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1. Introduction 

The correction of the different types of errors such as random error  [7], burst [6], 

CT burst [2], repeated burst errors (RB errors) [1], [5] and key errors [3] is the main goal 

of the coding theory. These errors occur during the transmission through a channel. 

Different communication channels work with different frequencies of transmission. It 

came in observation that in very busy communication channels the errors that are in 

clusters repeat themselves frequently. Berardy et all [1] studied the burst errors that repeat 

themselves two times and they named such type errors as 2-RB errors. Dass and Verma [5] 

did the further study of these errors and gave the bounds for the existence of the codes that 
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can correct the m-RB errors. In the article [4], the authors derived the bounds on the check 

symbols of the codes that can correct RB errors over GF (q) occurring in any sub-block.  

The transmission rate of a communication channel is inversely proportional to the 

number n−k for an (n, k) code. Fulfilling this condition, Tyagi and Lata [10], [11] 

obtained some optimal codes by introducing a new type of burst errors and they named 

these errors as restricted burst. By [11] A restricted burst of length t or less is a vector 

whose all the non-zero components are confined to some t consecutive positions, the first 

and the last of which is nonzero with a restriction that all the non-zero consecutive 

positions contain same field element . For q=4, t=3, and n=5, all the following 5-tuples: 

00101, 22200, 01100, 00202, 10000, 01110, 33300, are examples of restricted bursts over 

GF (4) with length upto 3. Carrying forward the study of the restricted burst errors the  

authors of the research paper [8] gave the definition RRB errors over GF (q) (Note: we 

will denote these errors as RRB errors). They also derived the bounds on the check 

symbols of a code that can correct m-RRB errors spread over the whole code length. They 

gave the following definition:  

Definition 1.1. An m-repeated restricted burst of length t is a vector whose only 

non-zero components are confined to m-distinct sets of t consecutive components, the first 

and last component of each set being same non-zero field element.  

The vector 00222200202200, 1101000100100, 04044000404400 are the example of 

2-RRB erros over GF(5).  

In this communication, we consider that the length of a code is sub divided into a 

certain number of sub-blocks of equal length. We obtained the codes that have the 

capability to detect and correct the m-RRB errors occurred in one the sub-blocks.  

We organize this paper into three sections. First section contains the introduction 

including some basic definitions. In the second section we establish the bounds on the 

number (n−k) needed for the existence of (n, k) codes that detects the m-RRB errors. The 

third and the last section of of this paper contains the derivations of the bounds on the 

number (n−k) needed for the existence of (n, k) codes that corrects m-RRB errors. 

2. Detection of RRB errors 

We assume that the code length is divided into certain number (say, f) of sub-blocks 

that are mutually exclusive and of equal length t. The codes 

Theorem 2.1. The number (n−k) for a (n=fl, k) code over GF(q) with no  

m-RRB errors occurring in any one of the f sub-blocks satisfies the following inequality 

𝑛 − 𝑘 ≥ 𝑙𝑜𝑔𝑞[1 + 𝑓(𝑞 − 1)(2𝑚𝑡 − 1)].  

Proof. If we are able to show that in all sub-blocks any detectable m-RRB errors is 

not a code word, then the code will detect these errors.  
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Let us form a set X in an arbitrary single sub-block consisting of such vectors that 

have all their components different from zero and confined to some m number of fixed and 

distinct sets of length t or less.  

Now we claim that no coset has two equal elements from the set X, to prove this, let 

us consider that two elements x1 and x2 of X are lying in a same coset. As we know that the 

difference or sum of these two elements will be a code vector. But since the vector x1-x2 

contains m-RRB errors of length upto t. This shows a contradiction. Therefore each 

element of X lies in a distinct coset.  

The total number of vectors in the set X is 2
mt

(q−1)−(q−2) including the vectors of 

all zeros. Since f is the number of total partitions of the whole code length. So the total 

count of the m-RRB errors occurred in the whole code length is  

1 + 𝑓(𝑞 − 1){2𝑚𝑡 − 1}.  

Since there are q
n−k

 cosets, thus  

(1) 

𝑞𝑛−𝑘 ≥ 1 + 𝑓(𝑞 − 1){2𝑚𝑡 − 1}.  

