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ABSTRACT. Given a differentiable action of a compact Lie group G on a
compact smooth manifold V', there exists [3] a closed embedding of V' into
a finite-dimensional real vector space E so that the action of G on V may
be extended to a differentiable linear action (a linear representation) of G
on E. We prove an analogous equivariant embedding theorem for compact
differentiable spaces (co-standard in the sense of [6, 7, 8]).

1. Preliminaries.

Differentiable algebras [2, 4, 5, 9]. C*°(R") will denote the algebra of
all smooth real-valued functions on R”, endowed with the usual Fréchet topology,
so that polynomial functions are dense in C*°(R"™). Differentiable algebras are
defined to be quotients of C*°(R™) by closed ideals:

A~ C*(R")/a, ad=a
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and in such case we say that
(a)g:={x €eR"™ : f(x)=0 forany f€a}

is the real spectrum of A. If x € (a)p, then my := {f € A: f(z) =0} is a
maximal ideal of A. If f € A, then the differential d, f of f at x is defined to be
the residue class of the increment f — f(x) € m, in the cotangent space m,/m2
at the point z. We say that fi,..., f, € A separate infinitely near points to x
when d, f1,...,d,f- span the vector space m,/m>.

Differentiable algebras have a C*°-calculus: If fi,..., f. € A, then there
exists a unique morphism of R-algebras ¢ : C*°(R") — A such that ¢ (x;) = f;,
1 <4 < r. Moreover, v is surjective if and only if fi,..., f. separate infinitely
near points and the map (f1,...,fr) : (a)o — R" defines a homeomorphism of
(a)o onto a closed subset of R". In particular, when A has compact spectrum, 1
is surjective if and only if fi,..., f, separate points and infinitely near points.

Affine differentiable spaces [4, 6, 7, 8]. The category of affine differen-
tiable spaces (local models of Spallek’s standard co-differentiable spaces) is dual
to the category of differentiable algebras. If X is an affine differentiable space,
C*°(X) will denote the corresponding differentiable algebra, and the real spec-
trum of C*°(X) is denoted by X. Elements of C>°(X) are said to be differentiable
functions on X. Morphisms of affine differentiable spaces ¢ : X — Y are just
morphisms of R-algebras ¢* : C®(Y) — C*(X).

Any smooth manifold V' (Hausdorff, separable and of finite dimension)
defines an affine differentiable space since, according to Whitney’s embedding
theorem, C*°(V) is a differentiable algebra. Moreover, morphisms of differentiable
spaces between smooth manifolds V', W are just differentiable maps, since it is
well-known that every morphism of R-algebras C*°(V') — C*°(W) is defined by a
unique differentiable map W — V.

The category of affine differentiable spaces has finite direct products.

A morphism of affine differentiable spaces j : X — X' issaid to be a closed
embedding if the corresponding morphism j* : C*°(X’) — C*°(X) is surjective. In
such case the restriction to X of a differentiable function f € C*°(X’) is defined
to be j*f. When j : X — X' is a closed embedding, then sois j x (id) : X XY —
X' x Y for any affine differentiable space Y.

Let X be an affine differentiable space and let V' be a smooth manifold.
A differentiable function f on V x X vanishes if and only if so does its restriction
to v x X for any point v € V. Hence, if Y is an affine differentiable space, two
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morphisms ¢, : V x X — Y coincide if and only if they coincide on v x X for
any point v € V.

Peter-Weyl’s theorem. Let G be a compact Lie group. A continuous
action of G onto a topological space X is defined to be any continuous map
f: GxX — X suchthat 1-2 =2 and g; - (g2-z) = (9192) - z, for any ¢1, 2 € G,
x € X; where g - x := 6(g,z). Given two topological spaces X, Y, endowed with
continuous actions of G, a continuous map f: X — Y is said to be G-equivariant
when f(g-x)=g¢g- f(z) forany z € X, g € G.

