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We consider the fractional Schrödinger–Hartree type equations and focus our study
on one particular case: the half-wave equation with nonlocal Hartree type interaction
terms. The results we present can be divided in the following main topics:
a) existence, asymptotic properties of ground states and their linear stabil-

ity/instability;
b) existence or explosion phenomena of the evolution flow with large data be-

low/above the ground state barrier for the corresponding Cauchy problem for the
half-wave equation;
c) uniqueness of the ground states for the Schrödinger–Hartree type equations;
d) blow-up for mass-critical nonlinear Schrödinger (NLS) equation with non-local

Hartree type interaction terms

1. General Introduction. We consider the Cauchy problem for the fractional non-
linear Schrödinger–Hartree equation

(1)


iut + (−∆)βu− µv|u|p−2u− κu|u|q−1 = 0, (t, x) ∈ R+ × Rd

(−∆)α/2v = |u|p,
u(0, x) = u0(x).

with self-interacting term u|u|q−1. Here, the operator (−∆)β is the fractional power
β ∈ (0, 1] of the Laplace operator. The parameters µ, κ are non-negative ones.

2. Existence of ground states and their linear stability/instability.
2.1. The classical Hartree-Choquard-Pekar model. We start with the case

κ = 0, µ = 1 and we will be interested in the properties of ground states
u(t, x) = eiωtϕ(x), with ϕ > 0. Clearly, ϕ = ϕp,ω will then satisfy the profile equa-
tion

(2) (−∆)βϕ− cd,γ(| · |−γ ∗ |ϕ|p)|ϕ|p−2ϕ = ωϕ, x ∈ Rd, γ = d− α.

The equation (2) is (a fractional) version of the well-known Choquard equation.
As one expects, most of the work was done in the classical context, β = 1, for the

Hartree-Choquard-Pekar system (for α ∈ (0, d))

(3) iut −∆u− Iα[|u|p]|u|p−2u = 0, (t, x) ∈ R× Rd.
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The standing wave solutions of the form e−itv satisfy

(4) −∆v + v − Iα[|v|p]|v|p−2v = 0.

The question for existence of localized solutions for (4) has been well-studied (cf. [13],
[7]).

2.2. Linear stability/instability for the fractional Choquard equation. Our
results concern both the fractional model (2) and the more classical version (3). More
precisely, we are interested in the existence properties of solitary waves for (4), that is
whether and under what conditions, one obtains nice ground state solutions of (4). To
this end, introduce the optimization problem

(5)


E(u) :=

1

2
∥|∇|βu∥2L2(Rd) −

c

2p

∫
Rd×Rd

|u(x)|p|u(y)|p

|x− y|γ
dxdy → min

subject to

∫
Rd

|u(x)|2dx = λ, u ∈ Hβ(Rd).

At least formally, one can see that the associated Euler-Lagrange equation is exactly (2).
Also, the expression E(u) does not necessarily make sense for all u ∈ Hβ(Rd), but it will
under certain restrictions on β, p. In [8] the following result is obtained.

Theorem 1. Let β ∈ (0, 1], γ ∈ (0, d) and p > 1. Assume in addition the relationship

(6) 0 < (p− 2)d+ γ < 2β.

Then, there exists a solution of (2), ϕ ∈ Hβ(Rd), namely a solution of the constrained
minimization problem (5). Moreover, ϕ is bell-shaped.

Further, we have the following stability result obtained in [8].
Theorem 2. Let p > 2. Then, the ground states ϕ constructed in Theorem 1 are

spectrally stable as solutions of (2).
The waves constructed in Theorem 1 are the minimizers of the problem inf

∥u∥L2=λ
E(u)

(dubbed “normalized solutions” in [13]), where the energy functional is given by

E(u) :=
1

2

∫
Rd

[||∇|βu(x)|2 + |u(x)|2]dx− cd,γ
2p

∫
Rd×Rd

|u(x)|p|u(y)|p

|x− y|γ
dxdy.

They turn out to be spectrally stable, per the claim of Theorem 2. It so happens these
are all the stable solitary waves there are, at least in the classical case β = 1, as we
discuss now.

3. Evolution flow for semilinear half-wave equation. Our next step is the
analysis of the evolution flow for the semi linear half-wave equation

(7)

{
i∂tu =

√
−∆u− u|u|p−1, (t, x) ∈ R× Rd

u(0, x) = f(x) ∈ Hs(Rd).

Since now on Hs(Rd) and Ḣs(Rd) denote respectively the usual inhomogeneous and
homogeneous Sobolev spaces in Rd, endowed with the norms ∥(1 − ∆)s/2u∥L2(Rd) and

∥(−∆)s/2u∥L2(Rd). We shall also refer to Hs
rad(Rd) as to the set of functions belonging

to Hs(Rd) which are radially symmetric.