The required result will be obtained by taking log on both side of (1) with base q. 

i.e.  

𝑛 − 𝑘 ≥ 𝑙𝑜𝑔𝑞[1 + 𝑓(𝑞 − 1)(2𝑚𝑡 − 1)].  

Corollary 2.2. The number (n−k) for a (n=fl, k) code over GF (q) with no 2-RRB 

errors occurring in any one of the f sub-blocks satisfies the following inequality 

𝑛 − 𝑘 ≥ 𝑙𝑜𝑔𝑞[1 + 𝑓(𝑞 − 1)(22𝑡 − 1)].  

Theorem 2.3. A sufficient bound for an (n=fl, k) code, (l>mt) over GF (q) with no 

m-RRB errors of length t occurring in any one of the f sub-blocks is 

𝑞𝑛−𝑘 > 1 + [2𝑡−1(𝑞 − 1) − (𝑞 − 2)] × [[2(𝑡−1)(𝑚−1)(𝑞 − 1) {(
𝑙 + (𝑚 − 1) − 𝑚𝑡

𝑚 − 1
) + ∑ 2𝑚−𝑟−2𝑚−2

𝑟=0 ×

(
𝑙 + 𝑟 − 𝑚𝑡

𝑟
)} − (𝑞 − 2)] + (𝑓 − 1)  [(𝑞 − 1)2𝑚(𝑡−1) {(

𝑙 − 𝑚𝑡 + 𝑚

𝑚
) + ∑ 2𝑚−1−𝑟𝑚−1

𝑟=0 × (
𝑙 + 𝑟 − 𝑚𝑡

𝑟
)} −

(𝑞 − 1)]]  

Proof. The required bound will be proved by getting a parity check matrix (PC 

matrix) through suitable construction by adopting the technique used to es tablish the 

Varshamov-Gilbert-sacks bound [9]. According to this we will form a matrix H of the 

order (n−k)×n. Let the first t(f−1) columns and ρ−1 columns of the last sub-block of the 

PC matrix have been chosen suitably by taking n−k tuples. Now the ρ
th

 column hρ of f
th
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sub-block can be added to H only if the column hρ should not be equal to the linear sum of 

t−1 columns just preceding the hρ column plus the linear sum of any m−1 sets of columns 

lying in the vector of length ρ−l. i.e.,  

(2) 

 ℎ𝜌 ≠ (𝛼1ℎ𝜌−1 + 𝛼2ℎ𝜌−2 + ⋯ + 𝛼𝑡−1ℎ𝜌−(𝑡−1)) + (𝛽
11

ℎ𝑖1
+ 𝛽

12
ℎ𝑖1+1 + ⋯ + 𝛽

1𝑡
ℎ𝑖1+(𝑡−1)) + (𝛽

11
ℎ𝑖1

+ 𝛽
12

ℎ𝑖1+1 +

⋯ + 𝛽
1𝑡

ℎ𝑖1+(𝑡−1)) + ⋯ + (𝛽(𝑚−1)1ℎ𝑖𝑚−1
+ 𝛽(𝑚−1)2ℎ𝑖𝑚−1+1 + ⋯ + 𝛽(𝑚−1)𝑡ℎ𝑖𝑚−1+(𝑡−1))  

The expression (2) has 2
t-1

(q–1)-(q–2) coefficients αi’s (see, [8]). The counting of 

the coefficients βij’s is equal to the count of the m−1 RRB errors occurring in ρ−t 

positions of f
th

 sub-block, this is given by (see, Theorem 2.1 of [8] and Theorem 3.1 of 

[5]) 

2(𝑡−1)(𝑚−1)(𝑞 − 1) [(
𝜌 + (𝑚 − 1) − 𝑚𝑡

𝑚 − 1
) + ∑ 2𝑚−2−𝑟 (

𝜌 + 𝑟 − 𝑚𝑡

𝑟
)𝑚−2

𝑟=0 ] − (𝑞 − 2)  

Thus the expression (2) consists of the linear sums as  

(3) 

