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Abstract. Given a differentiable action of a compact Lie group G on a
compact smooth manifold V , there exists [3] a closed embedding of V into
a finite-dimensional real vector space E so that the action of G on V may
be extended to a differentiable linear action (a linear representation) of G
on E. We prove an analogous equivariant embedding theorem for compact
differentiable spaces (∞-standard in the sense of [6, 7, 8]).

1. Preliminaries.

Differentiable algebras [2, 4, 5, 9]. C∞(Rn) will denote the algebra of

all smooth real-valued functions on R
n, endowed with the usual Fréchet topology,

so that polynomial functions are dense in C∞(Rn). Differentiable algebras are

defined to be quotients of C∞(Rn) by closed ideals:

A ≃ C∞(Rn)/a, a = a
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and in such case we say that

(a)0 := {x ∈ R
n : f(x) = 0 for any f ∈ a}

is the real spectrum of A. If x ∈ (a)0, then mx := {f ∈ A : f(x) = 0} is a

maximal ideal of A. If f ∈ A, then the differential dxf of f at x is defined to be

the residue class of the increment f − f(x) ∈ mx in the cotangent space mx/m
2
x

at the point x. We say that f1, . . . , fr ∈ A separate infinitely near points to x

when dxf1, . . . , dxfr span the vector space mx/m
2
x.

Differentiable algebras have a C∞-calculus: If f1, . . . , fr ∈ A, then there

exists a unique morphism of R-algebras ψ : C∞(Rr) → A such that ψ(xi) = fi,

1 ≤ i ≤ r. Moreover, ψ is surjective if and only if f1, . . . , fr separate infinitely

near points and the map (f1, . . . , fr) : (a)0 → R
r defines a homeomorphism of

(a)0 onto a closed subset of R
r. In particular, when A has compact spectrum, ψ

is surjective if and only if f1, . . . , fr separate points and infinitely near points.

Affine differentiable spaces [4, 6, 7, 8]. The category of affine differen-

tiable spaces (local models of Spallek’s standard ∞-differentiable spaces) is dual

to the category of differentiable algebras. If X is an affine differentiable space,

C∞(X) will denote the corresponding differentiable algebra, and the real spec-

trum of C∞(X) is denoted by X. Elements of C∞(X) are said to be differentiable

functions on X. Morphisms of affine differentiable spaces φ : X → Y are just

morphisms of R-algebras φ∗ : C∞(Y ) → C∞(X).

Any smooth manifold V (Hausdorff, separable and of finite dimension)

defines an affine differentiable space since, according to Whitney’s embedding

theorem, C∞(V ) is a differentiable algebra. Moreover, morphisms of differentiable

spaces between smooth manifolds V , W are just differentiable maps, since it is

well-known that every morphism of R-algebras C∞(V ) → C∞(W ) is defined by a

unique differentiable map W → V .

The category of affine differentiable spaces has finite direct products.

A morphism of affine differentiable spaces j : X →֒ X ′ is said to be a closed

embedding if the corresponding morphism j∗ : C∞(X ′) → C∞(X) is surjective. In

such case the restriction to X of a differentiable function f ∈ C∞(X ′) is defined

to be j∗f . When j : X →֒ X ′ is a closed embedding, then so is j×(id) : X×Y →֒

X ′ × Y for any affine differentiable space Y .

Let X be an affine differentiable space and let V be a smooth manifold.

A differentiable function f on V ×X vanishes if and only if so does its restriction

to v ×X for any point v ∈ V . Hence, if Y is an affine differentiable space, two
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morphisms φ,ϕ : V ×X → Y coincide if and only if they coincide on v ×X for

any point v ∈ V .

Peter-Weyl’s theorem. Let G be a compact Lie group. A continuous

action of G onto a topological space X is defined to be any continuous map

θ : G×X → X such that 1 ·x = x and g1 · (g2 ·x) = (g1g2) ·x, for any g1, g2 ∈ G,

x ∈ X; where g · x := θ(g, x). Given two topological spaces X, Y , endowed with

continuous actions of G, a continuous map f :X → Y is said to be G-equivariant

when f(g · x) = g · f(x) for any x ∈ X, g ∈ G.

A continuous action θ:G × E → E of G on a topological vector space E

is said to be linear (or that G acts on E by linear automorphisms) when the map

θg:E → E, θg(e) = g · e, is linear for every g ∈ G. A vector e ∈ E is said to be

of representation when its orbit Ge := θ(G× e) spans a finite-dimensional vector

subspace of E. If A is a topological algebra and θ : G× A → A is a continuous

action, we say that G acts on A by automorphisms of algebras when θg:A → A

is an automorphism of algebras for any g ∈ G.

