR, (M) + O([A])

as A — 0. If n = 3, in view of (1.1), AR, () is analytic at A\ = 0, so limy_,g AR, ()
exists, and we can write, as A — 0,

[ o(A). s,
(3.5) C(”‘{éwow» n=3,

where Qs is of the form Q3Q, and hence rank Q3 < 1. Fix A so that IC(\) —
C(0)|| < 1/2. Clearly,
A(z) = O(2l), = —0.

We can write, for |z| < 1,
(3.6)
1= K(2) = (1= Bi(2) = L1(2))(1 = A(z)(1 = C(A\) + C(0)) ) (1 = C(A) + C(0)),

where

Bi(z) = B(2)D(z), Li(z) =C(0)D(z),
D(z) = (1-C(\) +C(0)7'(1 = A(=)(1 = C(\) + C(0)) ") ~".

If n > 4, clearly B1(z) =0, L1(z) =0, and in view of (3.6), 1 — K(z) is invertible
near z = 0. Therefore, by (2.2) we can conclude that the leading singularities of
R, (z) at z = 0 are of the same type as those of xRo(z)x, so the proposition in
this case follows from (3.3).

To study the other cases, observe that if 7 is an operator of rank 1 such
that 7w = aw for some w € H,w # 0, and a scalar a, then

(3.7) 1-m)t=1—(aw]*-1)"'r if allw|®#1.

Let n = 3. Then Bi(z) =0, rank L1(z) < 1. Moreover, we have Li(z)w = a(z)w
with w = Ay and a(z) = Const(QD(z)w, w). Hence a(z) is analytic at z = 0,
and a(z)||w||?* =1 = apzP(1 + O(|2])),z — 0,a, # 0, for some integer p > 0.
Thus, by (2.2), (3.3), (3.6) and (3.7), we conclude that the leading singularity of
R, (z) at z = 0 is of the form 27PN L;(0). In view of (3.5), however, p < 1, which
establishes (3.1) with P = N L;(0) which is of rank <1 as so is L;(0).
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Let n = 2. Then Ly (z) = 0, rank Bi(2) < 1. Moreover, we have By (z)w
b(z)w with w = Ay and b(z) = (log z—log A\)b1 (2), b1 (2) = Const(K(\)D(z)w ,w).
If b1(0) = 0, then clearly b(z)||w|* — 1 is invertible near z = 0, and by (2.2) and
(3.7) we conclude that R, (z) has the same type of leading singularity at z = 0
as does xRo(z)x. Suppose b;(0) # 0. Then

(b(2)[lw][* = 1)~" = Const(log z) "' (1 + O((log 2) 1)),
and by (2.2), (3.3), (3.6) and (3.7) we obtain
R, (z) = N1E5(0)log 2+ O(1), z—0,

for some bounded, invertible operator N;. This completes the proof of Proposi-
tion 3.1. O
Remark 3.2. Clearly, Proposition 3.1 gives that AR, () is analytic at
A =0 if n is odd, while for n even, modulo a function analytic at A = 0, it is of
the form
AR, (A) = M\ og A+ O(A"™), A — 0.

Moreover, it is easy to see from the proof that the same conclusion holds for
X0, RA)x, j=1,...,n
Denote by Hy k=1,...,No, the closure of C(°°(§) (Oy) with respect to the
norm
1/2

| S o9 @), f0 Fio |

O 7.7 1
and by H 41 the closure of o) (Qny,) with respect to the norm ( [ |V, f|2dx)'/2.

Qn,
Set H = @N°+1Hk, and H = H® H. Given a > po, define the Hilbert space
Mo = H, @ H,, where H, = ®p° Hy, ® H 1, Hy = @2, L*(Op; ciy(z)dx) @
L*(Qn, N Ba). Here HY, ,, is the closure of C )(QNO N B,) with respect to the

(0

norm ([ |V.f[?dz)"/?. In what follows | - || will denote the norm on H,
QNOmBa

while || - ||, will denote the norm on H,. Consider the operator

. 0 Id
G——’L(P 0 )
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on the Hilbert space H with domain of definition
D(G) = {(ul,uz) ceH:u € D(P),Pu1 € H,us € ﬁ}
It is easy to see that the operator G is selfadjoint and, for Im A < 0,

_ _ iIAR(\)  R(N)
(@-N = ( AR\ —Id  iAR(N) ) '

Hence, (G — A7 : Heomp — Hioe extends to a meromorphic function on C if n is
odd and on A if n is even. Moreover, in view of Remark 3.2, (G —\)~! is analytic
at A = 0 if n is odd and it has the form, modulo a function analytic at A = 0,

(3.8) (G =Nt =MN"TogA+O0(N" 1), X—0,

if n is even. Furthermore, it is easy to see that under the assumptions of Theorem
1.2, (G-t Heomp — Hioe extends analytically to Ay ={A € C:0<ImX <
C,£Re A > 0} and satisfies the estimate

(3.9) G =X flla < CLAFIf] for [ImA] < C,|Re )| = Co,

for every compactly supported f € H. Clearly, Theorem 1.2 follows from the
following

Proposition 3.3. Under the same assumptions as in Theorem 1.2, we
have, fort > 1,

Ce|fl, n odd,

2\ —k/2 itG
(3.10) (1 +G*) e flla < { Ct™"||f|l, n even,

for every compactly supported f € H.

Proof. We will proceed in a way similar to that one in [3]. Let ¢(t) €
C®(R"),p=0fort <1, p=1fort>2 Set U(t) = e’ and V() = p(t)U(t).