[2𝑡−1(𝑞 − 1) − (𝑞 − 2)] × [2(𝑡−1)(𝑚−1)(𝑞 − 1) {(
𝜌 + (𝑚 − 1) − 𝑚𝑡

𝑚 − 1
) + ∑ 2𝑚−2−𝑟 (

𝜌 + 𝑟 − 𝑚𝑡

𝑟
)𝑚−2

𝑟=0 } − (𝑞 − 2)]  

we consider the second condition, according to which, the column hρ should not be 

equal to the linear sum of t−1 columns just preceding the hρ column plus the linear sum of 

any m sets of columns from any one of the first f−1 partitions (sub-blocks) of length l. i.e., 

(4) 

ℎ𝜌 ≠ (𝛼1ℎ𝜌−1 + 𝛼2ℎ𝜌−2 + ⋯ + 𝛼𝑡−1ℎ𝜌−(𝑡−1)) + (𝛾
11

ℎ𝑖1
+ 𝛾

12
ℎ𝑖1+1 + ⋯ + 𝛾

1𝑡
ℎ𝑖1+(𝑡−1)) + (𝛾

11
ℎ𝑖1

+ 𝛾
12

ℎ𝑖1+1 +

⋯ + 𝛾
1𝑡

ℎ𝑖1+(𝑡−1)) + ⋯ + (𝛾
𝑚1

ℎ𝑖𝑚
+ 𝛾

𝑚2
ℎ𝑖𝑚+1 + ⋯ + 𝛾

𝑚𝑡
ℎ𝑖𝑚+(𝑡−1)).  

In expression (4), the number of αi’s is same as in the expression (2).The number of 

γij’s is equal to the count of m-RRB errors contained in a l-tuple. Thus, the expression (4) 

consists of total linear sums (including the all zeros tuple) is  

[2𝑡−1(𝑞 − 1) − (𝑞 − 2)] × [2𝑚(𝑡−1)(𝑞 − 1) {(
1 + 𝑚 − 𝑚𝑡

𝑚
) + ∑ 2𝑚−𝑟−1 (

𝑡 + 𝑟 − 𝑚𝑡

𝑟
)𝑚−1

𝑟=0 } − (𝑞 − 2)]  

As f−1 is the number of such sub-blocks, thus, the second condition provides the 

linear sums in total (excluding the all zeros tuple) as  

(5) 

(𝑓 − 1)[2𝑡−1(𝑞 − 1) − (𝑞 − 2)] × [2𝑚(𝑡−1)(𝑞 − 1) {(
𝑙 + 𝑚 − 𝑚𝑡

𝑚
) + ∑ 2𝑚−𝑟−1𝑚−1

𝑟=0 × (
𝑙 + 𝑟 − 𝑚𝑡

𝑟
)} − (𝑞 − 1)]  
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Now, The count of the all linear sums such that hρ is not equal to is  

𝐸𝑥𝑝. (3) + 𝐸𝑥𝑝. (5)  

Since there are q
n−k

 cosets, Thus we have,  

𝑞𝑛−𝑘 > 𝐸𝑥𝑝. (3) + 𝐸𝑥𝑝. (5)  

i.e.  

𝑞𝑛−𝑘 >× [
[2(𝑡−1)(𝑚−1)(𝑞 − 1) {(

𝜌 + (𝑚 − 1) − 𝑚𝑡

𝑚 − 1
) + ∑ 2𝑚−𝑟−2𝑚−2

𝑟=0 × (
𝜌 + 𝑟 − 𝑚𝑡

𝑟
)} − (𝑞 − 2)] +

(𝑓 − 1) [(𝑞 − 1)2𝑚(𝑡−1) {(
𝑙 − 𝑚𝑡 + 𝑚

𝑚
) + ∑ 2𝑚−1−𝑟𝑚−1

𝑟=0 × (
𝑙 + 𝑟 − 𝑚𝑡

𝑟
)} − (𝑞 − 2)]

]  

We get the required result by putting ρ as l.  

Corollary 2.4. A sufficient bound for an (n=fl, k) code, (l>2t) over GF(q) with no 

2-RRB errors of length t occurring in any one of the f sub-blocks is 

𝑞𝑛−𝑘 > [2𝑡−1(𝑞 − 1) − (𝑞 − 2)]

× [[2(𝑡−1)(𝑞 − 1) {(
𝑙 − 2𝑡 + 1

1
) + 1} − (𝑞 − 2)]

+ (𝑓 − 1) [(𝑞 − 1)22(𝑡−1) {(
𝑙 − 2𝑡 + 2

2
) + (

𝑙 + 1 − 2𝑡

1
) + 2} − (𝑞 − 2)]] 

Now we verify Theorem 2.3 by giving an example of a code, which is capable 

detect 2-RRB errors occurring in a single sub-block.  