If θ : G×E → E is a linear continuous action of a compact Lie group G

on a Fréchet space E, then Peter-Weyl’s theorem ([1]) states that representation

vectors are dense in E.

2. Continuous actions on differentiable algebras. Let E be a finite-

dimensional real vector space. Continuous linear actions of G on E correspond

with continuous linear representations (continuous morphism of groups) ρ:G →

Gl(E), where ρ(g)(e) = g · e. In such case, we have a continuous linear action

of G on the dual space F of E, where g ∈ G acts by: (g · f)(e) := f(g−1 · e),

g ∈ G, f ∈ F , e ∈ E. Since F ⊂ C∞(E), this linear action of G on the dual

space F may be extended so as to obtain a continuous action of G on C∞(E) by

automorphisms of algebras:

(g · f)(e) := f(g−1 · e), g ∈ G, f ∈ C∞(E), e ∈ E

Lemma 2.1. Let F be a finite-dimensional vector subspace of a differen-

tiable algebra A and let E be the dual space of F . There exists a unique morphisms

of R-algebras C∞(E) → A which is the identity on F . If we have a continuous

action of G on A by automorphisms of algebras and F is a G-invariant subspace,

then this morphism is G-equivariant.

P r o o f. In order to show the existence of ψ, we may assume that A =

C∞(Rn). In such case, any point of R
n defines a linear map φx : F → R,
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φx(f) = f(x), and so we obtain a differentiable map φ : R
n → E, φ(x) = φx.

The morphism φ∗ : C∞(E) → A is the identity on F .

Since the subalgebra of C∞(E) generated by F is dense, it follows that

such morphism is unique and that it is G-equivariant whenever F is a G-invariant

subspace. �

Theorem 2.2. Let G be a compact Lie group and let A be a differentiable

algebra with compact spectrum. If we have a continuous action of G on A by

automorphisms of algebras, then there exists a continuous linear representation

G→ Gl(E) and a G-equivariant epimorphism C∞(E) → A.

P r o o f. By definition, we have A = C∞(Rn)/a for some closed ideal a, so

that A is a Fréchet space and, according to Peter-Weyl’s theorem, representation

functions are dense in A. Hence, there are representation functions f1, . . . , fn ∈

A so close to the cartesian coordinates x1, . . . , xn that dxf1, . . . , dxfn span the

cotangent space mx/m
2
x at any point x of K = (a)0 (hence f1, . . . , fn separate

infinitely near points). Moreover, we may assume that f1, . . . , fn separate points

in a neighborhood of each point of K (although it may be that f1, . . . , fn do not

separate points of K), and a finite number U1, . . . , Um of these neighborhoods

cover K since it is assumed to be compact. Let ε be a positive real number such

that, whenever the distance between two points x, y ∈ K is d(x, y) < ε, then

x, y ∈ Ur for some r = 1, . . . ,m.

Let h1, . . . , hn ∈ A be representation functions so close to x1, . . . , xn that

we have d(x, y) < ε whenever hi(x) = hi(y), i = 1, . . . , n; so that fj(x) 6= fj(y)

for some index j = 1, . . . , n. Since f1, . . . , fn, h1, . . . , hn ∈ A are representation

functions, their orbits Gf1, . . . , Gfn, Gh1, . . . , Ghn span a finite-dimensional G-

invariant vector subspace F ⊂ A.

Let E be the dual space of F . The morphism C∞(E) → A provided by

2.1 is surjective, because f1, . . . , fn, h1, . . . , hn separate points of K and infinitely

near points, and it is G-equivariant according to 2.1. �

Definition. A differentiable action of a Lie group G on an affine differ-

entiable space X is defined to be a morphism of differentiable spaces θ:G×X → X

such that the following diagrams are commutative:

X
1×Id

−−−−−→ G×X

Id ց ւ θ

X

G×G×X
(id)×θ

−−−→ G×X




y

µ×(id)





y

θ

G×X
θ

−→ X
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where µ : G×G→ G, µ(g′, g) = g′g, stands for the operation of G.