The first question is to define the evolution flow for (7) in appropriate Sobolev spaces.
Of special importance is the fact that we have 2 conservation laws: the conservation of
the mass, using L2 norm and the conservation of the energy expressed in terms of H1/2

norm. We recall that two values of the nonlinearity p are quite relevant: the nonlinearity
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u|u|2/(n−1), which is H1/2-critical, and the nonlinearity u|u|2/n, which is L2-critical.

Our main result about the Cauchy problems (7) guarantees the local existence of the

evolution flow in H1
rad for p ∈ (1, 1 +

2

d− 1
) and global existence in the same Sobolev

norm for smaller range for p.

Theorem 3 (see [1]). Let d ≥ 2, p ∈
(
1, 1 +

2

d− 1

)
. Then for every R > 0 there

exists T = T (R) > 0 and a Banach space XT such that:

• XT ⊂ C([0, T ];H1
rad(Rd));

• for any f(x) ∈ H1
rad(Rd) with ∥f∥H1(Rd) ≤ R, there exists a unique solution

u(t, x) ∈ XT of (7).

Assume moreover that p ∈
(
1, 1 +

2

d

)
, then the solution is global in time.

Next we shall analyze the issue of standing waves. We recall that standing waves are
special solutions to (7) with a special structure, namely u(t, x) = eiωtv(x), where ω ∈ R
plays the role of the frequency. Indeed u(t, x) is a standing wave solution if and only if
v(x) satisfies

(8) (−∆)1/2v + ωv − v|v|p = 0 in Rd.
It is worth mentioning that, following the pioneering paper [3], it is well understood how
to build up solitary waves for half-wave equation.

In the nonlocal context in which we are interested in, the minimization problem
analogue of the one studied in [3] for NLS is the following one:

(9) J hw
r = inf

u∈Sr

Ehw(u)

where

(10) Sr =
{
u ∈ H1/2(Rd) such that ∥u∥2L2(Rd) = r

}
.

and

Ehw(u) =
1

2
∥u∥2

Ḣ1/2(Rn)
− 1

p+ 1
∥u∥p+1

Lp+1(Rn) +
1

2
∥u∥22.

Now we recall the definition of stability.
Definition 1. Let N ⊂ H1

rad(Rd) be bounded in H1/2(Rd). We say that N is weakly
orbitally stable by the flow associated with half-wave equation if for any ϵ > 0 there exists
δ > 0 such that

distH1/2(u(0, .),N ) < δ and u(0, x) ∈ H1
rad(Rd) ⇒

Φt(u(0, .)) is globally defined and sup
t

distH1/2(Φt(u(0, .)),N ) < ϵ

where distH1/2 denotes the usual distance with respect to the topology of H1/2 and Φt(u(0, .)
is the unique global solution associated with the Cauchy problem and with initial condition
u(0, x).

We can now state the next result, where we use the notations (9) and (10). We
state it as a corollary since it is a classical consequence of the concentration-compactness
argument in the spirit of [3] and Theorem 3, that guarantees a global dynamic for HW
(half-wave).

Corollary 1. Let 1 < p < 1 +
2

d
and d ≥ 1. Then for every r > 0 we have:
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• J s
r > −∞ (resp. J hw

r > −∞) and Bsr ̸= ∅ (resp. Bhwr ̸= ∅) where Bhwr := {v ∈
Sr such that Ehw(v) = J hw

r }. In particular for every v ∈ Bsr (resp. v ∈ Bhwr ) there
exists ω ∈ R such that

√
−∆v + ωv − v|v|p−1 = 0;

• the set Bhwr is weakly orbitally stable by the flow associated with HW.

In order to state our last result about existence/instability of ground states for HW,
we need to introduce also the following functional:

P(u) =
1

2
∥u∥2

Ḣ1/2(Rd)
− n(p− 1)

2(p+ 1)
∥u∥p+1

Lp+1(Rd)
,

and the corresponding set:

(11) M =
{
u ∈ H1/2(Rd) such that P(u) = 0

}
.

It is well known that we have the following inclusion

{w ∈ Sr such that E ′
hw|Sr = 0} ⊂ M,

namely every critical point of the energy Ehw on the constraint Sr belongs to the set M.
It is worth mentioning that this fact is reminiscent of the Pohozaev identity, which is
here adapted to the case of HW. The following minimization problem will be crucial in
the sequel:

Ir = inf
Sr∩M

Ehw(u).

