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ALTERNATIVE CHARACTERIZATION OF THE CLASS

k-UCV AND RELATED CLASSES OF UNIVALENT

FUNCTIONS

Stanis lawa Kanas

Communicated by D. Drasin

Abstract. In this paper an alternative characterization of the class of
functions called k -uniformly convex is found. Various relations concerning
connections with other classes of univalent functions are given. Moreover a
new class of univalent functions, analogous to the ’Mocanu class’ of functions,
is introduced. Some results concerning this class are derived.

1. Introduction. Denote by H the class of functions of the form

(1.1) f(z) = z +

∞
∑

k=2

akz
k

analytic in the unit disk U . By S we denote the subclass of H consisting of

functions univalent in U . Also, let UCV, ST denote the classes of uniformly
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convex and uniformly starlike functions respectively (cf. [2] and [3]). The main

feature of the elements of these classes is the fact that they map circular arcs

with center at any point ζ from the unit disk on convex arcs or arcs starlike with

respect to f(ζ), respectively. The classes UCV, ST are defined by the following

analytic conditions

(1.2) UCV =

{

f ∈ S : Re

(

1 +
(z − ζ)f ′′(z)

f ′(z)

)

> 0, (z, ζ) ∈ U × U

}

,

(1.3) UST =

{

f ∈ S : Re
(z − ζ)f ′(z)

f(z) − f(ζ)
> 0, (z, ζ) ∈ U × U

}

.

The class UCV was characterized by a more applicable, one-variable condition

(cf. [7], [9]).

(1.4) UCV =

{

f ∈ S : Re

(

1 +
zf ′′(z)

f ′(z))

)

>

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

, z ∈ U

}

.

Very recently the geometric notion of uniform convexity was extended

to the case ζ ∈ C (see [4] and [5]). There the class of functions k-UCV , with

the property that each circular arc with center at the point ζ ∈ C, |ζ| ≤ k

(0 ≤ k < ∞), is mapped on a convex arc, was introduced. A two-variable

characterization of that class is the following

(1.5) k-UCV =

{

f ∈ S : Re

(

1 +
(z − ζ)f ′′(z)

f ′(z)

)

> 0, z ∈ U , |ζ| ≤ k

}

and its one-variable equivalent

(1.6) k-UCV =

{

f ∈ S : Re

(

1 +
zf ′′(z)

f ′(z)

)

> k

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

, z ∈ U

}

.

Using the familiar Alexander relation the class k-ST was also introduced [6]

(1.7) k-ST =

{

f ∈ S : Re
zf ′(z)

f(z)
> k

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

, z ∈ U

}

.

Note that in the case k = 0 the classes k-UCV and k-ST coincide with the usual

classes of convex (CV ) and starlike (ST ) functions, respectively.
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The continuous ‘passage’ between the usual classes of starlike and con-

vex univalent functions is due to Mocanu. He introduced the class of α-convex

functions (cf. [8]), denoted M(α), as follows:

(1.8) M(α) =

{

f ∈ S : Re

[

(1 − α)
zf ′(z)

f(z)
+ α

(

zf ′′(z)

f ′(z)
+ 1

)]

> 0, z ∈ U

}

.

In actual fact, Mocanu defined the class M(α) geometrically as a class

of functions that map the circle centered at the origin on a α-convex arcs. He

also proved the above analytic condition. We note that in the case α = 0 the

condition (1.8) reduces to the analytic condition of ST and when α = 1 we get

from (1.8) the characterization of the class CV.

2. Alternative characterization of the class k-UCV and its appli-

cations. In this section we present an alternative, three-variable characteriza-

tion, of the class k-UCV . As a corollary we describe in a similar way the class

k-ST . These characterizations in a surprisingly simple way leads to results con-

cerning different relations between the mentioned and other classes of univalent

functions.