Let θX : G ×X → X and θY : G × Y → Y be differentiable actions of

G on two affine differentiable spaces X, Y . A morphism of differentiable spaces

φ : X → Y is said to be G-equivariant when the following diagram is commuta-

tive:

G×X
θX−→ X





y

(id)×φ





y

φ

G×Y
θY−→ Y

Example. Any continuous linear representation ρ : G → Gl(E) is a

differentiable map, so that the corresponding linear action θ : G × E → E,

θ(g, e) = ρ(g)(e), is differentiable. In fact, Γρ := {(g, ρ(g)): g ∈ G} is a closed

subgroup of G × Gl(E), and it is homeomorphic to G; therefore ([10]) Γρ is a

smooth submanifold of the same dimension as G. The first projection, π1: Γρ → G

is a local diffeomorphism at some point by Sard’s theorem, hence it is a diffeo-

morphism since it is an isomorphism of groups. It follows that the linear repre-

sentation ρ = π2π
−1
1 is differentiable, hence so is the corresponding linear action

θ(g, e) = ρ(g)(e).

Let θ : G×X → X be a differentiable action of G on an affine differen-

tiable space X. If g ∈ G, then the composition

X ≃ g ×X →֒ G×X
θ

−→X

is an isomorphism g:X ≃ X, so that g induces an isomorphism of algebras

g∗ : C∞(X) ≃ C∞(X). We obtain an action of G on C∞(X) by automorphisms

of algebras:

g · f = (g−1)∗f, g ∈ G, f ∈ C∞(X)

and, by definition, g · f is just the restriction of θ∗f to g−1 ×X ≃ X .

Lemma 2.3. θ : G×X → X be a differentiable action of G on an affine

differentiable space X. The induced action of G on C∞(X) is continuous.

P r o o f. If Y is any affine differentiable space, then we consider the map

δY :G×C∞(G×Y ) → C∞(Y ), where δY (g, f) is the restriction of f to g×Y ≃ Y .

It is easy to check that δR
n is continuous. If C∞(X) = C∞(Rn)/a, then we have
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a commutative square

G× C∞(G× R
n)

δRn

−→ C∞(Rn)




y





y

G× C∞(G×X)
δX−→ C∞(X)

where the vertical arrows are open surjective continuous maps. Since δR
n is con-

tinuous, it follows that so is δX . Finally, the action of G on C∞(X) is continuous

because it is the composition of the following continuous maps:

G× C∞(X)
(id)×θ∗

−−−→ G× C∞(G×X)
(inv)×(id)
−−−−−→ G× C∞(G×X)

δX−→ C∞(X)

3. Equivariant embedding theorem.

Theorem 3.1. Let G be a compact Lie group and let X be a com-

pact affine differentiable space. Any continuous action of G on C∞(X) by au-

tomorphisms of algebras is differentiable (it is induced by a differentiable action

G×X → X ).

P r o o f. According to Theorem 2.2, there exists a continuous (hence dif-

ferentiable) linear representation G → Gl(E) and a G-equivariant epimorphism

C∞(E) → C∞(X); hence its kernel a is a G-invariant closed ideal. This epimor-

phism defines a closed embedding j : X →֒ E and, a being G-invariant, θ∗E(a)

vanishes on g × X for any g ∈ G. Therefore θ∗E(a) vanishes on G × X and the

differentiable action θE : G×E → E induces a morphism of affine differentiable

spaces θX : G×X → X, so that the following square is commutative:

G×X
θX−→ X





y

(id)×j





y

j

G× E
θE−→ E

It follows that θX is a differentiable action, since so is θE and j is a closed

embedding. Finally, it is easy to check that the action of G on A = C∞(X)

defined by θX is just the initial one.

Theorem 3.2. Let θX : G × X → X be a differentiable action of a

compact Lie group G on a compact affine differentiable space X. There exists

a differentiable linear representation ρ : G → Gl(E) and a G-equivariant closed

embedding j : X →֒ E.
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P r o o f. By Lemma 2.3, the action of G on C∞(X) is continuous. By

Theorem 2.2, there exists a closed embedding j : X →֒ E such that the corre-

sponding epimorphism j∗ : C∞(E) → C∞(X) is G-equivariant. That is to say, if

g ∈ G, then the following square is commutative:

g ×X
θX−→ X





y

(id)×j





y

j

g × E
θE−→ E

Therefore, the following square

G×X
θX−→ X





y

(id)×j





y

j

G× E
θE−→ E

is commutative: the closed embedding j is G-equivariant.
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233–248.



114 R. Faro Rivas, J. A. Navarro González, J. B. Sancho de Salas
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Universidad de Extremadura

06071–Badajoz, Spain

e-mail: rfaro@unex.es

navarro@unex.es

jsancho@unex.es Received July 21, 2000