Example 2.5. For the parameters q=3, l=9, f=2, m=2, t=2, the Theorem 2.3 predicts 

the existence of an (18, 11) linear code. Below, H is a PC-matrix of this code.  

𝐻 =

[
 
 
 
 
 
 
1 0 0
0 2 0
0 0 1

0 0 0
0 0 0
0 0 0

0 1 1
0 2 0
0 1 1

0 0 0 2 0 0 0 2 2
0 0 0
0 0 0
0 0 0

0 1 0
0 0 2
0 0 0

0 1 0
0 2 0
1 1 1

1 2 2
2 1 1
2 1 0

1 1 1
0 1 2
2 2 2

1 1 1
0 2 2
1 0 1

0 2 2 1 2 0 2 2 0
0 0 0
2 1 1
0 0 1

1 1 1
1 2 0
2 2 1

0 2 1
1 0 2
1 2 1]

 
 
 
 
 
 

  

By using the MS-Excel, we can get the error patterns and syndromes table. We can 

see all the syndromes corresponding to the all possible  

2-RRB errors are different from zero, which verifies that this code detects all the 2 -RRB 

errors occurring in one of the two sub-blocks each of length 9.  
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3. Correction of RRB Errors  

The codes that correct the RRB errors occurring in one of the sub-blocks are 

considered in this section.  

Theorem 3.1. A lower bound for an (n=ft, k) code over GF(q) that can correct m-

RRB errors occurring in one of the f sub-blocks is  

𝑞𝑛−𝑘 > 1 + 𝑓(𝑞 − 1) [2𝑚(𝑡−1) {(
𝑙 + 𝑚 − 𝑚𝑡

𝑚
) + ∑ 2𝑚−𝑟−1𝑚−1

𝑟=0 × (
𝑙 + 𝑟 − 𝑚𝑡

𝑟
)} − 1]  

Proof. We establish this theorem in the similar manner as we prove the Theorem 

2.1 will be used to establish this theorem. In a single sub-block of length t, the count of m-

RRB errors that are to be corrected is  

(𝑞 − 1)2𝑚(𝑡−1) {(
𝑙 + 𝑚 − 𝑚𝑡

𝑚
) + ∑ 2𝑚−𝑟−1𝑚−1

𝑟=0 × (
𝑙 + 𝑟 − 1

𝑟
)} − (𝑞 − 2)  

Since code length is partitioned into f sub-blocks, thus total count of m-RRB errors 

(excluding the zero vector) is  

𝑓(𝑞 − 1) [2𝑚(𝑡−1) {(
𝑙 + 𝑚 − 𝑚𝑡

𝑚
) + ∑ 2𝑚−𝑟−1𝑚−1

𝑟=0 × (
𝑛 + 𝑟 − 𝑚𝑡

𝑟
)} − 1]  

As q
n-k

 is the number of total cosets, Thus  

𝑓(𝑞 − 1) [2𝑚(𝑡−1) {
𝑙 + 𝑚 − 𝑚𝑡

𝑚
} + ∑ 2𝑚−𝑟−1𝑚−1

𝑟=0 × (
𝑙 + 𝑟 − 𝑚𝑡

𝑙
) − 1]  

Corollary 3.2. A lower bound for an (n=fl, k) code over GF(q) that can correct 2-

RRB errors occurring in one of the f sub-blocks is  

𝑓(𝑞 − 1) [22(𝑡−1) {(
𝑙 + 2 − 2𝑡

2
) + (

𝑙 + 𝑟 − 2𝑡
𝑙

) + 2} − 1]  

Theorem 3.3. An upper bound bound for an (n=fl, k) code, (l>2mt) over GF(q) that 

corrects m-RRB errors of length t occurring in any one of the f sub-blocks is  

1𝑛−𝑘

> [2𝑡−1(𝑞 − 1) − (𝑞 − 2)]

×

[
 
 
 