A continuous action 0: G x F — E of G on a topological vector space F
is said to be linear (or that G acts on F by linear automorphisms) when the map
0, E — FE, 64(e) = g-e, is linear for every g € G. A vector e € E is said to be
of representation when its orbit Ge := (G X e) spans a finite-dimensional vector
subspace of E. If A is a topological algebra and 6 : G x A — A is a continuous
action, we say that G acts on A by automorphisms of algebras when 6,: 4 — A
is an automorphism of algebras for any g € G.

If 0 : G x E — FE is a linear continuous action of a compact Lie group G
on a Fréchet space F, then Peter-Weyl’s theorem ([1]) states that representation
vectors are dense in F.

2. Continuous actions on differentiable algebras. Let F be a finite-
dimensional real vector space. Continuous linear actions of G on F correspond
with continuous linear representations (continuous morphism of groups) p: G —
GI(E), where p(g)(e) = g - e. In such case, we have a continuous linear action
of G on the dual space F of E, where g € G acts by: (g- f)(e) := f(g~'-e),
g€ G, feF, eeE. Since F C C®(FE), this linear action of G on the dual
space F' may be extended so as to obtain a continuous action of G on C*°(F) by
automorphisms of algebras:

(gf)(e) = f(gil'e)v QGG, fECOO(E), ec E

Lemma 2.1. Let F' be a finite-dimensional vector subspace of a differen-
tiable algebra A and let E be the dual space of F'. There exists a unique morphisms
of R-algebras C*°(E) — A which is the identity on F. If we have a continuous
action of G on A by automorphisms of algebras and F' is a G-invariant subspace,
then this morphism is G-equivariant.

Proof. In order to show the existence of 1, we may assume that A =
C>®°(R™). In such case, any point of R™ defines a linear map ¢, : F — R,
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¢.(f) = f(x), and so we obtain a differentiable map ¢ : R" — E, ¢(x) = ¢,.
The morphism ¢* : C*°(FE) — A is the identity on F.

Since the subalgebra of C*°(E) generated by F' is dense, it follows that
such morphism is unique and that it is G-equivariant whenever F' is a G-invariant
subspace. O

Theorem 2.2. Let G be a compact Lie group and let A be a differentiable
algebra with compact spectrum. If we have a continuous action of G on A by
automorphisms of algebras, then there exists a continuous linear representation
G — GIU(E) and a G-equivariant epimorphism C>*(E) — A.

Proof. By definition, we have A = C>(R")/a for some closed ideal a, so
that A is a Fréchet space and, according to Peter-Weyl’s theorem, representation
functions are dense in A. Hence, there are representation functions fi,..., f, €
A so close to the cartesian coordinates z1,...,x, that d,fi,...,d:fn span the
cotangent space m,/m2 at any point x of K = (a)y (hence fi,...,f, separate
infinitely near points). Moreover, we may assume that fq,..., f, separate points
in a neighborhood of each point of K (although it may be that fi,..., f, do not
separate points of K), and a finite number Uy, ..., U,, of these neighborhoods
cover K since it is assumed to be compact. Let € be a positive real number such
that, whenever the distance between two points z,y € K is d(x,y) < &, then
xz,y € U, for some r=1,...,m.

Let hi,...,h, € A be representation functions so close to z1,...,x, that
we have d(z,y) < € whenever h;(xz) = hi(y), i = 1,...,n; so that f;(z) # f;(y)
for some index j = 1,...,n. Since fi,..., fn,h1,...,hy, € A are representation
functions, their orbits Gf1,..., Gf,, Ghi,..., Gh, span a finite-dimensional G-
invariant vector subspace F' C A.

Let E be the dual space of F. The morphism C*(E) — A provided by
2.1 is surjective, because f1,..., fn, h1,..., h, separate points of K and infinitely
near points, and it is G-equivariant according to 2.1. O

Definition. A differentiable action of a Lie group G on an affine differ-
entiable space X is defined to be a morphism of differentiable spaces 0: GXx X — X
such that the following diagrams are commutative:

(id) <0
X1X_M>G><X GxGExX — GExX
N 0 luX(id) 19

X GxX . x
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where p: G x G — G, (g, 9) = ¢'g, stands for the operation of G.