Theorem 4 (see [1]). Let d ≥ 2 and 1 +
2

d
< p < 1 +

2

d− 1
. Then for every r > 0

we have:

• Ir > −∞ and Ar ̸= ∅, where
Ar := {v ∈ Sr ∩M such that Ehw(v) = Ir}.

Moreover any v ∈ Ar satisfies√
−∆v + ωv − v|v|p−1 = 0

for a suitable ω ∈ R;

• assume f(x) ∈ Sr ∩ H1
rad(Rd) satisfies Ehw(f) < Ir and P(f) < 0, d ≥ 2 and

u(t, x) is solution to (7), then the following alternative holds: either the solution
blows-up in finite time or ∥u(t, x)∥Ḣ1/2(Rd) ≥ eat for suitable a > 0. In particular
the set Ar is not weakly orbitally stable for the flow associated with HW.

4. Uniqueness of ground states for Hartree–Choquard equation. Ground
states for the classical Hartree–Choquard equation are minimizers of the Hamiltonian

(12) H(ψ) =
1

2
∥∇ψ∥2L2(R3) −

1

4
D(|ψ|2, |ψ|2),

where D(f, g) is quadratic form associated with Coulomb energy functional, i.e.

(13) D(f, g) =

∫
R3

I(f)(x)g(x)dx

and

(14) I(f)(x) =
1

4π

∫
R3

f(y)
dy

|x− y|
48



is the classical Riesz potential. For any p ≥ 2 one can define a modified p-Hamiltonian
as follows

(15) Hp(ψ) =
1

2
∥∇(ψ|ψ|(2−p)/p)∥2L2(R3) −

1

2p
D(|ψ|2, |ψ|2).

The ground states are solutions to the constraint minimization problem

(16) inf
{ψ∈H1(R3);∥ψ∥2

L2(R3)
=λ}

Hp(ψ).

A simple substitution

ψ|ψ|(2−p)/p = u

enables us to transform (16) into the problem to find minimizer of

(17) inf
{u∈Ḣ1(R3)∩Lp(R3);∥u∥p

Lp=λ}
Hp(u),

where

(18) Hp(u) =
1

2
∥∇u∥2L2(R3) −

1

2p
D(|u|p, |u|p).

Standard symmetrization argument (we mean Schwartz symmetrization) and Gagliardo–
Nirenberg inequality

(19) D(|u|p, |u|p) ≤ CGN∥∇u∥2p/(6−p)L2(R3) ∥u∥2p(5−p)/(6−p)Lp(R3) , ∀p ∈ [1, 5],

imply the existence of positive radial decreasing minimizers of (17), but only for the
range 2 ≤ p < 3.

In [9] we studied existence and uniqueness of ground states for larger interval 2 ≤ p < 5
and for this reason we can define the Weinstein functional (see [15])

(20) Wp(u) =
∥∇u(x)∥2p/(6−p)L2(R3) ∥u(x)∥2p(5−p)/(6−p)Lp(R3)

D(|u|p, |u|p)
and consider the associated minimization problem

(21) Wmin
p = inf

{u∈Ḣ1(R3)∩Lp(R3);u̸=0}
Wp(u).

The existence of ground states is guaranteed by the following
Theorem 5 ([9]). Assuming 2 ≤ p < 5, there is a minimizer u ∈ Ḣ1(R3) ∩ Lp(R3)

of Wp, such that u is solution of

(22) −∆u+ |u|p−2u = I(|u|p)|u|p−2u

and satisfies the Pohozaev’s normalization conditions

(23)
∥u∥pLp

5− p
= ∥∇u∥2L2 =

D(|u|p, |u|p)
6− p

= k,

for some k > 0. In addition, there exists x0 ∈ R3, z ∈ C with |z| = 1 and a decreasing
function Q : R+ → R+, so that u(x) = zQ(|x− x0|).

Our second result in [9] treats the uniqueness of minimizers Q of Wp satisfying (23),
i.e.

Q ∈ G = {u ∈ Ḣ1
rad ∩ L

p
rad;W

min
p = inf

{u∈Ḣ1(R3)∩Lp(R3);u̸=0}
Wp(u)}

and such that (23) is fulfilled.
Theorem 6. For any 2 ≤ p < 5 and any two radial positive minimizers Q1, Q2 ∈ G,
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that satisfy (23), we have Q1 ≡ Q2.

There are different method to prove the uniqueness of positive radial minimizes of
nonlinear elliptic equations with local type nonlinearities. The methods of Gidas, Ni and
Nirenberg, McLeod and Serin and the subsequent refinements due to Kwong are also
based on Sturm oscillation argument and therefore they work effectively for local type
nonlinearities. In our case the nonlinearities involve the nonlocal Riesz potential and
therefore we have met essential difficulties to follow this strategy.