 
 [2(𝑡−1)(2𝑚−1)(𝑞 − 1) {(

𝑙 + (2𝑚 − 1) − 2𝑚𝑡

2𝑚 − 1
) + ∑ 22𝑚+𝑟+2

2𝑚−2

𝑟=0

× (
𝑙 + 𝑟 − 2𝑚𝑡

𝑟
)} − (𝑞 − 2)] +

(𝑓 − 1) [(𝑞 − 1)22𝑚(𝑡−1) {(
𝑙 − 2𝑚𝑡 + 2𝑚

2𝑚
) + ∑ 2𝑚−1−𝑟

2𝑚−1

𝑟=0

× (
𝑙 + 𝑟 − 2𝑚𝑡

𝑟
)} − (𝑞 − 1)]

]
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Proof. We will prove this theorem by adopting the procedure used to Theorem 2.3. 

According to this we construct a PC matrix of the dimension (n−k)×n for the code. Let the 

construction of the first l(f−1) columns and τ−1 columns of the last sub-block can be 

added to the PC matrix H only if the column hτ should not be equal to the linear sum of 

t−1 columns just preceding the hτ column plus the linear sum of any 2m−1 sets of 

columns lying in the vector of length τ−t. In other words, 

(6) 

ℎ𝑟 ≠ (𝛼1ℎ𝜏−1 + 𝛼2ℎ𝜏−2 + ⋯ + 𝛼𝜏−1ℎ𝜏−(𝜏−1)) + (𝜆11ℎ𝑖1
+ 𝜆12ℎ𝑖1+1 + ⋯ + 𝜆1𝑡ℎ𝑖1+(𝑡−1)) + ⋯ + (𝜆(2𝑚−1)1ℎ𝑖2𝑚−1

+

𝜆(2𝑚−1)2ℎ𝑖(2𝑚−1)+1 + ⋯ + 𝜆(2𝑚−1)𝑡ℎ𝑖(2𝑚−1)+(𝑡−1))  

The number (q−1)2
t−1

−(q−2) i.e. the total count of of αi’s coefficients possibly 

present in expression (6), (see, Theorem 2.1 and Theorem 2.3 of [8]). The counting of 

coefficients λij’s is equal to the number of  

2m−1 RRB errors possibly present in a (τ−b)-tuple, that is (see, Theorem 2.1 of [8] and 

Theorem 3.2 of [5]) 

2(𝑡−1)(2𝑚−1)(𝑞 − 1) [(
𝜏 + (2𝑚 − 1) − 2𝑚𝑡

2𝑚 − 1
) + ∑ 22𝑚−2−𝑟 (

𝜏 + 𝑟 − 2𝑚𝑡

𝑟
)2𝑚−2

𝑟=0 ] − (𝑞 − 2)  

Thus, the expression (6) consists of the total linear sum as  

(7) 

[2𝑡−1(𝑞 − 1) − (𝑞 − 2)] × [2(2𝑚−1)(𝑡−1)(𝑞 −) {(
𝜏 + (2𝑚 − 1) − 2𝑚𝑡

2𝑚 − 1
) + ∑ 22𝑚−2−𝑟 (

𝜏 + 𝑟 − 2𝑚𝑡

𝑟
)2𝑚−2

𝑟=0 } −

(𝑞 − 2)]  

The second condition says that the τ
th

 column can be added to H only if the column 

hτ should not be equal to the linear sum of t−1 columns just preceding the hτ column plus 

the linear sum of any 2m sets of columns lying in any one sub-block out of the initial f−1 

sub-blocks. i.e, 

(8) 

ℎ𝜌 ≠ (𝛼1ℎ𝜏−1 + 𝛼2ℎ𝜏−2 + ⋯ + 𝛼𝑡−1ℎ𝜏−(𝜏−1)) + (𝛿11ℎ𝑖1
+ 𝛿ℎ𝑖1+1 + ⋯ + 𝛿ℎ𝑖1+(𝑡−1)) + ⋯ + (𝛿2𝑚1ℎ2𝑚 +

𝛿𝑚2ℎ𝑖(2𝑚)+1 + ⋯ + 𝛿(2𝑚)𝑡ℎ𝑖(2𝑚)+(𝑡−1))  