Theorem 2.1. Let f ∈ H. Then f ∈ k-UCV if and only if

(2.1) ReF (z, ζ, η) ≥ 0, z, η ∈ U , |ζ| ≤ k,

where

F (z, ζ, η) =























2(z − ζ)f ′(z)

f(z) − f(η)
−

z + η − 2ζ

z − η
for z 6= η

1 +
(z − ζ)f ′′(z)

f ′(z)
for z = η

P r o o f. Since

lim
η→z

[

2(z − ζ)f ′(z)

f(z) − f(η)
−

z + η − 2ζ

z − η

]

= 1 +
(z − ζ)f ′′(z)

f ′(z)

then F (z, ζ, η) is continuous and hence analytic in z, η and ζ. Moreover, the

condition (2.1) gives that f is starlike of order 1/2, and so f is univalent in U .

Thus, by (1.5) it is obvious that (2.1) implies f ∈ k-UCV.
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Now suppose that f ∈ k-UCV. We need to show that (2.1) holds. Clearly

(2.1) holds if z = η. Then consider the case z 6= η, but |z−ζ| = |η−ζ| = r. Since

f ∈ k-UCV then f maps each circular arc on a convex arc and so the part of the

arc z(t) = ζ + reit which lies inside U will be mapped on a convex arc containing

f(η). A convex arc is starlike with respect to each point in its interior or on its

boundary, therefore

Re
(z − ζ)f ′(z)

f(z) − f(η)
≥ 0.

This fact together with

Re
z + η − 2ζ

z − η
= Re

(z − ζ) + (η − ζ)

(z − ζ) − (η − ζ)
= 0, for |z − ζ| = |η − ζ| = r, z 6= η.

yields

ReF (z, ζ, η) ≥ 0 when|z − ζ| = |η − ζ| = r.

By the fact that the function ReF (z, ζ, η) is a harmonic function in z for fixed ζ

and η, an application of the minimum principle gives (2.1) in the case |z − ζ| <

|η− ζ|. Similarly (2.1) holds when |z− ζ| > |η− ζ|, and the proof is complete. �

Corollary 2.2. Let 0 ≤ k < ∞. The function f ∈ H belongs to k-UCV

if and only if

(2.2) Re

[

zf ′(z)

f(z) − f(η)
+

η

η − z

]

>
1

2
+ k

∣

∣

∣

∣

zf ′(z)

f(z) − f(η)
+

z

η − z

∣

∣

∣

∣

, z, η ∈ U .

P r o o f. Assume z 6= η, and write F (z, ζ, η) as

F (z, ζ, η) =
2zf ′(z)

f(z) − f(η)
−

z + η

z − η
−

[

2ζf ′(z)

f(z) − f(η)
−

2ζ

z − η

]

= 2

[

zf ′(z)

f(z) − f(η)
+

η

η − z

]

−

[

1 +
2ζf ′(z)

f(z) − f(η)
+

2ζ

η − z

]

.

So we get ReF (z, ζ, η) ≥ 0 if and only if

Re

[

zf ′(z)

f(z) − f(η)
+

η

η − z

]

≥
1

2
+ Re

[

ζf ′(z)

f(z) − f(η)
+

ζ

η − z

]

.
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The condition (2.2) will follow upon choosing ζ = keiαz such that

Re

[

ζf ′(z)

f(z) − f(η)
+

ζ

η − z

]

= k

∣

∣

∣

∣

zf ′(z)

f(z) − f(η)
+

z

η − z

∣

∣

∣

∣

.

Assume now that (2.2) holds. Clearly (2.2) implies (2.1) if k|z| ≥ |ζ|. Applying

once more the minimum principle for harmonic functions we see that this implies

that Re F (z, ζ, η) ≥ 0 for all z, η ∈ U , |ζ| ≤ k hence f ∈ k-UCV. Taking the limit

as η → z in (2.2), we see that this inequality turns into

Re

[

1 +
1

2

zf ′′(z)

f ′(z)

]

>
1

2
+

k

2

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

,

which is equivalent to (1.6). Hence, the result holds also in the case η = z. �

Since the classes k-UCV and k-ST are connected by the Alexander relation

we may also obtain the two-variable representation of the class k-ST as follows.