The main idea is to use the asymptotic behaviour

(24) I(|Q|p)(x) =
∥Q∥pLp

4π|x|
+ o

(
|x|−1

)
, x→ ∞

and obviously we gain control on the asymptotics of Riesz potential at infinity, since the
Lp norm is a conserved Pohozhaev quantity. Applying then the Gronwall argument, we
can conclude that the function

φ(r) = |Q1(r)−Q2(r)|+ |I(|Q1|p)(r)− I(|Q2|p)(r)|
is identically zero for r ∈ [0;∞).

5. Mass critical blow up for Choquard equation with self-interacting term.
Finally, we consider the case κ = 1 and µ ≥ 0 in (1), i.e we study the nonlinear
Schrödinger equation with mass-critical nonlinearities

(25)

{
i∂tu−∆u− |u| 43u− µ

(
|x|−1 ∗ |u| 73

)
|u| 13u = 0, t ∈ R, x ∈ R3,

u(0, x) = u0(x),

where u = u(t, x) is complex-valued function in time-space R × R3. This model corre-
sponds to a critical non-local perturbation of the classical mass critical problem µ = 0
which still has the scaling symmetry of the problem.

The results in this section are obtained in collaboration with Yuan Li.

We can set

I(u)(x) =
(
|x|−1 ∗ u

)
,

and then we have the following system

(26)


i∂tu−∆u− |u| 43u− µI(|u| 73 )|u| 13u = 0, t ∈ R, x ∈ R3,

−∆I(|u| 73 ) = 4π|u| 73 ,
u(0, x) = u0(x) ∈ H1(R3).

Let us review some basic facts about the Cauchy problem. From Cazenave given u0 ∈
H1(R3), there exists a unique maximal solution u ∈ C([0, T );H1(R3)) to (25) and there
holds the blowup alternative:

(27) T < +∞ implies lim
t→T

∥u(t)∥H1 = +∞.

Furthermore, the H1 flow admits the conservation laws:

Mass:

(28) M(u)(t) =

∫
|u(t, x)|2dx =M(u0).
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Energy:

Eµ(u)(t) =
1

2

∫
|∇u(x, t)|2dx− 3

10

∫
|u(x, t)| 103 dx

− 3µ

14

∫
I
(
|u(x, t)| 73

)
|u(x, t)| 73 dx = Eµ(u0).(29)

First, we recall the structure of the mass critical problem. In this case, the scaling
symmetry

ua(t, x) = a
3
2u(a2t, ax)

acts on the set of solutions and leaves the mass invariant

∥ua(t, ·)∥L2 = ∥u(a2t, ·)∥L2 .

5.1. The case µ = 0. A criterion of global-in-time existence for H1 initial data is
derived by using the Gagliardo-Nirenberg inequality with the best constant

∥u∥
10
3

L
10
3

≤ C∥u∥
4
3

L2∥∇u∥2L2 ,

where C =
5

3

1

∥Q∥
4
3

L2

, and Q is the unique up to symmetries solution to the positive

ground state equation

−∆Q+Q− |Q| 43Q = 0, Q(x) > 0, Q ∈ H1(R3).

Thus, for all u ∈ H1(R3), we have

E0(u) ≥
1

2
∥∇u∥2L2

[
1−

(
∥u∥L2

∥Q∥L2

) 4
3

]
,(30)

which together with the conservation of mass, energy and the blowup criterion (27)
implies the global existence of solution with initial data ∥u0∥L2 < ∥Q∥L2 .

At the mass critical level ∥u0∥L2 = ∥Q∥L2 , the pseudo-conformal symmetry of (25)
yields an explicit minimal blowup solution:

S(t, x) =
1

|t| 32
Q
(x
t

)
e−i

|x|2
4t e

i
t , ∥S(t)∥L2 = ∥Q∥L2 , ∥∇S(t)∥L2

t→0−∼ 1

|t|
.

Merle obtained the classification in the energy space of minimal blowup elements; the
only H1 finite time blowup solution with mass ∥u∥L2 = ∥Q∥L2 is given by above up to
the symmetries of the flow.

Note that the minimal blow up dynamic can be extended to the super critical mass
case ∥u0∥L2 > ∥Q∥L2 and that corresponds to an unstable threshold dynamics between
global in time scattering solutions and finite time blow up solutions in the stable blow
up regime

∥∇u(t)∥L2 ∼
√

log | log |T ∗ − t||
T ∗ − t

, as t ∼ T ∗.