In expression (8),the number of αi’s is same as in the expression (6).The number of 

δij’s is same as there are 2m-RRBs in a t-tuple. thus total count of linear sums due to the 

expr. (8) including the linear sum corresponding to all zero coefficients is   

[2𝑡−1(𝑞 − 1) − (𝑞 − 2)] × [22𝑚(𝑡−1)(𝑞 − 1) {(
𝑙 + 2𝑚 − 2𝑚𝑡

2𝑚
) + ∑ 22𝑚−1−𝑟2𝑚−1

𝑟=0 (
𝑙 + 𝑟 − 2𝑚𝑡

𝑟
)} − (𝑞 − 2)]  
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As f−1 is the count of such sub-blocks, thus the total count of linear sums due 

second condition excluding the linear sum corresponding to all zero coefficients is 

(9) 

(𝑓 − 1)[2𝑡−1(𝑞 − 1) − (𝑞 − 2)] × [22𝑚(𝑡−1)(𝑞 − 1) {(
𝑙 + 2𝑚 − 2𝑚𝑡

2𝑚
) + ∑ 22𝑚−1−𝑟2𝑚−1

𝑟=0 (
𝑙 + 𝑟 − 2𝑚𝑏

𝑟
)} −

(𝑞 − 1)]  

Now, The total count of linear sums such that hτ differs is given by  

𝐸𝑥𝑝. (7) + 𝐸𝑥𝑝. (9)  

As there are q 
n-k

 cosets, thus we have,  

𝑞𝑛−𝑘 > 𝐸𝑥𝑝. (7) + 𝐸𝑥𝑝. (9)  

i.e.  

𝑞𝑛−𝑘 > [2𝑡−1(𝑞 −) − (𝑞 − 2)]

×

[
 
 
 
 
 
[2(𝑡−1)(2𝑚−1)(𝑞 − 1) {(

𝜏 + (2𝑚 − 1) − 2𝑚𝑡
2𝑚 − 1

) + ∑ 22𝑚−𝑟−2

2𝑚−2

𝑟=0

× (
𝜏 + 𝑟 − 2𝑚𝑡

𝑟
)} − (𝑞 − 2)] +

(𝑓 − 1) [(𝑞 −)22𝑚(𝑡−1) {(
𝑙 − 2𝑚𝑡 + 2𝑚

2𝑚
) + ∑ 22𝑚−1−𝑟

2𝑚−1

𝑟=0

× (
𝑙 + 𝑟 − 2𝑚𝑡

𝑟
)} − (𝑞 − 1)]

]
 
 
 
 
 

 

To get the required result we replace τ by l in this expression.  

Corollary 3.4. An upper bound bound for an (n=fl, k) code, (l>4t) over GF(q) that 

corrects 2-RRB errors of length t occurring in any one of the f sub-blocks is  

𝑞𝑛−𝑘 > [2𝑡−1(𝑞 − 1) − (𝑞 − 2)] ×

[
 
 
 
 
 [23(𝑡−1)(𝑞 − 1) {(

𝑙 − 4𝑡 + 3

3
) + ∑ 22−𝑟

2

𝑟=0

× (
𝑙 + 𝑟 − 4𝑡

𝑙
)} − (𝑞 − 2)] +

(𝑓 − 1) [(𝑞 − 1)24(𝑡−1) {(
𝑙 − 4𝑡 + 4

4
) + ∑ 23−𝑖

3

𝑟=0

× (
𝑙 + 𝑟 − 4𝑡

𝑟
)} − (𝑞 − 1)]

]
 
 
 
 
 

 

Through the following example we give a code that detects 2-RRB errors occurring 

in a single sub-block.  