The Fourier transform
“+o00

V() = / e AV (t)dt

—00

is well defined for Im A < 0 as a bounded operator on H. We have

(3.11) V(t) = (2r)7! / "MV (N)d),

ImA=—¢



202 Georgi Vodev

Ve > 0, and

~

VA =i(G—N"QU(N), Im<0.

By the finite speed of the wave propagation, we have that for every compactly
supported f € H,Vt € R, ¢/ (t)U(t)f is supported in some compact independent
of t. Therefore, @ (A) : Heomp — Heomp extends to an entire function on C. Set
S\ =1+G) 7RG - N

Lemma 3.4.  S(X) : Heomp — Hioe admits analytic continuations in
AL ={AeC:0<ImA<C,£Re X > 0},C > 0, such that

(3.12) SN flla < CLllfll for  [Im Af < C,

for every compactly supported f € H. Moreover, S(\) is analytic at A = 0 when
n is odd and it has the form, modulo a function analytic at A = 0,

(3.13) S(A) = SoA" tlog A+ O(IA"™h), A —0,

if n is even.

Proof. The lemma is clearly true for £ = 0. If £ > 0, by the spectral
theorem we have

+oo
S() = / (14 22)~*2(z — N E(z)dz, TmA <0,

where
E(z) = lim (2mi) (G — 2z —ie)™! = (G —z +ie)™h).

e—0t
For any o« > 3 > 0 we can write
a+f
S(A) = / (14 22)*2(z — ) B(2)da
a—f
a—fB  +oo
- / - / (1+2%) (@ = N EB(@)de = Ji(N) + Ja().
—oo o+
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Clearly, Ja(A\) : H — H extends analytically to C, ={A € C:a — (/2 <Rel <
a+(/2,Im X <1} and

(3.14) [Nl eer <2871, A€ Ca.

On the other hand, (G—2)"! : Heomp — Hioe extends analytically from +Im 2z < 0
to {z € C: +Imz < 7,Rez > 0}. Denote this continuation by F*(z). Without
loss of generality we can suppose v < 1. Now by the Cauchy theorem we have

Ji(\) = —(2mi) ! / (14 22)7F2(z = N)"HF*(2) — F~(2))dz

Im z=~
a—PB<Rez<a+p

_(2ri)~ / (14 22)F/2(2 — \"LU(F*(2) — F(2))dz

0<Im z<v
Rez=a—p

+(2mi) ! / (14 22)*/2(2 — \"LU(F*(2) — F(2))dz

0<Im z<v
Rez=a+p3

considered as an operator from Heomp to Hjpe. It follows from the above rep-
resentation that Ji(A) : Heomp — Hioe e€xtends analytically to C,, = {\ € C :
a—fF/2<ReX<a+ (/2,0 <ImA<~v/2}, and in view of (3.9) it satisfies the
estimate, for a > 1,

(3.15) 11N flla < Callfll, A€ Cy,

for every compactly supported f € H, with a constant Cjs independent of a.
Hence, S(X) : Heomp — Hioe extends analytically to {Im A < ~/2,Re X > 0} and
(3.12) follows from (3.14) and (3.15). In a similar way one can extend S(A) to
{Im\ <+v/2,Re X < 0}.

To study the singularity of S(A) at A = 0, observe that the difference

SN — (1 + X)) 7F2(G =N

00 1
= / Q42?2 — 1+ X)) (2 - ) E(z)ds + Y C’,u,/\“/x”E(x)dx
-1

[al>1 =0
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is analytic at A = 0. Thus (3.13) follows from (3.8). O
By (3.11) and Lemma 3.4, for every compactly supported f € H, we have

WO = 1+ 6V = @nT [ NSoFT

ImA=—¢
+o0
=e “(2m)! / €"*S(z +iC) Uz +iC) fdz
+(2m) ! lim, / SN QTN fd — / e SN U(N) fdA
- ReA\=—¢ Re \=¢
0<Im A<C 0<Im AZC
(3.16) = e CW(t) f + Wa() .

Clearly, Ws(t)f = 0 if n is odd, while for n even, we have in view of (3.13),
C
Walt) = S / ey ldy £ O(E) = O™,
0

In other words,
(3.17) [Wa(t) flla < CE| ]

for every compactly supported f € H.
To estimate ||[Wi(t)f|la we will use Plancherel identity together with
(3.12). We have

—+o00 —+o0
/ IWa(t)f|2dt = / 1Sz +iC)FU (= +iC) f|2d=

—+o0 —+o00
(3.18) <Cy / l'U(z +iC) f||?dz = Cy / | (U (t) £ 2dt < Co|| £
—00 —00
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Let x € Cg°(R"™),x =1 for || < a. An easy computation gives

(O —iG)XW () f = —i[G, xIW1(t) f + CxWi(t) f
+o0
—ix(14 G*7*/2(2m)7! / e U(z +iC) fdz = Wi (1) f,

and hence
AW f = UOXW(0)f + / Ut — s)W (s) fds.
0

This implies

t
W) flla < [IXW1 (@) FI < Csl[ f]] + / W1 (s) | ds
0

+00
< Call 7+ 2 [ W) P2
—o0
It is easy to see that (3.18) holds with ||W;(t)f||. replaced by W, (t)f]l. Hence,
fort > 1,
(3.19) [Wi(t) flla < Cat™ | f]I.

Thus, (3.10) follows from (3.16), (3.17) and (3.19). O
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