Results about the existing literature for the L2 critical blow up problem, could be found
in [12] and references therein.

5.2. The case µ > 0. We consider the model

i∂tu−∆u− |u| 43u− µI(|u| 73 )|u| 13u = 0.(31)
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We state our first result that shows the existence of solitary waves with small mass. The
smallness of the mass shall be connected with where Q the unique radial positive ground
state solution of equation

(32) −∆Q+Q = |Q| 43Q
and the best constant C∗ in the Gagliardo-Nirenberg’s inequality

∥I(|u|7/3)|u|7/3∥L1 ≤ C∗∥∇u∥2L2∥u∥8/3L2 .

Theorem 7 (Solitary waves with small mass). Let µ > 0 be small enough. For

all a ∈

0,

 2

1 +

√
1 + 8µC∗∥Q∥

8
3

L2

 ∥Q∥2L2

 there exists a positive Schwartz radially

symmetric solution of

∆Qµ −Qµ +Q
7
3
µ + µI(|Qµ|

7
3 )Q

4
3
µ = 0, ∥Qµ∥L2 = a.

Define the linear operator L+,µ and L−,µ associated to Qµ by

L+,µξ =−∆ξ + ξ − 7

3
Q

4
3
µ ξ −

7

3
µI

(
|Qµ|

4
3 ξ
)
Q

4
3
µ − 4

3
µI

(
|Qµ|

7
3

)
Q

1
3
µ ξ,(33)

L−,µξ =−∆ξ + ξ −Q
4
3
µ ξ − µI

(
|Qµ|

7
3

)
Q

1
3
µ ξ,(34)

acting on L2(R3) with form domain H1(R3). We have the following nondegeneracy result.

kerL+,µ = {0} when L+,µ is restricted to L2
rad(R3),

kerL−,µ = {Qµ}.
Comments on this result

(1) Existence. From the standard variational argument, we can easily obtain the
existence.

(2) Nondegeneracy of L−,µ. From the Sturm argument, we can obtain the
kerL−,µ = {Qµ}. Here we do not need to assume that the parameter µ is small enough.

(3) Nondegeneracy of L+,µ. This case is very difficult and we only consider the radial
case. Here we develop a novel perturbation approach, together with the nondegeneracy
property of linear operators L+,0 and L−,0 to prove this result. On the other hand, we
can easily obtain that Qµ → Q0 in H1(R3), but this is a very rough estimate. In this
case, this rough estimate is not sufficient. Here we obtain the following estimate

∥Qµ −Q∥H2 . µ.

Remark 1. (i) In the above Theorem 6, we only obtain the radial non-degeneracy
property.

(ii) We can deduce from Theorem 7 that L+,µ[∇Qµ] = 0, but it is not clear that
kerL+,µ = span{∇Qµ}. This property of the wave Qµ is often referred to as non-
degeneracy.

A second main result is the existence of a minimal mass blowup solution for (31).
Theorem 8 (Existence of minimal mass blowup elements). Let u0 ∈ H1

rad(R3) and
µ > 0 is small enough. For Eµ(u0) ∈ R∗

+, there exists t∗ < 0 and a radial minimal mass
solution u ∈ C

(
[t∗, 0);H1(R3)

)
of equation (31) with

∥u∥L2 = ∥Qµ∥L2 , Eµ(u) = Eµ(u0),
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which blows up at time T = 0. More precisely, it holds that

u(t, x)− 1

λ
3
2 (t)

Qµ

(
x

λ(t)

)
eiγ(t) → 0 in L2(R3) as t→ 0−,

where

λ(t) = λ∗t+O(t3), γ(t) =
1

λ∗|t|
+O(t),

with some constant λ∗ > 0, and the blowup speed is given by

∥∇u(t)∥L2 ∼ C(u0)

|t|
, as t→ 0−.
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ЕВОЛЮЦИОНЕН ПОТОК И ОСНОВНИ СЪСТОЯНИЯ ЗА
ДРОБНОТО УРАВНЕНИЕ НА ШРЬОДИНГЕР–ХАРТРИ

Владимир Георгиев

Изучаваме уравненията на Шрьодингер–Хартри с дробна степен на оператора
на Лаплас. Концентрираме нашите изследвания върху следните главни точки:

а) съществуване и асимптотика на солитонните решения;
б) съществуване и асимптотика на еволюционния поток на задачата на Коши

за уравнението на половин вълна;
в) единственост на солитонни решения на уравненията на Шрьодингер–

Хартри;
г) избухване на решенията на масово критичното поле на Шрьодингер–Хартри.
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