Example 3.5. For the parameters q=3, t=9, f=2, m=2, b=2, the Theorem 3.3 predicts 

the existence of an (18, 10) linear code. We obtained a PC-matrix of the code with these 

parameters as following: 
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𝐻 =

[
 
 
 
 
 
 
 
1 0 0
0 1 0
0 0 2

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 1

0 0 0
0 0 0

2 0 0
0 1 0

0 0 2
0 0 0

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
2 0 1
0 2 2

1 0 2
0 1 0
2 0 0

1 1 1
0 1 0
2 2 2

1 1 1
0 1 1
0 0 2

0 2 2
0 0 0

1 2 0
0 1 2

2 2 0
0 2 0

2 1 1
0 0 1
0 2 0

1 0 0
2 2 1
0 1 0

0 0 2
1 1 1
0 1 0]

 
 
 
 
 
 
 

  

MS-Excel can help us to obtain all the 461 syndromes due the all  

2-RRB errors. We can check that all these 8-tuples are distinct and different from zero in 

the same as well as in the different sub-blocks. This verifies that the code having the 

matrix H as its PC-matrix corrects all the 2-RRB errors occurring in one of the two sub-

blocks each of length 9. 

References 

[1] Berardi, L.; Dass, B.K.; and Verma, R. (2009). “On 2-repeated burst error detecting 

linear codes”. Journal of Statistical Theory and Practices, 3(2), pp. 381–391, 2009. 

DOI: https://doi.org/10.1080/15598608.2009.10411931  

[2] Chien, R.T.; and Tang, D.T. (1965). “On definition of a burst”, IBM Journal of 

Research and Development, vol. 9, no. 4, pp. 292-293, July 1965. DOI: 

https://doi.org/10.1147/rd.94.0292  

[3] Das, P.K. (2015). “Codes correcting key errors”. TWMS Journal of Applied 

Engineering Mathematics. 5(1), pp. 110–117, 2015.  

[4] Dass, B.K.; and Madan, S. (2010). “Blockwise repeated burst error correcting linear 

codes”, Ratio Mathematica-Journal of Applied Mathematics, 20, pp. 97–126, ISSN: 

2282-8214, 2010.  

[5] Dass, B.K.; and Verma, R. (2008). “Repeated burst error correcting linear codes”, 

Asian-European Journal of Mathematics, 1(3), pp. 303–335, 2008. DOI: 

https://doi.org/10.1142/S1793557108000278  

[6] Fire, P. (1959). “A class of multiple-error -correction binary codes for non 

independent errors”, Sylvania Report RSL-E-2, Sylvania Reconnaissance Systems 

Laboratory, Mountain View, California. 1959.  

[7] Hamming, R.W. (1950). “Error detecting and error correcting codes”, The Bell System 

Technical Journal, 29 (2), pp. 147–160, 1950. https://doi.org/10.1002/j.1538-

7305.1950.tb00463.x  

[8] Kindra, B.; Kumar, M.; and Kumar, S. (2021). “Repeated restricted bursts error 

correcting linear codes Over GF(q); q>2”. Malaya Journal of Matematik, 9(1), pp. 

917–921, 2021. DOI: https://doi.org/10.26637/MJM0901/0163  

https://doi.org/10.1080/15598608.2009.10411931
https://doi.org/10.1147/rd.94.0292
https://doi.org/10.1142/S1793557108000278
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.26637/MJM0901/0163


Научна поредица „Иновативно STEM образование“, Том 5, 2023, Велико Търново, България 

 

 

22 

[9] Peterson, W.W.; and Weldon (Jr.), E.J. (1972). “Error-correcting codes”, 2
nd

 edition, 

The MIT Press, Mass. ISBN: 9780262527316, 1972. 

[10] Tyagi, V.; and Lata, T. (2017). “Restricted 2-burst correcting non-binary optimal 

codes”, Journal of Combinatorics and System Sciences, 42(1-4), pp. 145-154, 2017.  

[11] Tyagi, V.; and Lata, T. (2019). Restricted b i-byte correcting non-binary optimal codes, 

Discrete Mathematics, Algorithms and Applications, 11(2), 1950019, 15 pages, 2019. 

DOI: https://doi.org/10.1142/S1793830919500198  

 

 

 

Received: 31-03-2023  Accepted: 29-06-2023  Published: 24-07-2023 

Cite as: 

Kumar, S.; Lata, T.; Rana, S.; Pal, M. (2023). “Detection and Correction of Repeated Restricted Burst 

Errors in Sub-Blocks”, Science Series “Innovative STEM Education”, volume 05, ISSN: 2683 -1333, pp. 

13-22, 2023. DOI: https://doi.org/10.55630/STEM.2023.0502  

 

 

https://doi.org/10.1142/S1793830919500198
https://doi.org/10.55630/STEM.2023.0502