Corollary 2.3. Let 0 ≤ k < ∞. The function f ∈ H belongs to k-ST

if and only if

Re

[

(z − ζ)f ′(z)

f(z)
+

ζ

z

]

> 0, z ∈ U , |ζ| ≤ k.

The alternative characterizations of k-UCV can be used to derive some

new properties which we state in the next corollary.

Corollary 2.4. Let 0 ≤ k < ∞ and f ∈ k-UCV. Then

(2.3) Re
(z − ζ)f ′(z)

f(z) − f(ζ)
>

1

2
, z ∈ U , |ζ| ≤ k

(2.4) Re

[

(z − ζ)f ′(z)

f(z)
+

ζ

z

]

>
1

2
, z ∈ U , |ζ| ≤ k

and

(2.5) k

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

< Re
zf ′(z)

f(z)
−

1

2
, z ∈ U .
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P r o o f. The inequality (2.3) follows from (2.1) by choosing ζ ∈ U and

taking η = ζ and (2.4) follows from (2.1) by taking η = 0. Finally (2.5) follows

from (2.2) by taking η = 0. �

Remark 2.5. Considering the results of Corollary 2.4 as results con-

cerning the order of starlikeness of the corresponding classes we observe that the

inequality (2.3) can be understood to say that any k-uniformly convex function is

uniformly starlike of order 1/2. This result resembles the result for the classical

classes of starlike and convex functions. Further the inequality (2.4) together

with Corollary 2.3 implies that each k-uniformly convex function is k-starlike of

order 1/2.

Finally, we obtain the following

Corollary 2.6. Let 0 ≤ k < ∞. If f ∈ k-UCV then f is starlike of

order (2k + 1)/(2k + 2).

P r o o f. If f is k-uniformly starlike and zf ′(z)/f(z) = u + iv then, in

view of (2.5), we have

(2.6) k2(u − 1)2 + k2v2 <

(

u −
1

2

)2

, u > 1/2,

that yields the desired result. Indeed (2.6) states that zf ′(z)/f(z) lies inside the

convex domain contained in the right half plane and bounded by the conic section

which intersects the real axis at the point u0 = (2k + 1)/(2k + 2). �

3. The class UM(α, k). In this section we shall introduce the class

UM(α, k) which corresponds to the class M(α) in the case of the classical classes

of convex and starlike functions. The class UM(α, k) provides similar ’passage’

between classes with prefix ‘k’, namely between the class k-UCV and k-ST .

In the sequel we will use the notation

J(α, f, z) = (1 − α)
zf ′(z)

f(z)
+ α

(

zf ′′(z)

f ′(z)
+ 1

)

(z ∈ U).

Definition 3.1. Let α ∈ [0, 1] and k ∈ [0,∞). We say that the function

f ∈ S belongs to the class UM(α, k) if

(3.1) Re J(α, f, z) > k |J(α, f, z) − 1|
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for z ∈ U , ζ ∈ C and |ζ| ≤ k.

Remark 3.2. Let

J(α, f, z) = u + i v

then the condition (3.1) can be written as

(3.2) u2 > k2(u − 1)2 + k2v2, u > o,

that describes a family of conic domains Ωk which kind depends only on the

parameter k. Further we denote by pk the functions that satisfy the conditions

pk(U) = Ωk, pk(0) = 1 and Re pk(z) > 0 in U . The family of domains Ωk and

the properties of the related functions pk were characterized in details in [4] and

[5]. We recall that the domains Ωk are convex and symmetric with respect to the

real axis.

Remark 3.3. The class UM(α, k) contains certain classes of functions,

considered by various authors. We present below a survey of them.

UM(α, 0) = M(α),

UM(0, 0) = ST ,

UM(1, 0) = CV,

UM(0, k) = k-ST ,

UM(1, k) = k-UCV.