Let 0x : G x X — X and 0y : G xY — Y be differentiable actions of
G on two affine differentiable spaces X, Y. A morphism of differentiable spaces
¢ : X — Y is said to be G-equivariant when the following diagram is commuta-
tive:

GxX % x

[aaxe s

Gxy vy

Example. Any continuous linear representation p : G — GI(F) is a
differentiable map, so that the corresponding linear action 0 : G x F — F,
8(g,e) = p(g)(e), is differentiable. In fact, I', := {(g,p(9)): g € G} is a closed
subgroup of G x GI(E), and it is homeomorphic to G; therefore ([10]) I, is a
smooth submanifold of the same dimension as G. The first projection, m1:I'y — G
is a local diffeomorphism at some point by Sard’s theorem, hence it is a diffeo-
morphism since it is an isomorphism of groups. It follows that the linear repre-
sentation p = mom| is differentiable, hence so is the corresponding linear action

0(g,e) = p(g)(e).

Let 6 : G x X — X be a differentiable action of G on an affine differen-
tiable space X. If g € G, then the composition

Xoegx X oG x X-5X

is an isomorphism ¢g: X ~ X, so that g induces an isomorphism of algebras
g" 1 C®(X) ~ C*®(X). We obtain an action of G on C*°(X) by automorphisms
of algebras:

g-f=0")f geG, feC?(X)
and, by definition, g - f is just the restriction of 6*f to ¢! x X ~ X .

Lemma 2.3. §: Gx X — X be a differentiable action of G on an affine
differentiable space X. The induced action of G on C*°(X) is continuous.

Proof. If Y is any affine differentiable space, then we consider the map
dy:GxC®(GxY) — C>®(Y), where dy (g, f) is the restriction of f to gxY ~ Y.
It is easy to check that dgn is continuous. If C*°(X) = C*(R")/a, then we have
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a commutative square
G x C®°(G x RY) X5 coo(R™)

|

GxC®(GxX) 2 ¢~(X)

where the vertical arrows are open surjective continuous maps. Since dg» is con-
tinuous, it follows that so is dx. Finally, the action of G on C*°(X) is continuous
because it is the composition of the following continuous maps:

(id) x0* (inv) x (id)

GxC¥(X) — GxC®G x X) G x C®(G x X) 25 ¢®(X)

3. Equivariant embedding theorem.

Theorem 3.1. Let G be a compact Lie group and let X be a com-
pact affine differentiable space. Any continuous action of G on C>®(X) by au-
tomorphisms of algebras is differentiable (it is induced by a differentiable action

GxX—X).

Proof. According to Theorem 2.2, there exists a continuous (hence dif-
ferentiable) linear representation G — GI(FE) and a G-equivariant epimorphism
C>®(E) — C*(X); hence its kernel a is a G-invariant closed ideal. This epimor-
phism defines a closed embedding j : X — E and, a being G-invariant, 6% (a)
vanishes on g x X for any g € G. Therefore 0},(a) vanishes on G x X and the
differentiable action g : G x E — E induces a morphism of affine differentiable
spaces 0x : G x X — X, so that the following square is commutative:

GxXx % x

| < E

GxE 2B E

It follows that fx is a differentiable action, since so is g and j is a closed
embedding. Finally, it is easy to check that the action of G on A = C*(X)
defined by 0x is just the initial one.

Theorem 3.2. Let 0x : G x X — X be a differentiable action of a
compact Lie group G on a compact affine differentiable space X. There exists

a differentiable linear representation p : G — GI(E) and a G-equivariant closed
embedding 7 : X — E.
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Proof. By Lemma 2.3, the action of G on C*(X) is continuous. By

Theorem 2.2, there exists a closed embedding j : X — FE such that the corre-
sponding epimorphism j* : C*®(E) — C*(X) is G-equivariant. That is to say, if
g € G, then the following square is commutative:

gx X X x

l(id)xj lj

Or

g X FE = FE
Therefore, the following square
GxX 2% x

|G E

GxE 22 E

is commutative: the closed embedding j is G-equivariant.

1]
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