Theorem 3.4. The function h(z) = z/(1 − Az) is an element of

UM(α, k) if and only if

(3.3) |A| ≤
α

k(α + 1) + α
.

P r o o f. It is easy to calculate that

Re J(α, h, z) = Re

[

1 + αAz

1 − Az

]

and

k |J(α, h, z) − 1| = k

∣

∣

∣

∣

(α + 1)Az

1 − Az

∣

∣

∣

∣

.
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Thus, in this case (3.1) becomes

Re

[

1 + αAz

1 − Az

]

> k

∣

∣

∣

∣

(α + 1)Az

1 − Az

∣

∣

∣

∣

or equivalently

(3.4) Re(1 + αAz)(1 − Az) > k|(α + 1)Az||1 − Az|.

Now, it is enough to prove the condition (3.4) for z = eit, t ∈ [0, 2π]. A brief

computation leads to the thesis. �

Theorem 3.5. UM(α, k) ⊂ UM(0, k) = k-ST .

P r o o f. Denote by p(z) = zf ′(z)/f(z) and let pk be the functions men-

tioned in Remark 3.2. Then the condition (2.1) is equivalent to

(1 − α)p(z) + α

(

p(z) +
zp′(z)

p(z)

)

≺ pk(z)

or equivalently

p(z) + α
zp′(z)

p(z)
≺ pk(z).

The above subordination is of Briot-Bouquet type (see [1]) and so implies that

p ≺ pk in U , as desired. �

Theorem 3.6. UM(α, k) ⊂ UM(β, k) for 0 ≤ β ≤ α ≤ 1.

P r o o f. Since the case β = 0 was considered in the previous theorem we

assume β > 0. Suppose also that f ∈ UM(α, k) and β ≤ α ≤ 1. Now, denoting

by p(z) = zf ′(z)/f(z) and taking into account Theorem 3.5 we have that

J(α, f, z) = p(z) + α
zp′(z)

p(z)
=: Q(z) ≺ pk(z),

and also p ≺ pk in U . In order to prove that f ∈ UM(β, k) we need to show that

p(z) + β
zp′(z)

p(z)
≺ pk(z).

Since β/α ≤ 1 and

p(z) + β
zp′(z)

p(z)
=

β

α
Q(z) +

(

1 −
β

α

)

p(z)
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then for each fixed z the right hand side of above is an element of the line

segment with endpoints at Q and p, which lie inside the convex domain Ωk. Thus

p(z) + β zp′(z)/p(z) also lies in the domain Ωk. This completes the proof. �

Taking into consideration Theorem 2.1 and Corollary 2.3 together with

Definition 3.1 we may also derive another representation of UM(α, k).

Corollary 3.7. Let 0 ≤ k < ∞. The function f ∈ H belongs to

UM(α, k) if and only if

(3.5)

Re

{

(1 − α)

[

(z − ζ)f ′(z)

f(z)
+

ζ

z

]

+ α

[

2(z − ζ)f ′(z)

f(z) − f(η)
−

(z + η − 2ζ)

z − η

]}

> 0

or

(3.6) Re

{

(1 − α)

[

(z − ζ)f ′(z)

f(z)
+

ζ

z

]

+ α

[

1 +
(z − ζ)f ′′(z)

f ′(z)

]}

> 0.

where z, η ∈ U , |ζ| ≤ k

Taking η = 0 in (3.5) we obtain the following results.

Corollary 3.8. Let 0 ≤ k < ∞. If the function f ∈ UM(α, k) then

(3.7) Re

[

(z − ζ)f ′(z)

f(z)
+

ζ

z

]

>
α

α + 1
(z ∈ U , |ζ| ≤ k).

The above inequality can be read as the order of k-starlikeness of the

functions from the class UM(α, k). This means that if the function f ∈ UM(α, k)

then f ∈ k-ST α/(α+1).
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